cD 1NC L.LJD'ED

Alex&Varanese

uf-]u]‘... ,—/

() ”’iz'-—;;‘ R AT CAlFaMO LI e
) iAndreslraMothe!

CEO Xtreme Games LLC

GAME
SCRIPTING
IYIASTERY

HLEX VARANESE

PREMIER PRESS

\Hﬁ GAME DEVELOPMENT

© 2003 by Premier Press, a division of Course Technology. All rights reserved. No part of this
book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system without
written permission from Premier Press, except for the inclusion of brief quotations in a review.

Premier

I

The Premier Press logo and related trade dress are trademarks of Premier Press, Inc. and
,may not be used without written permission.

Press

Publisher: Stacy L. Hiquet
Marketing Manager: Heather Hurley
Acquisitions Editor: Mitzi Koontz
Series Editor: André LaMothe
Project Editor: Estelle Manticas
Copy Editor: Kezia Endsley

Interior Layout: Bill Hartman

Cover Designer: Mike Tanamachi
Indexer: Kelly Talbot

Proofreader: Sara Gullion

ActivePython, ActiveTcl, and ActiveState are registered trademarks of the ActiveState
Corporation. All other trademarks are the property of their respective owners.

Important: Premier Press cannot provide software support. Please contact the appropriate
software manufacturer’s technical support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to
be reliable. However, because of the possibility of human or mechanical error by our sources,
Premier Press, or others, the Publisher does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results
obtained from use of such information. Readers should be particularly aware of the fact that the
Internet is an ever-changing entity. Some facts may have changed since this book went to press.

ISBN: 1-931841-57-8

Library of Congress Catalog Card Number: 2001099849
Printed in the United States of America

03040506 07BH 10987654321

Premier Press, a division of Course Technology
2645 Erie Avenue, Suite 41
Cincinnati, Ohio 45208

This book 1s dedicated to my parents, Ray and Sue, and to my
sister Katherine, if for no other reason than the ssmple fact that
they'd put me in a body bag if I forgot to do so.

FOREWORD

Programming games is so fun! The simple reason is that you get to code so many different types
of subsystems in a game, regardless of whether it's a simple Pac Man clone or a complex triple-A
tactical shooter. Coding experience is very enriching, whether you’re writing a renderer, sound
system, Al system, or the game code itself; all of these types of programming contain challenges
that you get to solve. The best way to code in any of these areas is with the most knowledge you
can absorb beforehand. This is why you should have a ton of programming books close at hand.

One area of game coding that hasn't gotten much exposure is scripting. Some games don't need
scripting—whether or not a game does is often dependant on your development environment
and team—but in a lot of cases, using scripting is an ideal way of isolating game code from the
main engine, or even handling in-game cinematics. Most programmers, when faced with solving
a particular coding problem (let's say handling NPC interaction, for instance), will usually decide
to write their own elaborate custom language that integrates with their game code. With the
scripting tools available today this isn't strictly necessary, but boy is it fun!

Many coders aren’t aware of the range of scripting solutions available today; that’s where this fine
book comes in. Game Scripting Mastery is the best way to dive into the mysterious world of game
scripting languages. You’ll learn what a scripting language is and how one is written; you’ll get to
learn about Lua, Python, and Tcl and how to make them work with your game (I'm a hardcore
proponent for Lua, by the way); and, of course, you’ll learn about compiler theory. You’ll even
get to examine how a full scripting language is developed! There's lots of knowledge contain
herein, and if you love coding games, I'm confident that you'll enjoy finding out more about this
aspect of game programming. Have "The Fun!”

John Romero

ACKNOWLEDGMENTS

It all started as I was standing around with some friends of mine on the second day of the 2001
Xtreme Game Developer's Conference in Santa Clara, California, discussing the Premier Press
game development series. At the time, I'd been doing a lot of research on the subject of compiler
theory—specifically, how it could be applied to game scripting—and at the exact moment I men-
tioned that a scripting book would be a good idea, André Lamothe just happened to walk by.
"Let's see what he thinks," I said, and pulled him aside. "Hey André, have you ever thought about
a book on game scripting for your series?" I expected something along the lines of "that's not a
bad idea", or "sure- it's already in production." What I got was surprising, to say the least.

"Why don't you write it?"

That was literally what he said. Unless you're on some sort of weird version of Jeopardy! where the
rules of the game require you to phrase your answer in the form of a book deal, this is a pretty
startling response. I blinked, thought about it for about a nanosecond, and immediately said
okay. This is how I handle most important decisions, but the sheer magnitude of the events that
would be set into motion by this particular one could hardly have been predicted at the time.
Never question the existence of fate.

With the obligatory anecdote out of the way, there are a number of very important people I'd like
to thank for providing invaluable support during the production of this book. It'd be nothing
short of criminal if this list didn't start with Mitzi Foster, my acquisitions editor who demonstrated
what can only be described as superhuman patience during the turbulent submission and evolu-
tion of the book's manuscript. Having to handle the eleventh-hour rewrites of entire chapters
(and large ones at that) after they've been submitted and processed is an editor's nightmare—
and only one of the many she put up with—but she managed to handle it in stride, with a consis-
tently friendly and supportive attitude.

Next up is my copy editor, Kezia Endsley; if you notice the thorough grammatical correctness of
even the comments in this book's code listings, you'll have her to thank. Granted, it'll only be a
matter of time before the latest version of Microsoft's compilers have a comment grammar check-
ing paperclip, dancing monkey, robot dog, or ethnically ambiguous baby, but her eye for detail is
safely appreciated for now.

Lastly, rounding out the Game Scripting Mastery pit crew is Estelle Manticas, my project editor
who really stepped up to the plate during the later parts of the project, somehow maintaining a
sense of humor while planet Earth crumbled around us. Few people have what it takes to manage
the workload of an entire book when the pressure's on, and she managed to make it look easy.

Of course, due to my relatively young age and penchant for burning through cash like NASA, I've
relied on others to provide a roof over my head. The honor here, not surprisingly, goes to my
parents. I'd like to thank my mom for spreading news of my book deal to every friend, relative,
teacher, and mailman our family has ever known, and my dad for deciding that the best time to
work so loudly on rebuilding the deck directly outside my room is somewhere around zero o'clock
in the morning. I also can't forget my sister, Katherine—her constant need for me to drive her to
work is the only thing that keeps me waking up at a decent hour. Thanks a lot, guys!

And last, and most certainly least, I supposel should thank that Lamothe guy. Seriously though—I
may have toiled endlessly on the code and manuscript, but André is the real reason this book
happened (and was also its technical editor). I've gotta say thanks for letting my raid your fridge
on a regular basis, teaching me everything I know about electrical engineering, dumping so many
free books on me, answering my incessant and apparently endless questions, restraining yourself
from ending our more heated arguments with a golf club, and of course, extending such an
obscenely generous offer to begin with. It should be known that there's literally no one else in

the industry that goes out of their way to help people out this much, and I'm only one of many
who've benefited from it.

I'd also like to give a big thanks to John Romero, who took time out of his understandably
packed schedule to save the day and write the book's Foreword. If not for him, I probably
would've had to get my mom to do it.

Oh and by the way, just because I think they'll get a kick out of it, I'd like to close with some hor-
rendously geeky shout-outs: thanks to Ironblayde, xms and Protoman—three talented coders,
and the few people I actually talk to regularly online—for listening to my constant ranting, and
encouraging me to finish what I start (if for no other reason than the fact that I'll stop blabbering
about it). You guys suck. Seriously.

Now if you'll excuse me, I'm gonna wrap this up. I feel like I'm signing a yearbook.

ARouT THE AUTHOR

Alex Varanese has been obsessed with game development since the mid-1980's when, at age five,
he first laid eyes—with both fascination and a strange and unexplainable sense of familiarity—on
the 8bit Nintendo Entertainment System. He's been an avid artist since birth as well, but didn't
really get going as a serious coder until later in life, at around age 15, with QBASIC. He got his
start as a professional programmer at age 18 as a Java programmer in the Silicon Valley area,
working on a number of upstart B2B projects on the J2EE platform before working for about a
year as both a semi-freelance and in-house graphic designer.

Feeling that life in the office was too restrictive, however, he's since shifted his focus back to game
development and the pursuit of future technology. He currently holds the position of head
designer and systems architect for eGameZone (http://www.egamezone.net), the successor venture
to André LaMothe's Xtreme Games LLC. He spends his free time programming, rendering, writ-
ing about himself in the third person, yelling at popup ads, starring in an off-Broadway produc-
tion of Dude, Where's My Car? The Musical, and demonstrating a blatant disregard for the posted
speed limit.

Alex Varanese can be reached at alex@amvbooks.com, and is always ready and willing to answer any
questions you may have about the book. Please, don't hesitate to ask!

!

LETTER FROM THE
SERIES ED1TOR

Along, long, time ago on an 8-bit computer far, far, away, you could get
away with hard coding all your game logic, artificial intelligence, and so
forth. These days, as they say on the Sopranos "forget about it...." Games
are simply too complex to even think about coding anymore—in fact, 99
percent of all commercial games work like this: a 3D game engine is devel-
oped, then an interface to the engine is created via a scripting language sys-
tem (usually a very high-level language) based on a virtual machine. The
scripting language is used by the game programmers, and even more so the
game designers, to create the actual game logic and behaviors for the entire
game. Additionally, many of the rules of standard programming, such as
strict typing and single threaded execution, are broken with scripting lan-
guages. In essence, the load of game development falls to the game design-
ers for logic and game play, and to game programmers for the 3D engine,
physics, and core technologies of the engine.

So where does one start when learning to use scripting in games? Well,
there's a lot of stuff on the Internet of course, and you can try to interface
languages like Python, Lau, and others to your game, but I say you should
know how to do it yourself from the ground up. And that’s what Game
Seripting Mastery is all about. This book is a monster—Alex covers every
detail you can possibly imagine about game scripting.

This is hard stuff, relatively speaking—we are talking about compiler theory,
virtual machines, and multithreading here. However, Alex starts off assum-
ing you know nothing about scripting or compilers, so even if you're a
beginner you will be able to easily follow along, provided you take your time
and work through the material. By the end of the book you’ll be able to
write a compiler and a virtual machine, as well as interface your language to

your existing C/C++ game engine—in essence, you will have mastered
game scripting! Also, you will never want to write another parser as long as
you live.

In conclusion, if game scripting is something you’ve been interested in, and
you want to learn it in some serious detail, then this book is the book for
you. Moreover, this is the only book on the market (as we go to publication)
about this subject. As this is the flagship treatise on game scripting, we’ve
tried to give you everything we needed when figuring it out on our own—
and I think we have done much, much more. You be the judge!

Sincerely,

&M W Q/\\p:%j

André LaMothe

Series Editor

CoNnTENTS AT A GLANCE

CoNTENTS AT A GLANCE

I] Introduction.t ittt it ittt ittt eoeeoeenacnnannnns xliv

1 Part One

Scripting Fundamentals ..o ..o 1
:I Chapter |
An Introduction to Scripting. i i it i e 3
Chapter 2
Applications of Scripting Systems., 29
Part Two
Command-Based Scripting -...cccaao......... bi
Chapter 3
Introduction to Command-Based Scripting 63
Chapter 4
Advanced Command-Based Scripting 113
Part Three
Introduction to Procedural
Scripting Languagesooooocceeeeeeee oo 153
Chapter 5

Introduction to Procedural Scripting Systems............. 155

CoNTENTS AT A GLANCE

Chapter 6
Integration: Using Existing Scripting Systems 173
Chapter 7
Designing a Procedural Scripting Language 335

Part Four =
Designing and Implementing a

Low-Level Language ..ccoeemcemmceemcceeeeees 367 [
Chapter 8
Assembly Language Primer. i, 369 [
Chapter 9
Building the XASM Assembler . . .« .onvenenneneenennnn. a1 L

Part Five
Designing and Implementing a

Virtual Machine ... 565
Chapter 10
Basic VM Design and Implementation 567
Chapter 11
AdvancedVM ConceptsandlIssues...................... 651

Part Six

Compiling High-Level Code................ 749
Chapter 12
Compiler Theory Overview.ottt 751
Chapter 13
Lexical Analysisottt nenennans 783
Chapter 14
Building the XtremeScript Compiler Framework 857

CoNnTENTS AT A GLANCE

Chapter 15
Parsing and SemanticAnalysis i 983

Part Seven

Completing Your Trainingcccaaeoo...... 137

Chapter 16
Applying the SystemtoaFullGame 1139

] Chapter 17
WheretoGoFromHere 1179

1 Appendix A
:| What'sonthe CD?ciitiiiiiiiitieennnnnns 1203
1NDEXIIIIIIIIIllllllllllllllllllIIIIIIIIIIIII12D7

CONTENTS

CONTENTS

INTRODUCTION sssssnnnnsnnnnnnnnnnnnnnnnnnnnnnnnXL1V I:-

PART ONE
SCRIPTING FUNDAMENTALS sasssnnnnnnnnnnl [

CHAPTER 1 [
AN INTRODUCTION TO SCRIPTINGesssssssnnnnnnns X

What Is Scripting?. ittt it ittt e e 5
Structured Game Content—A Simple Approach............. 6
Improving the Method with Logical and Physical Separation .. 10
The Perils of Hardcoding. i, 12
Storing Functionality in External Files 14
How Scripting ActuallyWorks.ciiiiiiiiinnnn. 15
An Overview of Computer Programming 16
An Overview of Scripting 18
The Fundamental Types of Scripting Systems 20
Procedural/Object-Oriented Language Systems. 21
Command-Based Language Systems. 22
Dynamically Linked Module Systems 23
Compiled versus Interpreted Code. i 24
Existing Scripting Solutions 26
RUby . . 26

LUa. o e 27

Java . 27

CONTENTS

CHAPTER =2
HPPLICATIONS OF SCRIPTING SYSTENMSssss 249

The General Purpose of Scripting, 30

Role Playing Games (RPGs)ttt 32
Complex, In-Depth Stories 32

The Solution 33

Non-Player Characters (NPCs) i 34

:| The Solutionot 35
ltems andWeapons e 41

The Solution e 43

1 Enemies. 45
The Solution e 46

:I First-Person Shooters (FPSs) 50
Objects, Puzzles, and Switches (Obligatory Oh My!) 51

The Solution 52

Enemy Al . .. e 57

The Solution 59

SUMMaArY . . ittt ittt ittt ittt seserernannas 60

PART TwoO
CommAND-EASED SCRIPTING ssssssnnnnBEl

CHRAPTER X
INTRODUCTION TO CommAND-ERSED
SCRIPTINGusssssnsnnnssnnnnnnnnnnnnnnnnnnnnnnnnnnn B8 X

The Basics of Command-Based Scripting. 64
High-Level Engine Control. i 65
Commands e 68
Master of Your Domain........ i i 68
Actually Getting Something Done 69

Command-Based Scripting Overview. 69
Engine Functionality Assessment 69
Loading and Executing Scripts i 71

Looping Scriptso e 73

CONTENTS

Implementing a Command-Based Language 74
Designing the Language i e 74
Writing the Script o 75
Implementation e 75

BasicInterface 75
Execution. 78
Command and Parameter Extraction. 8l &
The Command Handlers 87

Scripting a Game Intro Sequence.cciiiian 90 [
The Language.t e e 91
The Script e 92
The Implementation i 93 [

Scripting an RPG Character’s Behavior 95 [
The Language.ottt 95
Improving the Syntax. e 96
Managing a Game Character i 97
The Script . ..o 99
The Implementation i 101
The Demo’s Main Loop........ . i 105

Concurrent Script Execution it 109

SUMMANY . .t ittt ittt teneesessncesessnsassnns 110

Onthe CD it i it ittt enenenennnnns (A

Challengesttt ittt enenennnnns (N

CHRAPTER H
HAovANCED ComMmmMAND-EASED SCRIPTINGssesll=X

NewDataTypes........coiiiiiiiiiiiiiiiiiiinnennnns 115
Boolean Constantst ()
Floating-Point Support. i 15
General-Purpose Symbolic Constants 116

An Internal Constant List. i i i 17
ATwo-Pass Approach. 120

Loading Before Executing. i i 124

CONTENTS

Simple Iterative and Conditional Logic 125
Conditional Logicand Game Flags. 125

Grouping Code with Blocks 128

The Block List. e 129

Iterative Logic i e e 131

NEStINg . . ot e 133
Event-Based Scripting ittt it 135
Compiling Scriptstoa Binary Format 137

:I Increased Execution Speed 137
Detecting Compile-Time Errors 139

1 Malicious Script Hacking 139
How a CBL CompilerWorks. i 140

:I Executing Compiled Scripts 142
Compile-Time Preprocessing., 143

Parameters. 144

Basic Script Preprocessingcciiiiiiiiiiiian, 146
File-Inclusion Implementation 149
SuUMMAaArY . .. ittt it ittt 150

PART THREE
INTRODUCTION TO PROCEDURHAL
SCRIPTING LANGUAGES sssssssssnnnnnnl 5 =X

CHRAPTER 5
INTRODUCTION TO PROCEDURHAL
SCRIPTING SYSTENMS sssssssssnnnnnnnnnnnnnnnnnl 55

Overall Scripting Architecture, 156
High-Level Code 157
Low-Level Code i e 158
TheVirtual Machine. i 159

A Deeper Look at XtremeScriptcocivnn. 161
High-Level Code/Comepilation 162

Lexical Analysis 164

CONTENTS

Parsing/Syntactic Analysis. 164
Semantic Analysis. e 165
Intermediate Code Generation, 165
OPtimizationt e 165
Assembly Language Generation 166
The SymbolTable. 166
The Front End versus the Back End. 166
Low-Level Code/Assembly. 167
TheAssembler. 167 [
The Disassembler 167
The Debugger 167
TheVirtual Machine. 168 [
The XtremeScript System it 169
High-Level 170 I:
Low-Level o e 170
Runtime. 170
SUMMaANY . .t ittt ittt ittt eteseneesessnsessssnsases 171

CHAPTER B
INTEGRATION:E USING EX1ISTING
SCRIPTING SYSTENS ssssssssnsnnsnnnnnnnnnnnnnl”/7=X

Integration.ciiiiiiiitiiiitieiettenenennnns 174
Implementation of Scripting Systems. 179
The BouncingHead Demot 181
Lua (and Basic Scripting Concepts)0 185
The Lua Systemata Glance 185
The Lua Library 185

The luac Compiler. 185

The lua Interactive Interpreter. o, 186

The Lua Language i e 187
Comments.t e 188

Variables 188

CONTENTS

Advanced String Features. 197
EXPressions 198
Conditional Logic. e 200
lteration. e 201
Functions. 203
Integrating Lua with C. 205

:I Compilinga Lua Project. 206
Initializing Lua 207
Loading Scripts. oot 208

1 TheLuaStack 209
Exporting C Functionsto Lua, 215

:I Executing Lua Scripts. 219
Importing Lua Functions 221
Manipulating Global Lua Variables from C 226
Re-coding the Alien Demoinlua 228
Advanced LuaTopicsot 24|
Web Links 242
Python ittt eeenencenennns 242
The Python System ata Glance. 242
Directory Structure. e 243

The Python Interactive Interpreter o.o... 243

The Python Language. e 244
CommENtS. . .o 244
Variables 244

Data Types . . . o it e 246

Basic Strings. 247

String Manipulation 248

Lists. .o e 251
EXpressions 254
Conditional Logic. e 256
lteration. e 258

FUNCLIONS . . . ot e e 261

CONTENTS

Integrating Pythonwith C 263
Compiling a Python Project i 263
Initializing Python. 265
Python Objects 265
Re-coding the Alien Head Demo 277

Advanced TOPICSo oo e 286

Web LInKSottt e 286

L I <L 287

ActiveStateTcl o 288 [
The Distributionata Glance 288
The tclsh Interactive Interpreter 289
What,No Compiler? 290 [
Tcl EXteNSiONSo it e 290

TheTcl Language. e e 291 I:
Commands—The Basisof Tl 291
Substitution 292
CommENtS. . .o e 297
Variables 298
ATTaYS . e 301
EXpressions 303
Conditional Logic. e 306
lteration. 308
Functions (User-Defined Commands) 310

Integrating Tcl with C 312
CompilingaTcl Project o 312
Initializing Tlo o 313
Loading and Running Scripts i 314
Calling Tcl Commands from C., 315
Exporting C Functions as Tcl Commands. 316
Returning Values from Tcl Commands 319
Manipulating Global Tcl Variables from C....................... 320
Recoding the Alien Head Demo. 322

Advanced TOPICSo o i 330

Web Linkso 330

CONTENTS

Which Scripting System ShouldYouUse? 331

ScriptinganActualGamec i ittt 333

SUMMANY . . ittt ittt ittt teneesessncesessncasanns 333

ONthe CDi ittt ittt ittt teeeeeeeeeoneasnnnenans 334

CHRPTER 7

DESIGNING A PROCEDURAL SCRIPTING

_:I LANGUAGE snssnssssnnsnnnnnnnnnnnssnnnnnnnnnnnnn X5

General TypesofLanguagescciiiiiiiennnnn. 337

1 Assembly-Style Languages 337

Uppingthe Ante e e 340

:| FUNCHIONS o v ittt it ettt et teeeeneeeneenneennnenns 344

Object-Oriented Programming 346

XtremeScript Language Overview i 349

Design Goals e 349

Syntax and Features. 351

Data Structures oot 351

Operators and Expressions i 354

Code Blocks oo e 358

Control StruCtUres. . . . oot e 358

FUNCLIONS . . . o e 361

Escape Sequences. 363

COMMENES . v ot et e et e e e e e e e 363

The Preprocessorot e 363

Reserved Word List.o it e e e e e 364

SuUMMAaArY . .. ittt i i ittt 365

CONTENTS

PART FOUR
DESIGNING AND TMPLEMENTING

A Low-LEVEL LANGUAGE sssssssnsnnnnXEB7
CHAPTER H

AsSSEMELY LANGUAGE PRIMER sssssssnnnnsna X6
What Is Assembly Language? 370 [

Why Assembly Now? it iiiiiiinennnns 371

How AssemblyWorks ittt 372
INStruCtions e 372 [

Operands. e 372
EXpressions 373 I:

Jump Instructions. e 375

Conditional Logic. e 377

lteration. 380

Mnemonics versus Opcodes i 383

RISC versus CISC e 386

Orthogonal Instruction Setsttt 388

Registers e 389

The Stack 389

Stack Frames/Activation Records. 392

Local Variables and Scope. 395

Introducing XVM Assembly.o, 397

Initial Evaluations. e 398

The XVM Instruction Set. i 399

MmOy, . e 399

Arithmetic e 400

BitWise. . . o 401

String Processing e 402

Conditional Branching 402

The Stack Interface 403

The Function Interface. 403

Miscellaneous. ot i 404

CONTENTS

XASM Directives. . . .o oo e 404
Stackand Data. e 405
Functions. e 406
Escape Sequences. 407
ComMmMENtS. . ..t 407

Summaryof XVMAssembly..............cciiiiiienn. 408
SUMMANY . .t ittt ittt ittt seneesessnsesessnsnses 409

CHARAPTER H
RuUuiLDING THE XASIYl ASSEMELER sssssssnnnsHll

1 How a Simple AssemblerWorks. 413
Assembling Instructions. e 414

:I AssemblingVariables 416
Assembling Operands i 420
Assembling String Literals 422
Assembling Jumps and Function Calls 423
XASM OVEIrVIEW . .t ittt ittt ieeeeeeeososeeoaoscannnsas 428
Memory Management e 429
Input: Structure of an XVM Assembly Script 430
Directives . ..ot e e 431
INStrUCHIONS o et e 439

Line Labels. o e 440

Host APl Function Calls. i 440

The Main () Function. 44|

The _RetVal Register. i 44|
COoMMENES. . . ottt e e 442

A Complete Example Script. 442
Output: Structure of an XVM Executable 444
OVEIVIBW. « it e 444

The Main Header. i i 445

The Instruction Stream i e 447

The StringTable. 451

The FunctionTable. i 453

The Host APl CallTable. oo i 454

CONTENTS

Implementing the Assembler 455
Basic Lexing/Parsing Theory. 456
LeXing . oo 457
Parsing. 459
Basic String Processing. 462
Vocabulary 462
A String-Processing Library i 464
The Assembler’s Framework 469
The General Interface o i i 470 [
A Structural Overview. e 470
Lexical Analysis/Tokenization 495
The Lexer’s Interface and Implementation. 496 [
Error Handling. 525
Parsing. 527 |:
Initializing the Parser 528
Directives . ..o e 529
LineLabels. 542
INStrUCLiONS e 543
Building the .XSE Executable 552
The Header. e e 552
The Instruction Stream il 553
The StringTable. 555
The FunctionTable. o i 556
The Host APl CallTable. 557
The Assembly Process. i 558
Loading the Source File 558
TheFirstPass 559
TheSecond Pass i e 560
Producing the XSE 562
SUMMANY . .t ittt ittt ittt eseneesessnsessssnseses 563
Onthe CD ittt ittt enenennnnas 564

CONTENTS

PART F1vE
DESIGNING AND TMPLEMENTING
A VIRTUAL YIACHINEssssssssssssnnnns B 5S

CHAPTER 10O
EAs1c VIYI DESIGN AND TMPLEMENTHATION 557

| GhostintheVirtual Machine. ittt ittt iiiennns 568
:I Mimicking Hardware 569
The VM’s Major Componentsc..iuuitiinuennnueennn. 570

1 The Instruction Stream 571
The Runtime Stack. 571

] Global DataTables.cooiiiiiiiiiiiaaenon.. 571
Multithreading e 573

Integration with the Host Application 573

A Brief Overview of aVM’s Lifecycle 574

Loading the Script it e 574

Beginning Execution at the Entry Point 576

The Execution Cycle 576

Function Calls 578

Callinga Function i 578

Returning From a Function 580

Termination and Shut Down 581
Structural Overview of the XVM Prototype. 582

The Script Header. 583
RuntimeValues. e 583

The Instruction Stream 584

The Runtime Stack 585

The Frame Index i 586

The FunctionTable. 587

The Host APl CallTable. o 587

The Final Script Structure e 588

Building the XVM Prototype.ttt 589

Loading an XSE Executable. i, 590

ConTENTS OV

An XSE Format Overview. i 590
The Header. e e 594
The Instruction Stream e 595
The StringTable. 599
The FunctionTable. 601
The Host APl CallTable. 602
Structure Interfaces. 603
The Instruction Stream e 604
The Runtime Stack. 616 [
The FunctionTable. 621
The Host APl CallTable. 621
SUMMaryY . . e 622 [
Initializing the VM. L 624
The Execution Cycle 627 |:
Instruction Set Implementation 628
Handling Script Pauses. 633
Incrementing the Instruction Pointer 634
Operand Resolution. i 636
Instruction Execution and Result Storage. 637
Termination and Shut Down 646
SUMMAaArY . . ittt ittt i i ittt ittt 648
Onthe CD. ... iiiiitiiieeeieeseoeesososceenoncnnans 649
Challengesttt eeenenennnnss 649

CHAPTER 11
ADVANCED VIYI CONCEPTS AND 155UESs B 51

A Next GenerationVirtual Machine..................... 652
TwoVersions of the Machine 652
Multithreading ittt ittt ittt iiiieneann 653
Multithreading Fundamentals 654
Cooperative vs. Preemptive Multitasking 654
FromTaskstoThreads. 658

Concurrent Execution Issues. i 659

CONTENTS

Loading and Storing Multiple Scripts L. 667
The g Script Structure. 667
Loading Scripts.t i i 671
Initialization and Shutdown Lo i 674
Handling a Script Array 674

Executing Multiple Threads L. 677
Tracking Active Threads 678
The Scheduler 679

:I The First Completed XVM Demo 682
Host Application Integration.o 682

Running Scripts in Parallel with the Host. 683

1 Manual Time Slicing vs. Native Threads. 684
Introducing the Integration Interface 686

:I Calling Host APl Functions froma Script. 686
Calling Script Functions fromthe Host 687

Tracking GlobalVariables 689

The XVM’s Public Interface i 694
Which Functions Should Be Public? 694
Name Clashes 695
PublicConstants i 696

Implementing the Integration Interface 696
Basic Script Control Functions. 697
Host API Calls o e e 700
Script Function Calls 711
Invoking a Script Function: Synchronous Calls 713
Calling a Scripting Function: Asynchronous Calls 719

Adding Thread Priorities i 728
Priority Ranks vs.Time Slice Durations 730
Updating the XSEFormat......... 731
Updating XASM 733
Parsing the SetPriority Directive 734
Updatingthe XVM. 735

Demonstratingthe Final XVM 0. 739

The Host Application. e 739

The Demo Script. . .. oo e 739

CONTENTS

Embeddingthe XVM 741

Defining the Host APl 742

The Main Program. 742

The OUtPUL e e e 745

Y 1T 0 0T - T 746
OntheCD...... .0ttt ieeeeressneessssnsasonns 746

Challengesttt neeeenseeeenannns 747
FPART 51X R

ComPILING HIGH-LEVEL CODE sssssss7H8

CHRAPTER 12
ComPILER THEORY OVERVIEW ssssssssnnnnnnnn 751 |:

An Overview of CompilerTheory....................... 752
Phases of Compilation. i 753
Lexical Analysis/Tokenization 755
Parsing. . ..o 760
Semantic Analysis. e 764
[FCode 765
Single-Pass versus Multi-Pass Compilers. 766
Target Code Emission 768
The Frontand Back Ends. it 768
Compiler Compilers 769
How XtremeScript Works with XASM, 769
Advanced Compiler Theory Topics, 771
Optimization e 771
Preprocessing.o 773
Retargeting oo 778
Linking, Loading, and Relocatable Code 779
Targeting Hardware Architectures, 780

SuUMMAaArY. .. ittt i ittt ananannas 782

CONTENTS

CHAPTER 1X
LEX1CAL ANALYS!S sasssssssnnnnnnnnnnnnnnnnnnn 7Z7BHX

TheBasicsottt ieeneanennes 785

From Characters to Lexemes 785
Tokenization 787

Lexing Methods. 787

Lexer Generation Utilities, 788

:| Hand-Written Lexers. vttt i 788
The Lexer’s Framework ittt 793

1 Reading and Storing the Text File. 793
Displaying the Results 795

:I Error Handling. 797
ANumericlexer.........ciiiiiiiiiiiiiiiiinennnnnns 797

A LeXing Strategyttt e e 798

State Diagrams. e 799

States and Token Types. oot e 800

Initializing the Lexer. 800

Beginning the Lexing Process. 801

The Lexing LOOp . . .« oottt e 802

Completingthe Demo. 809

Lexing Identifiers and ReservedWords. 8l

New StatesandTokens i 812

TheTest File e 813

Upgrading the Lexer i 814
Completingthe Demo. 819

The Final Lexer: Delimiters, Operators,and Strings 822

Lexing Delimiters i 822

New StatesandTokens 822

Upgrading the Lexer i 823

Lexing Strings e 827

New StatesandTokens i, 827

Upgrading the Lexer 828

CONTENTS

OPeratorsttt e 831
Breaking Operators Down. 832
Building Operator State Transition Tables. 836
New StatesandTokens 840
Upgradingthe Lexer i 84|

Completingthe Demo. 849

SUMMAaArY . .. ittt i i i ittt 855]
Onthe CD ittt ittt teeeeeencnnnnas 855
Challengescviiiiiiiineeieneseronnnsesonnnnns 856 [
CHRAPTER 14 [
BuUilLDING THE XTREMESCRIPT COMPILER
FRAMEWORKusnusannnnnnnnnnnnnnnnnnnnnnnnnnnnn 57 I:
A StrategicOverviewiiiiiiiiiititirnennnns 858

The Front End. 859
The Loader Module. i 860
The Preprocessor Module 861
The Lexical Analyzer Module. 861
The Parser Module 862

The I-Code Module. 862

TheBack End 863
The Code Emitter Module. 863
The XASMAssembler i 863

Major SEruCtUresttt 863
The Source Code. i 863
The Script Header. 864
The SymbolTable. 864
The FunctionTable. 865
The StringTable. 866
The I-Code Stream e 866

Interfaces and Encapsulation L. 866

The Compiler’s Lifespan 867
Reading the Command Line. 867

Loading the Source Code 867

CONTENTS

Preprocessing. 867
Parsing. 867

Code Emission.t e 868
Invoking XASM 868

The Compiler’s main () Function 868

The Command-LineInterface................. ... o 870
The Logoand Usage Info. i 870
Reading Filenames 871

:| Implementation 872
Reading Options it e e 874
Implementation 875

1 Elementary DataStructures.ccitiiiiienenns 880
:I Linked Listsottt e 880
The Interface. i e 88l

Stacks 888
The Interface.o e 888
Initialization and Shutdown. 890
Global Variables and Structures o .. 890
Initialization 891
Shutting Down. e 892
The Compiler’sModules 893
ThelLoaderModule............ . i 895
The PreprocessorModule.ciiiin 897
Single-Line Comments. e 898
Block Comments. e 899
Preprocessor Directivesttt 902
Implementing #include. 902
Implementing #define. 903

The Comepiler’sTables it 904
The SymbolTable. 905
The SymbolNode Structure. 905

Thelnterface o 907

CONTENTS

The FunctionTable. 910
The FuncNode Structure. e 911
Thelnterface. 911
The StringTable. 915
Integrating the Lexical Analyzer Module 916
Rewinding the Token Stream 916 d
Lexer States.ttt e 917
A New Source Code Format. 919
New Miscellaneous Functions o, 922 [
Adding a Look-Ahead Character 922
Handling Invalid Tokens 923
Returning the CurrentToken. 925 [
Copying the Current Lexeme, 926
Error-Printing Helper Functions. 927 I:
Resetting the Lexer. i e 928
TheParserModule i, 928
ErrorHandling. it iiiinnnnns 928
General Errors 928
Code Errors 928
Cascading Errors 930
Thel-CodeModulet 932
Approaches to [-Code. e 932
A Simplified Instruction Set L 933
The XtremeScript I-Code Instruction Set 935
The XtremeScript I-Code Implementation 935
INStruCtioNSt e 936
JumpTargets. e 938
Source Code Annotationottt 940
Thenterface. 942
Adding Instructions 943
Adding Operands. 944
Retrieving Operands i, 945

Adding JumpTargets. 946

CONTENTS

Adding Source Code Annotation, 947

Retrieving I-Code Nodes. 948

The Code-Emitter Module i, 949
Code-Emission Basics i 949

The General Format 950

Global Definitions 951

Emitting the Header. 952

Emitting Directives. 953

:| Emitting Symbol Declarations 955
Emitting Functions L. 958

Emitting a Complete XVM Assembly File. 966

1 Generating the Final Executable. 969
:I Wrapping It AllUp ittt iiiiiienennnnn 972
Initiating the Compilation Process. 972

Printing Compilation Statistics. 972
Hard-coding aTest Script. i 975

The Function e 976

The Symbols 976

The Code e 977

TheResults 980

SUMMaANY . .t ittt ittt ittt eneesessnsesessnsasonns 981
Onthe CD ittt i i ittt enenennnnns 981
Challengesttt enenennnnns 982

CHAPTER 15
PARSING AND SEMANTIC ANALYS1S sssssenas SHX

WhatlIsParsing?ci ittt iienenennans 985
Syntactic versus Semantic Analysis. oL 985
Expressing Syntax e 987

Syntax Diagrams 987
Backus-Naur Form........ i 988
Choosing a Method of Grammar Expression.................... 989

Parse Treesot 989

CONTENTS

How ParsingWorks. 993
Recursive Descent Parsing. 994
The XtremeScript ParserModule 996
TheBasics.o 996
Tracking Scope. e 996
Reading SpecificTokens i 997 d
The Parsing Strategyt 1000
Parsing Statements and Code Blocks................... 1001
Syntax Diagrams e 1002 [
The Implementation. 1004
ParseSourceCode ().o oot 1004 [
StatemMENtS. e 1005
Blocks 1007 |:
Parsing Declarations ittt 1008
Function Declarations i 1008
Parsing and Verifying the Function Name 1010
Parsing the Parameter List. 011
Parsing the Functions Body 1015
Variable and Array Declarations. 1017
Host API Function Declarations. 1021
The host Keyword. i 1022
Upgradingthe Lexer 1022
Parsing and Processing the host Keyword 1023
Testing Code Emitter Module 1026
Parsing Simple Expressions.t 1028
An Expression Parsing Strategy i . 1028
Parsing Addition and Subtraction, 1028
Multiplication, Division, and Operator Precedence............... 1030
Stack-Based Expression Parsing 1031
Understanding the Expression Parser 1033
Coding the Expression Parser 1037
Parsing Full Expressionsc.ciiiiiiiinnnenn 1048
New FactorTypeso e 1048

Parsing Function Calls 1051

CONTENTS

New Unary Operatorsttt 1053
New Binary Operatorsttt 1054
Logical and Relational Operators. 1054
The Logical And Operator.t 1055
Relational Greater Thanor Equal................. 1056

The Rest . ..o e 1058
L-Valuesand R-Values i 1058

A Standalone Runtime Environment 1058
:| The Host Application. i 1059
Reading the Command Line. 1060
Loading the Script i e 1061

1 Running the Script. 1062
The Host APl . .. e 1062

:I PrintString () - . ..o oo e 1063
PrintNewline (and PrintTab (), 1063
Registeringthe API. 1064
Parsing Advanced Statements and Constructs. 1064
Assignment Statements e 1065
Function Calls 1073
=1 1075
while LOOPS . . .« oo 1079
while Loop Assembly Representation. 1079
Parsing while Loops 1081

break e 1086
Parsingbreak 1088
CONEINUE. .« o o ettt e e e et e e et e et e e 1090

for LOOPS. . ..ot 1092
Branchingwith if 1092

if Block Assembly Representation. 1092
Parsing if Blocks. 1094
Syntax Diagram Summarycciiiiiiienennn. 1099
TheTestDriveottt ittt ittt ineenennns 1099
HelloWorld! 1099

CONTENTS

The BouncingHead Demo 1106

Anatomy of the Program L .. 1107

The Host Application. 1109

The Low-Level XVM Assembly Script. 1116

The High-Level XtremeScript Script. 1127

The Results o 1132
SuMMAaArY . ..ttt i i i i ittt ittt 1134

Onthe CDttt ittt eencnennnnns 1134
Challenges « . ..o v e oo e et et eeeeeeeeeeeerenenenen, 13s [
PART SEVEN [

COMPLETING YOUR TRAINING sssssssnllX7
CHAPTER 1B L

HPPLYING THE BSYSTEM TO A FuLL

G'HmEII1135

Introducing Lockdown. i it 1140
ThePremise | 140
Initial Planning and Setup L 1142

Phase One—Game Logic and Storyboarding. 1142
Phase Two—Asset Requirement Assessment 1150
Phase Three—Planningthe Code. 155

Scripting Strategyc. ittt ittt 1157
Integrating XtremeScriptt 1158
The Host APL.o 158

Miscellaneous Functions. 159
Enemy Droid Functions i 1159
Player Droid Functions. i 1159
Registering the Functions. 1160
Writing the Scriptst 1161
The Ambience Script 1161
The Blue Droid’s Behavior Script. 1162

The Grey Droid’s Behavior Script 1163

CONTENTS

The Red Droid’s Behavior Script 1167

Compilation. 1171

Loading and Running the Scripts 1171

Speed Issues 1173

Minimizing Expressions. L 1174

The XVM’s Internal Timer 1174
HowtoPlayLockdown 1175
Controls 1175

:| Interacting with Objects 1176
The Zone Map. i 1176

Battle. 1176

1 Completing the Objective i 1176
:I SUMMANY . ot ittt it i ittt teattanransnnannn 1177
Onthe CD ittt iitieneneanannnns 1177
Challengesciiiiiiiiiiiiiiiiiieneneenennnns 1178

CHRAPTER 17
WHERE TOo Go FROM HERE ssssssssnnnnnnnnnll”78

SoWhat Now? i i it it iii it e 1180
ExpandingYour Knowledge 1181
Compiler Theory. e 1181
More Advanced Parsing Methods, 1182
Object-Orientationttt 1182
Optimization e 1183
Runtime Environments. 1184
The JavaVirtual Machine, 1184
Alternative Operating Systems.ttt 1185
Operating SystemTheory 1186
AdvancedTopicsandIdeascciiiin 1186
The Assembler and Runtime Environment. 1186

A Lower-Level Assembler. i i, 1186

A Lower-Level Virtual Machine. 1187

CONTENTS

Dynamic Memory Allocation 1189
The Compiler and High-Level Language. 1190
SuUMMAaArY . ..ttt it i i ittt ittt 1199

APPENDIX H
WHATY'S ON THE CD? sessssssssnnnnnnnnnnnnnnl20l o

The CD-ROMInterface.ottt iittteeeeeeennnnns 1202
Installationci ittt eeeeeeeeesoeoeonnnness 1203 [
DirectX SDK ...t ittt ittt ittt eeeeeeesoenesnnnass 1203

1NDEX IIEDE [

INTRODUCTION

]

—

INTRODUCTION

1 f you've been programming games for any reasonable amount of time, you've probably
learned that at the end of the day, the really hard part of the job has nothing to do with illumi-
nation models, doppler shift, file formats, or frame rates, as the majority of game development
books on the shelves would have you believe. These days, it's more or less evident that everyone
knows everything. Gone are the days where game development gurus separated themselves from
the common folk with their in-depth understanding of VGA registers or their ability to write an 8-
bit mixer in 4K of code. Nowadays, impossibly fast hardware accelerators and monolithic APIs
that do everything short of opening your mail pretty much have the technical details covered.
No, what really make the creation of a phenomenal game difficult are the characters, the plot,
and the suspension of disbelief.

Until Microsoft releases "DirectStoryline"—which probably won't be long, considering the
amount of artificial intelligence driving DirectMusic—the true challenge will be immersing play-
ers in settings and worlds that exert a genuine sense of atmosphere and organic life. The floor
should creak and groan when players walk across aging hardwood. The bowels of a ship should
be alive with scurrying rats and the echoey drip-drop sounds of leaky pipes. Characters should
converse and interact with both the player and one another in ways that suggest a substantial set
of gears is turning inside their heads. In a nutshell, a world without compellingly animated detail
and believable responsiveness won't be suitable for the games of today and tomorrow.

The problem, as the first chapter of this book will explain, is that the only solution to this prob-
lem directly offered by languages like C and C++ is to clump the code for implementing a periph-
eral character's quirky attitude together with code you use to multiply matrices and sort vertex
lists. In other words, you're forced to write all of your game—from the low-level details to the
high-level logic—in the same place. This is an illogical grouping and one that leads to all sorts of
hazards and inconveniences.

And let's not forget the modding community. Every day it seems that players expect more flexi-
bility and expansion capabilities from their games. Few PC titles last long on the shelves if a

INTRODUCTION

community of rabid, photosensitive code junkies can't tear it open and rewire its guts. The prob-
lem is, you can't just pop up an Open File dialog box and let the player chose a DLL or other
dynamically linked solution, because doing so opens you up to all sorts of security holes. What if
a malicious mod author decides that the penalty for taking a rocket blast to the gut is a freshly
reformatted hard drive? Because of this, despite their power and speed, DLLs aren't necessarily
the ideal solution.

This is where the book you're currently reading comes into play. As you'll soon find out, a solu-
tion that allows you to both easily script and control your in-game entities and environments, as
well as give players the ability to write mods and extensions, can only really come in the form of a
custom-designed language whose programs can run within an embeddable execution environ-
ment inside the game engine. This is scripting.

If that last paragraph seemed like a mouthful, don't worry. This book is like an elevator that truly
starts from the bottom floor, containing everything you need to step out onto the roof and enjoy
the view when you're finished. But as a mentally unstable associate of mine is often heard to say,
"The devil is in the details." It's not enough to simply know what scripting is all about; in order to
really make something happen, you need to know everything. From the upper echelons of the
compiler, all the way down to the darkest corners of the virtual machine, you need to know what
goes where, and most importantly, why. That's what this book aims to do. If you start at the begin-
ning and follow along with me until the end, you should pick up everything you need to genuine-
ly understand what's going on.

How THI1S EooK 15 ORGHANIZED

With the dramatic proclamations out of the way, let's take a quick look at how this book is set up;
then we'll be ready to get started.

This book is organized into a number of sections:

¢ Part One: Scripting Fundamentals. The majority of this material won't do you much
good if you don't know what scripting is or why it's important. Like I said, you can follow
this book whether or not you've even heard of scripting. The introduction provides
enough background information to get you up to speed quick.

¢ Part Two: Command-Based Scripting. Developing a complete, high-level scripting system
for a procedural language is a complex task. A very complex task. So, we start off by set-
ting our sights a bit lower and implementing what I like to call a "command-based lan-
guage." As you'll see, command-based languages are dead simple to implement and
capable of performing rather interesting tasks.

¢ Part Three: Introduction to Procedural Scripting Languages. Part 3 is where things start
to heat up, as we get our feet wet with real world, high-level scripting. Also covered in

INTRODUCTION

this section are complete tutorials on using the Lua, Python and Tcl languages, as well as
integrating their associated runtime environments with a host application.
¢ Part Four: Designing and Implementing a Low-Level Langauge. At the bottom of our
scripting system will lie an assembly language and corresponding machine code (or byte-
code). The design and implementation of this low-level environment will provide a vital
foundation for the later chapters.
¢ Part Five: Designing and Implementing a Virtual Machine. Scripts—even compiled
ones—don't matter much if you don't have a way to run them. This section of the book
covers the design and implementation of a feature-packed virtual machine that's ready to
i :I be dropped into a game engine.
¢ Part Six: Compiling High-Level Code. The belly of the beast itself. Executing compiled
bytecode is one thing, but being able to compile and ultimately run a high-level, proce-
1 dural language of your own design is what real scripting is all about.

* Part Seven: Completing Your Training. Once you've earned your stripes, it's time to

:I direct that knowledge somewhere. This final section aims to clear up any questions you
may have in regards to furthering your study. You'll also see how the scripting system

designed throughout the course of the book was applied to a complete game.

So that's it! You've got a roadmap firmly planted in your brain, and an interest in scripting that's
hopefully piqued by now. It's time to roll our sleeves up and turn this mutha out.

FPART ONE

SCRIPTING
FUNDAMENTHAHLS

This page intentionally left blank

CHAPTER |

=N
INTRODUCTION
TO SCRIPTING

“We'll bring you the thrill of victory, the agony of
defeat, and because we’ve got soccer highlights, the
sheer pointlessness of a zero-zero tie.”

L\a; ——Dan Rydel, Sports Night
= Lilwmﬂ -

£ TS

1. AN INTRODUCTION TO SCRIPTING

1 t goes without saying that modern game development is a multi-faceted task. As so many
books on the subject love to ask, what other field involves such a perfect synthesis of art,
music and sound, choreography and direction, and hardcore programming? Where else can you
find each of these subjects sharing such equal levels of necessity, while at the same time working
:I in complete unison to create a single, cohesive experience? For all intents and purposes, the
answer is nowhere. A game development studio is just about the only place you're going to find
so many different forms of talent working together in the pursuit of a common goal. It’s the only
1 place that requires as much art as it does science; that thrives on a truly equal blend of creativity
and bleeding-edge technology. It’s that technical side that we’re going to be discussing for the
:I next few hundred pages or so. Specifically, as the cover implies, you’re going to learn about
scripting.

You might be wondering what scripting is. In fact, it’s quite possible that you’ve never even heard
the term before. And that’s okay! It’s not every day that you can pick up a book with absolutely
no knowledge of the subject it teaches and expect to learn from it, but Game Seripting Mastery is
most certainly an exception. Starting now, you’re going to set out on a slow-paced and almost
painfully in-depth stroll through the complex and esoteric world of feature-rich, professional
grade game scripting. We’re going to start from the very beginning, and we aren’t even going to
slow down until we’ve run circles around everything.

This book is going to explain everything you’ll need to know, but don’t relax too much. If you
genuinely want to be the master that this book can turn you into, you’re going to have to keep
your eyes open and your mind sharp. I won’t lie to you, reader. Every single man or woman who
has stood their ground; everyone who has fought an agent has died. The other thing I'm not going
to lie to you about is that the type of scripting we’re going to learn—the seat-of-your-pants, pedal-
to-the-asphalt techniques that pro development studios use for commercial products—is hard
stuff.

So before going any further, take a nice deep breath and understand that, if anything, you’re
going to finish this book having learned more than you expected. Yes, this stuff can be difficult,
but I'm going to explain it with that in mind. Everything becomes simple if it’s taught properly,
completely, and from the very beginning.

WHAT Is SCcRIPTING? B

But enough with the drama! It’s time to roll up your sleeves, take one last look at the real world,
and dive headlong into the almost entirely uncharted territory that programmers call “game
scripting.” In this chapter you will find

B An overview of what scripting is and how it works.
B Discussion on the fundamental types of scripting systems.
B Brief coverage of existing scripting systems.

WHAT Is SCRIPTING?

Not surprisingly, your first step towards attaining scripting mastery is to understand precisely what
it is. Actually, my usual first step is breaking open a crate of 20 oz. Coke bottles and binge-drink-
ing myself into a caffeine-induced frenzy that blurs the line between a motivated work ethic and
cardiac arrest...but maybe that’s just me.

To be honest, this is the tricky part. I spent a lot of time going over the various ways I could
explain this, and in the end, I felt that I'd explain scripting to you in the same order that I origi-
nally stumbled upon it. It worked for me, which means it’ll probably work for you. So, put on
your thinking cap, because it’s time to use your imagination.

Here’s a hypothetical situation. You and some friends have decided to create a role-playing game,
or RPG. So, being the smart little programmers you are, you sit down and draft up a design docu-
ment—a fully-detailed game plan that lets you get all of your ideas down on paper before
attempting to code, draw, or compose anything. At this point I could go off on a three-hour lec-
ture about the necessity of design documents, and why programs written without them are
doomed to fail and how the programmers involved will all end up in horrible snowmobile acci-
dents, but that’s not why I'm here. Instead, I am going to quickly introduce this hypothetical RPG
and cover the basic tasks involved in its production. Rather than explain what scripting is directly,
I'll actually run into the problems that scripting solves so well, and thus learn the hard way. The
hypothetical hard way, that is.

So anyway, let’s say the design document is complete and you're ready to plow through this proj-
ect from start to finish. The first thing you need is the game engine; something that allows play-
ers to walk around and explore the game world, interact with characters, and do battle with ene-
mies. Sounds like a job for the programmer, right? Next up you’re going to need graphics. Lots
of ‘em. So tell the artist to give the Playstation a rest and get to work. Now on to music and
sound. Any good RPG needs to be dripping with atmosphere, and music and sound are a big
part of that. Your musician should have this covered.

But something’s missing. Sure, these three people can pump out a great demo of the engine,
with all the graphics and sound you want, but what makes it a game? What makes it memorable

B 1. AN INTRODUCTION TO SCRIPTING

and fun to play? The answer is the content—the quest and the storyline, the dialogue, the descrip-
tions of each weapon, spell, enemy, and all those other details that separate a demo from the
next platinum seller.

STRUCTURED GAME CONTENT—
A SIMPLE APPROACH

So how exactly do you create a complete game? The programmer uses a compiler to code the
design document specifications into a functional program, the artist uses image processing and
:I creation software like Photoshop and 3D Studio MAX to turn concept art and sketches into
graphics, and musicians use a MIDI composer or other tracking software to transform the schizo-
phrenic voices in their heads into game music. The problem is, there really isn’t any tool or utility
1 for “inputting” stories and character descriptions. You can’t just open up Microsoft
VisualStoryline, type in the plot to your game, press F5 and suddenly have a game full of charac-
:I ters and dialogue.

There doesn’t seem to be a clear solution here, but the game needs these things—it really can’t be
a “game” without them. And somehow, every other RPG on the market has done it.

The first and perhaps most obvious approach is to have the programmer manually code all this
data into the engine itself. Sounds like a reasonable way to handle the situation, doesn’t it? Take
the items, for instance. Each item in your game needs a unique description that tells the engine
how it should look and function whenever the player uses it. In order to store this information,
you might create a struct that will describe an item, and then create an array of these structures
to hold all of them. Here’s an idea of what that structure might look like:

typedef struct _Item
{
char * pstrName; // What is the item called?

int iType; // What general type of item is it?
int iPrice; // How much should it cost in shops?
int iPower; // How powerful is it?

} Item;

Let’s go over this a bit. pstrName is of course what the item is called, which might be “Healing
Potion” or “Armor Elixir.” iType is the general type of the item, which the engine needs in order
to know how it should function when used. It’s an integer, so a list of constants that describe its
functionality should be defined:

const HEAL =0;
const MAGIC_RESTORE =1;

STRUCTURED GAME CaNTENT—A SIMPLE APPROACH

const ARMOR_REPAIR =2;
const TELEPORT =3;

This provides a modest but useful selection of item types. If an item is of type HEAL, it restores the
player’s health points (or HP as they’re often called). Items of type MAGIC_RESTORE are similar;
they restore a player’s magic points (MP). ARMOR_REPAIR repairs armor (not surprisingly), and
TELEPORT lets the player immediately jump to another part of the game world under certain condi-
tions (or something to that effect, I just threw that in there to mix things up a bit).

Up next is iPrice, which lets the merchants in your game’s item shops know how much they
should charge the player in order to buy it. Sounds simple enough, right? Last is iPower, which
essentially means that whatever this item is trying to do, it should do it with this amount, or to
this extent. In other words, if your item is meant to restore HP (meaning its of type HEAL), and
iPower is 32, the player will get 32 HP back upon using the item. If the item is of type
MAGIC_RESTORE, and iPower is 64, the player will get 64 MP back, and so on and so forth.

That pretty much wraps up the item description structure, but the real job still lies ahead. Now
that the game’s internal structure for representing items has been established, it needs to be
filled. That’s right, all those tens or even hundreds of items your game might need now must be
written out, one by one:

const MAX_ITEM_COUNT = 128; // 128 items should be enough

Item ItemArray [MAX_ITEM_COUNT 1;

// First, let's add something to heal injuries:
ItemArray [0].pstrName = "Health Potion Lv 1";
ItemArray [0].iType = HEAL;
ItemArray [0 J.iPrice = 20;
ItemArray [O].iPower = 10;

// Next, wizards and mages and all those guys are gonna need this:
ItemArray [1 J.pstrName = "Magic Potion Lv 6";

ItemArray [1 1.iType = MAGIC_RESTORE;

ItemArray [1 J.iPrice = 250;

ItemArray [1 1.iPower = 60;

// Big burly warriors may want some of this:
ItemArray [2 J.pstrName = "Armor Elixir Lv 2";
ItemArray [2].iType = ARMOR_REPAIR;
ItemArray [2 J.iPrice = 30;

ItemArray [2 1.iPower = 20;

E 1. AN INTRODUCTION TO SCRIPTING

// To be honest, I have no idea what on earth this thing is:
ItemArray [3].pstrName = "Orb of Sayjack";

ItemArray [3 1.iType = TELEPORT;

ItemArray [3 J.iPrice = 3000;

ItemArray [3 J].iPower = NULL;

Upon recompiling the game, four unique items will be available for use. With them in place, let’s
imagine you take them out for a field test, to make sure they’re balanced and well suited for
gameplay. To make this hypothetical situation a bit easier to follow, you can pretend that the rest
I of the engine and game content is finished; that you already have a working combat engine with

:I a variety of enemies and weapons, you can navigate a 3D world, and so on. This way, you can
focus solely on the items.

1 The first field test doesn’t go so well. It’s discovered in battle that “Health Potion Lv 17 isn’t
strong enough to provide a useful HP boost, and that it ultimately does little to help the player
:I tip the scales back in their favor after taking significant damage. The obvious solution is to
increase the power of the potion. So, you go back to the compiler and make your change:

ItemArray [0].iPower = 50; // More healing power.

The engine will have to be recompiled in order for adjustment to take effect, of course. A second
field test will follow.

The second test is equally disheartening; more items are clearly unbalanced. As it turns out,
“Armor Elixir Lv 2” restores a lot less of the armor’s vitality than is taken away during battle with
various enemies, so it'll need to be turned up a notch. On the other hand, the modification to
“Health Potion Lv 1” was too drastic; it now restores too much health and makes the game too
easy. Once again, these items’ properties must be tweaked.

// First let's fix the Health Potion issue
ItemArray [0 J.iPower = 40; // Sounds more fair.

// Now the Armor Elixir
ItemArray [2].iPower = 50; // Should be more helpful now.

...and once again, you sit on your hands while everything is recompiled. Due to the complexity
of the game engine, the compilation of its source code takes a quite while. As a result, the con-
stant retuning demanded by the game itself is putting a huge burden on the programmer and

wasting a considerable amount of time. It’s necessary, however, so you head out into your third
field test, hoping that things work out better this time.

And they don’t. The new problem? “Magic Potion Lv 6” is a bit too expensive. It’s easy for the
player to reach a point where he desperately needs to restore his magic points, but hasn’t been

STRUCTURED GAME CaNTENT—A SIMPLE APPROACH B

given enough opportunities to collect gold, and thus gets stuck. This is very important and must
be fixed immediately.

ItemArray [1 J.iPrice = 80; // This tweaking is getting old.

Once again, (say it with me now) you recompile the engine to reflect the changes. The balancing
of items in an RPG is not a trivial task, and requires a great deal of field testing and constant
adjusting of properties. Unfortunately, the length of this process is extended considerably by the
amount of time spent recompiling the engine. To make matters worse, 99.9% of the code being
recompiled hasn’t even changed—two out of three of these examples only changed a single line!

Can you imagine how many times you’re going to have to recompile for a full set of 100+ items
before they’ve all been perfected? And that’s just one aspect of an RPG. You're still going to need
a wide variety of weapons, armor, spells, characters, enemies, all of the dialogue, interactions, plot
twists, and so on. That’s a massive amount of information. For a full game’s worth of content,
you're going recompile everything thousands upon thousands of times. And that’s an optimistic
estimation. Hope you've got a fast machine.

Now let’s really think about this. Every time you make even the slightest change to your items, you
have to recompile the entire game along with it. That seems a bit wasteful, if flat out illogical,
doesn’t it? If all you want to do is make a healing potion more effective, why should you have to
recompile the 3D engine and sound routines too? They’re totally unrelated.

The answer is that you shouldn’t. The content of your game is media, just like art, sound, and
music. If an artist wants to modify some graphics, the programmer doesn’t have to recompile,
right? The artist just makes the changes and the next time you run the game these changes are
reflected. Same goes for music and sound. The sound technician can rewrite “Battle Anthem in
C Minor” as often as desired, and the programmer never has to know about it. Once again, you
just restart the game and the new music plays fine.

So what gives? Why is the game content singled out like this? Why is it the only type of media that
can’t be easily changed? The first problem with this method is that when you write your item
descriptions directly in your game code, you have to recompile everything with it. Which sucks.
But that’s by no means the only problem. Figure 1.1 demonstrates this.

The problem with all of this constant recompilation is mostly a physical issue; it wastes a lot of
time, repeats a lot of processing unnecessarily, and so on. Another major problem with this
method is one of organization. An RPG’s engine is complicated enough as it is; managing graph-
ics, sound, and player input is a huge task and requires a great deal of code. But consider how
much more hectic and convoluted that code is going to become when another 5,000 lines or so of
item descriptions, enemy profiles, and character dialogue are added. It’s a terrible way to organ-
ize things. Imagine if your programmer (which will most likely be you) had to deal with all the
other game media while coding at the same time—imagine if the IDE was further cluttered by end-
less piles of graphics, music, and sound. A nervous breakdown would be the only likely outcome.

m 1. AN INTRODUCTION TO SCRIPTING

Figure 1.1

The engine code and
item descriptions are

part of the same

tenin source files, meaning
Oaseriptinn, ggnu @)
_ you can’t compile one

without the other.Art,

Game E ngine

Graphics
music, and sound, how-
i ever, exist outside of
:I the source code and
Sound are thus far more
'I flexible.
:I Think about it this way—coding game content directly into your engine is a little like wearing a
tuxedo every day of your life. Not only does it take a lot longer to put on a tux in the morning
than it does to throw on a v-neck and some khakis, but it’s inappropriate except for a few rare

occasions. You're only going to go to a handful of weddings in your lifetime, so spending the
time and effort involved in preparing for one on a daily basis will be a waste 98% of the time.

All bizarre analogies aside, however, it should now be clear why this is such a terrible way to
organize things.

ImMPrROVING THE METHOD WITH LOGICAL
AND PHYSICAL SEPARATION

The situation in a nutshell is that you need an intelligent, highly structured way of separating your
code from your game content. When you are working on the engine code, you shouldn’t have to
wade through endless item descriptions. Likewise, when you’re working on item descriptions, the
engine code should be miles away (metaphorically speaking, of course). You should also be able
to change items drastically and as frequently as necessary, even after the game has been com-
piled, just like you can do with art, music, and sound. Imagine being able to get that slow, time-
wasting compilation out of the way up front, mess with the items all you want, and have the
changes show up immediately in the same executable! Sounds like quite an improvement, huh?

What’s even better is how easy this is to accomplish. To determine how this is done, you need not
look any further than that other game media—like the art and sound—that’s been the subject of
so much envy throughout this example. As you've learned rather painfully, they don’t require a
separate compile like the game content does; it’s simply a matter of making changes and maybe
restarting the game at worst. Why is this the case? Because they’re stored in separate files. The

IMPROVING THE METHOD, WITH LOGICAL' AND PHYSICAL SEPARATION “

game’s only connection with this data is the code that reads it from the disk. They’re loaded at
runtime. At compile-time, they don’t even have to be on the same hard drive, because they’re
unrelated to the source code. The game engine doesn’t care what the data actually ¢, it just reads
it and tosses it out there. So somehow, you need to offload your game content to external files as
well. Then you can just write a single, compact block of code for loading in all of these items
from the hard drive in one fell swoop. How slick is that? Check out Figure 1.2.

Figure 1.2

D @ If you can get your

item descriptions into

Music ' Graphics external files, they’ll be
Engina just as flexible as
graphics and sound
Game Engine because they’ll only be

needed at runtime.

Sound ltem
Descriptions

The first step in doing this is determining how you are going to store something like the follow-
ing in a file:

ItemArray [1 J.pstrName = "Magic Potion Lv 6";
ItemArray [1 J.iType = MAGIC_RESTORE;
ItemArray [1 1.iPrice = 250;

ItemArray [1 J.iPower = 60;

In this example, the transition is going to be pretty simple. All you really need to do is take every-
thing on the right side of the = sign and plop it into an ASCII file. After all, those are all of the
actual values, whereas the assignment will be handled by the code responsible for loading it
(called the loader). So here’s what the Magic Potion looks like in its new, flexible, file-based form:

Magic Potion Lv 6
MAGIC_RESTORE

250

60

It’s almost exactly the same! The only difference is that all the C/C++ code that it was wrapped
up in has been separated and will be dealt with later. As you can see, the format of this item file is

E 1. AN INTRODUCTION TO SCRIPTING

pretty simple; each attribute of the item gets its own line. Let’s take a look at the steps you might
take to load this into the game:

1. Open the file and determine which index of the item array to store its contents in. You'll
probably be loading these in a loop, so it should just be a matter of referring to the loop
counter.

2. Read the first string and store it in pstrName.

3. Read the next line. If the line is “HEAL”, assign HEAL to iType. If it’s “MAGIC_RESTORE” then
assign MAGIC_RESTORE, and so on.

4. Read in the next line, convert it from a string to an integer, and store it in iPrice.

':I 5. Read in the next line, convert it from a string to an integer, and store it in iPower.

6. Repeat steps 1-5 until all items have been loaded.

1 You’ll notice that you can’t just directly assign the item type to iType after reading it from the file.

This is of course because the type is stored in the file as a string, but is represented in C/C++ as
:I an integer constant. Also, note that steps 4 and 5 require you to convert the string to an integer
before assigning it. This all stems from the fact that ASCII deals only with string data.

Well my friend, you've done it. You've saved yourself from the miserable fate that would’ve await-
ed you if you’d actually tried to code each item directly into the game. And as a result, you can
now tweak and fine-tune your items without wasting any more time than you have to. You've also
taken your first major step towards truly understanding the concepts of game scripting. Although
this example was very specific and only a prelude to the real focus of the book (discussed short-
ly), it did teach the fundamental concept behind all forms of scripting: How to avoid hardcoding.

THE PeERILS oF HARDCODING

What is hardcoding? To put it simply, it’s what you were doing when you tried coding your items
directly into the engine. It’s the practice of writing code or data in a rigid, fixed or hard-to-edit
sort of way. Whether you decide to become a scripting guru or not, hardcoding is almost always
something to avoid. It makes your code difficult to write, read, and edit. Take the following code
block, for example:

const MAX_ARRAY_SIZE = 32;

int iArray [MAX_ARRAY_SIZE 1;
int iChecksum;

for (int ilndex = 1; iIndex < MAX_ARRAY_SIZE; ++ ilndex)
{
int iElement = fArray [ilndex 1;

THE PERILS oF HARDCODING E

iArray [iIndex - 1] = iETement;
iChecksum += iETement;

iArray [MAX_ARRAY_SIZE - 1 1 = iChecksum;

Regardless of what it’s actually supposed to be doing the important thing to notice is that the size
of the array, which is referred to a number of times, is stored in a handy constant beforehand.
Why is this important? Well imagine if you suddenly wanted the array to contain 64 elements
rather than 32. All you’d have to do is change the value of MAX_ARRAY_SIZE, and the rest of the pro-
gram would immediately reflect the change. You wouldn’t be so lucky if you happened to write
the code like this:

int iArray [32 1;
int iChecksum;

for (int iIndex = 1; ilndex < 32; ++ ilndex)
{
int iElement = fArray [iIndex 1;
iArray [iIndex - 1] = iETement;
iChecksum += iElement;
}
iArray [31 1 = iChecksum;

This is essentially the “hardcoded” version of the first code block, and it’s obvious why it’s so
much less flexible. If you want to change the size of the array, you're going to have to do it in
three separate places. Just like the items in the RPG, the const used in this small example is analo-
gous to the external file—it allows you to make all of your changes in one, separate place, and
watch the rest of the program automatically reflect them.

You aren’t exactly scripting yet, but you're close! The item description files used in the RPG
example are almost like very tiny scripts, so you're in good shape if you've understood everything
so far. I just want to take you through one more chapter in the history of this hypothetical RPG
project, which will bring you to the real heart of this introduction. After that, you should pretty
much have the concept nailed.

So let’s get back to these item description files. They’re great; they take all the work of creating
and fine-tuning game items off the programmer’s shoulders while he or she is working on other
things like the engine. But now it’s time to consider some expansion issues. The item structure
works pretty well for describing items, and it was certainly able to handle the basics like your typi-
cal health and magic potions, an armor elixir, and the mysterious Orb of Sayjack. But they’re not
going to cut it for long. Let’s find out why.

1. AN INTRODUCTION TO SCRIPTING

STORING FUNCTIONALITY IN
EXTERNAL FILES

Sooner or later, you're going to want more unique and complex items. The common thread
between all of the items described so far is that they basically just increase or decrease various
stats. It’s something that’s very easy to do, because each item only needs to tell the engine which
stats it wants to change, and by how much. The problem is, it gets boring after a while because
you can only do so much with a system like that.

:I So what happens when you want to create an item that does something very specific? Something
that doesn’t fit a mold as simple as “Tell me what stat to change and how much to change it by

Something like an item that say, causes all ogres below a certain level to run away from battles?

-I Or maybe an item that restores the MP of every wizard in the party that has a red cloak? What

about one that gives the player the capability to see invisible treasure chests? These are all very

:I specific tasks. So what can you do? Just add some item types to your list?

const HEAL =0;
const MAGIC_RESTORE =1;
const ARMOR_REPAIR = 2;
const TELEPORT = 3;

const MAKE_ALL_OGRES_BELOW_LEVEL_6_RUN_AWAY = 4;
const MAGIC_RESTORE_FOR_EVERY_WIZARD_WITH_RED_CLOAK = 5;
const MAKE_INVISIBLE_TREASURE_CHESTS_VISIBLE = 6;

No way that’s gonna cut it. With a reasonably complex RPG, you might have as many item types as
you do actual items! Observant readers might have also noticed that once again, this is danger-
ously close to a hardcoded solution. You are back in the game engine source code, adding code
for specific items—additions that will once again require recompiles every time something needs
to be changed. Isn’t that the problem you were trying to solve in the first place?

The trouble though, is that the specific items like the ones mentioned previously simply can’t be
solved by any number of fields in an Item structure. They’re too complex, too specific, and they
even involve conditional logic (determining the level of the ogres, the color of the wizards’
cloaks, and the visibility of the chests). The only way to actually implement these items is to pro-
gram them—just like you’d program any other part of your game. I mean you pretty much have
to; how are you going to test conditions without an if statement? But in order to write actual
code, you have to go back to programming each item directly into the engine, right? Is there
some magical way to actually store codein the item description files rather than just a list of val-
ues? And even if there is, how on earth would you execute it?

How ScriPTING ACTUALLY WORKS E

The answer is scripting. Scripting actually lets you write code outside of your engine, load that
code into the engine, and execute it. Generally, scripts are written in their own language, which is
often very similar to C/C++ (but usually simpler). These two types of code are separate—scripts
use their own compiler and have no effect on your engine (unless you want them to). In essence,
you can replace your item files, which currently just fill structure fields with values, with a block of
code capable of doing anything your imagination can come up with. Want to create an item that
only works if it’s used at 8 PM on Thursdays if you’re standing next to a certain castle holding a
certain weapon? No problem!

Scripts are like little mini-programs that run inside your game. They work on all the same princi-
pals as a normal program; you write them in a text editor, pass them through a compiler, and are
given a compiled file as a result. The difference, however, is that these executables don’t run on
your CPU like normal ones do. Because they run inside your game engine, they can do anything
that normal game code can. But at the same time, they’re separate. You load scripts just like you
load images or sounds, or even like the item description files from earlier. But instead of display-
ing them on the screen or playing them through your speakers, you execute them. They can also
talk to your game, and your game can talk back.

How cool is this? Can you feel yourself getting lost in the possibilities? You should be, because
they’re endless. Imagine the freedom and flexibility you’ll suddenly be afforded with the ability to
write separate mini-programs that all run inside your game! Suddenly your items can be written
with as much control and detail as any other part of your game, but they still remain external and
self-contained.

Anyway, this concludes the hypothetical RPG scenario. Now that you basically know what scripting
is, you're ready to get a better feel for how it actually works. Sound good?

How ScriPTING ACTUALLY WORKS

If you're anything like I was back when I was first trying to piece together this whole scripting
concept, you're probably wondering how you could possibly load code from a file and run it.
remember it sounding too complicated to be feasible for anyone other than Dennis Ritchie or
Ken Thompson, (those are the guys who invented C, in case I lost you there) but trust me—
although it is indeed a complex task, it’s certainly not impossible. And with the proper reference
material (which this book will graciously provide), it'll be fun, too! :)

Before going any further, however, let’s refine the overall objective. What you basically want to be
able do is write code in a high-level language similar to C/C++ that can be compiled independ-
ently of your game engine but loaded and executed by that engine whenever you want. The rea-
son you want to do this is so you can separate game content, the artistic, creative, and design-orient-
ed aspects of game development, from the game engine, the technological, generic side of things.

E 1. AN INTRODUCTION TO SCRIPTING

One of the most popular solutions to this problem literally involves designing and implementing
a new language from the ground up. This language is called a seripting language, and as I've men-
tioned a number of times, is compiled with its own special compiler (so don’t expect Microsoft
VisualStudio to do this for you). Once this language is designed and implemented, you can write
scripts and compile them to a special kind of executable that can be run inside your program. It’s
a lot more complicated than that, though, so you can start by getting acquainted with some of the
details.

The first thing I want you to understand is that scripting is analogous to the traditional program-
ming you're already familiar with. Actually, writing a script is pretty much identical to writing a
:I program, the only real difference between the two is in how they’re loaded and executed at run-
time. Due to this fact, there exist a number of very strong parallels between scripting and pro-
gramming. This means that the first step in explaining how scripting works is to make sure you

1 understand how programming works, from start to finish.

1 An Overview of Computer
Programming

Writing code that will execute on a computer is a complicated process, but it can be broken
down into some rather simple steps. The overall goal behind computer programming is to be
able to write code in a high-level, English-like language that humans can easily understand and
follow, but ultimately translate that code into a low-level, machine-readable format. The reason
for this is that code that looks like this:

int Y = 0;

int Z =0;

for (int X =0; X < 32; ++ X)
{

Y =X *2;

which is quite simple and elementary to you and me, is pretty much impossible for your Intel or
AMD processor to understand. Even if someone did build a processor capable of interpreting
C/C++ like the previous code block, it’d be orders of magnitude slower than anything on the
market now. Computers are designed to deal with things in their smallest, most fundamental
form, and thus perform at optimal levels when the data in question is presented in such a fash-
ion. As a result, you need a way to turn that fluffy, humanesque language you call C/C++ into a
bare-bones, byte-for-byte stream of pure code.

How ScriPTING ACTUALLY WORKS

That’s where compilers come in. A compiler’s job is to turn the C/C++, Java, or Pascal code that
your brain can easily interpret and understand into machine code; a set of numeric codes (called
opcodes, short for operation code) that tell the processor to perform extremely fine-grained tasks
like moving individual bytes of memory from one place to another or jumping to another
instruction for iteration and branching. Designed to be blasted through your CPU at lightning
speeds, machine code operates at the absolute lowest level of your computer. Because pure
machine code is rather difficult to read by humans (because it’s nothing more than a string of
numbers), it is often written in a more understandable form called assembly language, which gives
each numeric opcode a special tag called an instruction mnemonic. Here’s the previous block of
code from, after a compiler has translated it to assembly language:

mov dword ptr [ebp-41,0

mov dword ptr [ebp-8]1,0

mov dword ptr [ebp-0Ch],0
jmp 00401048h

mov eax,dword ptr [ebp-0Ch]
add eax,l1

mov dword ptr [ebp-0Ch],eax
cmp dword ptr [ebp-0Ch],20h
jge 00401061h

mov ecx,dword ptr [ebp-0Ch]
shl ecx,1

mov dword ptr [ebp-47,ecx
mov edx,dword ptr [ebp-8]
add edx,dword ptr [ebp-4]
mov dword ptr [ebp-8],edx NOTE :

jmp 0040103fh For the remainder of this section, and
in many places.in this book, I’'m going
to use the terms machine code and
assembly language interchangeably.
Remember, the only difference
between the two is what they look like.
Although machine code is the numeric

If you don’t understand assembly language,
that probably just looks like a big mess of
ASCII characters. Either way, this is what the
processor wants to see. All of those variable

asmgnments, expressions, and even the for version and assembly is the human-

loop have been collapsed to just a handful of readable form, they both represent the
very quick instructions that the CPU can exact same data.

blast through without thinking twice. And

the really useless stuff, like the actual names of
those variables, is gone entirely. In addition to illustrating how simple and to-the-point machine
code is, this example might also give you an idea of how complex a compiler’s job is.

E 1. AN INTRODUCTION TO SCRIPTING

Anyway, once the code is compiled, it’s ready to fly. The compiler hands all the compiled code to
a program called a linker, which takes that massive volume of instructions, packages them all into
a nice, tidy executable file along with a considerable amount of header information and slaps an
EXE on the end (or whatever extension your OS uses). When you run that executable, the oper-
ating system invokes the program loader (more commonly referred to simply as the loader), which is
in charge of extracting the code from the .EXE file and loading it into memory. The loader then
tells the CPU the address in memory of the first instruction to be processed, called the program
entry point, (the main () function in a typical C/C++ program), and the program begins execut-
ing. It might be displaying 3D graphics, playing a Chemical Brothers MP3, or accepting user

_:I input, but no matter what it’s doing, the CPU is always processing instructions. This general
process is illustrated in Figure 1.3.

-I Figure 1.3

The OS program
loader extracts

machine code from the
executable file and
loads it into memory

for execution.

This is basically the philosophy behind computer science in a nutshell: Turning problems and
algorithms into high-level code, turning that high-level code into low-level code, executing that
low-level code by feeding it through a processor, and (hopefully) solving the problem. Now that
you've got that out of the way, you're ready to learn how this all applies to scripting.

An Overview of Scripting

You might be wondering why I spent the last section going over the processes behind general
computer programming. For one thing, a lot of you probably already know this stuff like the back
of your hand, and for another, this book is supposed to be about scripting, right? Well don’t sweat
it, because this is where you apply that knowledge. I just wanted to make sure that the program-
ming process was fresh in your mind, because this next section will be quite similar and it’s always
good to make connections. As I mentioned earlier, there exist a great number of parallels
between programming and scripting; the two subjects are based on almost identical concepts.

How ScriPTING ACTUALLY WORKS E

When you write a script, you write it just like you write a normal program. You open up a text edi-
tor of some sort (or maybe even an actual VisualStudio-style IDE if you go so far as to make one),
and input your code in a high-level language, just like you do now with C/C++. When you’re
done, you hand that source file to a compiler, which reduces it to machine code. Until this point,
nothing seems much different from the programming process discussed in the last section.

The changes, however, occur when the compiler is translating the high-level script code.
Remember, the whole concept behind a script is that it’s like a program that runs inside another
program. As such, a script compiler can’t translate it into 80X86 machine code like it would if it
were compiling for an Intel CPU. In fact, it can’t translate it to any CPU’s machine code, because
this code won’t be running on a CPU.

So how’s this code going to be executed, if not by a CPU? The answer is what’s called a virtual
machine, or VM. Aside from just being a coolsounding term, a virtual machine is very similar to
the CPU in your computer, except that it’s implemented in software rather than silicon. A real
CPU’s job is basically to retrieve the next instruction to be executed, determine what that instruc-
tion is telling it to do, and do it. Seems pretty simple, huh? Well it’s the same thing a virtual
machine does. The only difference is that the VM understands its own special dialect of assembly
language (often called bytecode, but you'll get to that later).

Another important attribute of a virtual machine is that, at least in the context of game scripting,
it’s not usually a standalone program. Rather, it’s a special “module” that is built into (or “inte-
grated with”) other programs. This is also similar to your CPU, which is integrated with a mother-
board, RAM, a hard drive, and a number of input and output devices. A CPU on its own is pretty
much useless. Whatever program you integrate the VM with is called the host application, and it is
this program that you are ultimately “scripting”. So for example, if you integrated a VM into the
hypothetical RPG discussed earlier, scripts would be running inside the VM, but they would be
scripting the RPG. The VM is just a vehicle for getting the script’s functionality to the host.

So a scripting system not only defines a high-level, C/C++style language of its own, but also creates
anew low-level assembly language, or virtual machine code. Script compilers translate scripts into this
code, and the result is then run inside the host application’s virtual machine. The virtual machine
and the host application can talk to one another as well, and through this interface, the script can
be given specific control the host. Figure 1.4 should help you visualize these interactions.

Notice that there are now two more layers above the program—the VM and the script(s) inside it.

So let’s take a break from all this theory for a second and think about how this could be applied
to your hypothetical RPG. Rather than define items by a simple set of values that the program
blindly plugs into the item array, you could write a block of code that the program tells the VM to
execute every time the item is used. Through the VM, this block of code could talk to the game,
and the game could talk back. The script might ask the game how many hit points the player has,
and what sort of armor is currently being worn. The game would pass this information to the

m 1. AN INTRODUCTION TO SCRIPTING

Figure 1.4

The VM’s script loader
loads virtual machine
code from the script
file, allowing the VM to
execute it. In addition
to a runtime environ-
ment, the VM also pro-
vides a communication

layer, or interface,

between the running
-I script and the host

program.

script and allow it process it, and ultimately the script would perform whatever functionality was
associated with the item.

Host applications provide running scripts with a group of functions, called an API (which stands
for Application Programming Interface), which they can call to affect the game. This API for an
RPG might allow the script to move the player around in the game world, get items, change the
background music, or whatever. With a system like this, anything is possible.

That was quite a bit of information to swallow, huh? Well, I've got some good and bad news. The
bad news is that this szl isn’t everything; there are actually a number of ways to implement a
game scripting system, and this was only one of them. The good news, though, is that this
method is by far the most complex, and everything else will be a breeze if you've understood
what’s been covered so far.

So, without further ado...

THE FuUnNDAMENTAL TYPES OF
SCRIPTING SYSTEMS

Like most complex subjects, scripting comes in a variety of forms. Some implementations involve
highly structured, feature-rich compilers that understand full, procedural languages like C or
even object oriented languages like C++, whereas others are based around simple command sets
that look more like a LOGO program. The choices aren’t always about design, however. There
exists a huge selection of scripting systems these days, most of which have supportive and dedicat-

THE FUNDAMENTAL ‘TYPES OF SCRIPTING SYSTEMS E

ed user communities, and almost all of which are free to download and use. Even after attaining
scripting mastery, you still might feel that an existing package is right for you.

Regardless of the details, however, the motivation behind any choice in a scripting system should
always be to match the project appropriately. With the huge number of features that can be
either supported or left out, it’s important to realize that the best script system is the one that
offers just enough functionality to get the job done without overkill. Especially in the design
phase, it can be easy to overdo it with the feature list. You don’t need a Lamborghini to pick up il
milk from the grocery store, so this chapter will help you understand your options by discussing
the fundamental types of scripting systems currently in use. Remember: Large, complicated fea-
ture lists do look cool, but they only serve to bulk up and slow down your programs when they |:
aren’t needed.

This section will cover: [

B Procedural/object-oriented language systems
B Command-based language systems |:
B Dynamically linked module systems

B Compiled versus interpreted code
B Existing scripting solutions

Procedural/Object-Oriented
Language Systems

Probably the most commonly used of the mainstream scripting systems are those built around
procedural or object-oriented scripting languages, and employ the method of scripting discussed
throughout this chapter.

In a nutshell, these systems work by writing scripts in a high-level, procedural or object oriented
language which is then compiled to virtual machine code capable of running inside a virtual
machine, or left uncompiled in order to be executed by an interpreter (more on the differences
between compiled and interpreted code later). The VM or interpreter employed by these systems
is integrated with a host application, giving that application the capability to invoke and commu-
nicate with scripts.

The languages designed for these systems are usually similar in syntax and design to C/C++, and
thus are flexible, free-form languages suitable for virtually any major computing task. Although
many scripting systems in this category are designed with a single type of program in mind, most
can be (and are) effectively applied to any number of uses, ranging from games to Web servers to
3D modelers.

E 1. AN INTRODUCTION TO SCRIPTING

Unreal is a high-profile example of a game that’s really put this method of scripting to good use.
Its proprietary scripting language, UnrealScript, was designed specifically for use in Unreal, and
provides a highly object oriented language similar to C/C++. Check out Figure 1.5.

Figure 1.5

Unreadl, a first-person
shooter based around
a proprietary scripting
system called
UnrealScript.

Command-Based Language Systems

Command-based languages are generally built around extremely specialized LOGO-like lan-
guages that consist entirely of program-specific commands that accept zero or more parameters.
For example, a command-based scripting system for the hypothetical RPG would allow scripts to
call a number of game-specific functions for performing common tasks, such as moving the play-
er around in the game world, getting items, talking to characters, and so on. For an example of
what a script might look like, consider the following:

MovePlayer 10, 20

PlayerTalk "Something is hidden in these bushes..."
PTayAnim SEARCH_BUSHES

PlayerTalk "It's the red sword!"

GetItem RED_SWORD

As you can see, the commands that make up this hypothetical language are extremely specific to
an RPG like the one in this chapter. As a result, it wouldn’t be particularly practical to use this

THE FUNDAMENTAL ‘TYPES OF SCRIPTING SYSTEMS E

language to script another type of program, like a word processor. In that case, you’d want to
revise the command set to be more appropriate. For example:

MoveCursor 2, 2

SetFont "Times New Roman", 24, BLACK
PrintText "Newsletter"

LineBreak

SetFontSize 12

PrintDate

LineBreak

Once again, the key characteristic behind these languages is how specialized they are. As you can
see, both languages are written directly for their host application, with little to no flexibility.
Although their lack of common language constructs such as variables and expressions, branch-
ing, iteration, and so on limit their use considerably, they’re still handy for automating linear
tasks into what are often called “macros”. Programs like Photoshop and Microsoft Word allow the
users to record their movements into macros, which can then be replayed later. Internally, these
programs store macros in a similar fashion; recording each step of the actions in a program-spe-
cific, command-based language. In a lot of ways, you can think of HTML as command-based
scripting, albeit in a more sophisticated fashion.

Dynamically Linked Module Systems

Something not yet discussed regarding the procedural scripting languages discussed so far are
their inherent performance issues. You see, when a compiled script is run in a virtual machine, it
executes at a significantly slower rate than native machine code running directly on your CPU.
I’ll discuss the specific reasons for this later, but for now, simply understand that they’re definitely
not to be used for speed-critical applications, because they’re just too slow.

In order to avoid this, many games utilize dynamically linked script modules. In English, that basically
means blocks of C/C++ code that are compiled to native machine code just like the game itself,
and are linked and loaded at runtime. Because these are written in normal C/C++ and compiled
by a native compiler like Microsoft Visual C++, they’re extremely fast and very powerful. If you're
a Windows user, you actually deal with these every day; but you probably know them by their
more Windows-oriented name, DLLs. In fact, most (if not all) Windows games that implement
this sort of scripting system actually use Win32 DLLs specifically. Examples of games that have
used this method include id Software’s Quake Il and Valve’s Half-Life.

Dynamically linked modules communicate with the game through an API that the game exposes
to them. By using this API, the modules can retrieve and modify game state information, and
thus control the game externally. Often times, this API is made public and distributed in what is

1. AN INTRODUCTION TO SCRIPTING

called an SDK (Software Development Kit), so that other programmers can add to the game by
writing their own modules. These add-ons are often called mods (an abbreviation for “modifica-
tion”) and are very popular with the previously mentioned games (Quake and Half-Life).

At first, dynamically linked modules seem like the ultimate scripting solution; they’re separate
and modularized from the host program they’re associated with, but they’ve got all the speed and
power of natively compiled C/C++. That unrestricted power, however, doubles as their most sig-
nificant weakness. Because most commercial (and even many non-commercial) games are played
by thousands and sometimes tens of thousands of gamers, often over the Internet, scripts and
add-ons must be safe. Malicious and defective code is a serious issue in large-scale products—

:I when that many people are playing your game, you’d better be sure that the external modules
those games are running won’t attempt to crash the server during multiplayer games, scan play-
ers’ hard drives for personal information, or delete sensitive files. Furthermore, even non-mali-

1 cious code can cause problems by freezing, causing memory leaks, or getting lost in endless
loops.

:I If these modules are running inside a VM controlled directly by the host program, they can be
dealt with safely and securely and the game can sometimes even continue uninterrupted simply
by resetting an out-of-control script. Furthermore, VM security features can ensure that scripts
won’t have access to places they shouldn’t be sticking their noses.

Dynamically linked script modules, however, don’t run inside their host applications, but rather
along side them. In these cases, hosts can assert very little control over these scripts’ actions, often
leaving both themselves and the system as a whole susceptible to whatever havoc they may inten-
tionally or unintentionally wreak.

This pretty much wraps up the major types of scripting systems out there, so let’s switch the focus
a bit to a more subtle detail of this subject. A screenshot of Half-Life appears in Figure 1.6.

Compiiled versus Interpreted Code

Earlier I mentioned compiled and interpreted code during the description of procedural lan-
guage scripting systems. The difference between these two forms of code is simple: compiled
code is reduced from its human-readable form to a series of machine-readable instructions called
machine code, whereas interpreted code isn’t.

So how does interpreted code run? It’s a valid question, especially because I said earlier that no
one’s made a CPU capable of executing uncompiled C/C++ code. The answer is that the CPU
doesn’t run this code directly. Instead, it’s run by a separate program, quite similar in nature to a
virtual machine, called an interpreter. Interpreters are similar to VMs in the sense that they execute
code in software and provide a suitable runtime environment. In many ways, however, inter-
preters are far more complex because they don’t execute simplistic, fine-grained machine code.

THE FUNDAMENTAL ‘TYPES OF SCRIPTING SYSTEMS E

Figure 1.6

Half-Life handles
scripting and add-ons
by allowing program-
mers to write game
content in a typical
C/C++ compiler using
the proprietary Half-
Life SDK.

Rather, they literally have to process and understand the exact same human-written, high-level
C/G++ code you and I deal with every day.

If you think that sounds like a tough job, you're right. Interpreters are no picnic to implement. On
the one hand, they’re based on almost all of the complex, language parsing functionality of com-
pilers, but on the other hand, they have to do it all fast enough to provide real-time performance.

However, contrary to what many believe, an interpreter isn’t quite as black and white as it sounds.
While it’s true that an interpreter loads and executes raw source code directly without the aid of a
separate compiler, virtually all modern interpreters actually perform an internal, pre-compile step,
wherein the source code loaded from the disk is actually passed through a number of routines
that encapsulate the functionality of a stand-alone compiler and produce a temporary, in-memory
compiled version of the script or program that runs just as quickly as it would if it were an exe-
cutable read from disk.

Most interpreters allow you the best of both worlds—fast execution time and the convenience of
automatic, transparent compilation done entirely at runtime. There are still some trade-offs, how-
ever; for example, if you don’t have the option to compile your scripts beforehand, you’re forced
to distribute human-readable script code with your game that leaves you wide open to modifica-
tions and hacks. Furthermore, the process of loading an ASCII-formatted script and compiling it
at runtime means your scripts will take a longer time to load overall. Compiled scripts can be
loaded faster and don’t need any further processing once in memory.

E 1. AN INTRODUCTION TO SCRIPTING

As a result, this book will only casually mention interpreted code here and there, and instead
focus entirely on compiled code. Again, while interpreters do function extremely well as debug-
gers and other development tools, the work involved in creating them outweighs their long-term
usefulness (at least in the context of this book).

Existing Scripting Solutions

Creating your own scripting system might be the focus of this book, but an important step in

designing anything is first learning all you can about the existing implementations. To this end,

i you can briefly check out some currently used scripting systems. All of the systems covered in this
:I section are free to download and use, and are supported by loyal user communities. Even after

attaining scripting mastery, using an existing scripting system is always a valid choice, and often a

1 practical one. This section is merely an introduction, however; an in-depth description of both

the design and use of existing scripting systems can be found in Chapter 6.

Ruby
http://www.ruby-Tang.org/en/index.html

Ruby is a strongly object-oriented scripting language with an emphasis on system-management
tasks. It boasts a number of advanced features, such as garbage collection, dynamic library load-
ing, and multithreading (even on operating systems that don’t support threads, such as DOS). If
you download Ruby, however, you’ll notice that it doesn’t come with a compiler. This is because it
is a fully interpreted language; you can immediately run scripts after writing them without com-
piling them to virtual machine code.

Taken directly from the official web site, here’s a small sample of Ruby code (which defines a
class called Person):

class Person
attr_accessor :name, :age
def initialize(name, age)
@name = name
@age age.to_i
end
def inspect
"ff@name (f@age)"
end
end

pl = Person.new('elmo', 4)
p2 = Person.new('zoe', 7)

Lua
http://www.lua.org/

As described by the official Lua web site, “Lua is a powerful, lightweight programming language
designed for extending applications.” Lua is a procedural scripting system that works well in any
number of applications, including games. One of its most distinguishing features, however, lies in
its ability to be expanded by programs written with it. As a result, the core language is rather -
small; it is often up to the user to implement additional features (such as classes). Lua is a com-
pact, highly expandable and compiled language that interfaces well with C/C++, and is subse-
quently a common choice for game scripting. |:

Java [
http://java.sun.com/

Strangely enough, Java has proven to be a viable and feature-rich scripting alternative. Although I:
Java’s true claim to fame is designing platform independent, standalone applications (often with
a focus on the internet), Java’s virtual machine, known as the JVM, can be easily integrated with
C/C++ programs using the Java Native Interface, or JNI. Due to its common use in professional-
grade e-commerce applications, the JVM is an optimized, multithreaded runtime environment
for compiled scripts, and the language itself is flexible and highly object oriented.

SUMMARY

Phew! Not a bad way to start things off, eh? In only one chapter, you've taken a whirlwind tour of
the world of game scripting, covering the basic concepts, a general overview of implementation,
common variations on the traditional scripting method, and a whole lot of details. If you're new
to this stuff, give yourself a big pat on the back for getting this far. If you aren’t, then don’t even
think about patting your back yet. You aren’t impressing anyone! (Just kidding)

In the coming chapters, you're going to do some really incredible things. So read on, because the
only way you're going to understand the tough stuft is if you master the basics first! With that in
mind, you might want to consider re-reading this chapter a few times. It covers a lot of ground in
a very short time, and it’s more than likely you missed a detail here or there, or still feel a bit
fuzzy on a key concept or two. I personally find that even re-reading chapters I think I under-
stood just fine turns out to be helpful in the end.

This page intentionally left blank

AT | j I .

CHAPTER 2

HPPLICATIONS
OF SCRIPTING
SYSTEMS

i “What’s wrong with science being practical?
Even profitable?”
: L\a; ——Dr. David Drumlin, Contact

m 2. APPLICATIONS OF SCRIPTING SYSTEMS

H s I mentioned in the last chapter, scripting systems should be designed to do as much as
is necessary and no more. Because of this, understanding what the various forms of
scripting systems can do, as well as their common applications, is essential in the process of attain-
ing scripting mastery.

:I So that’s what this chapter is all about: giving you some insight into how scripting is applied to
real-world game projects. Seeing how something is actually used is often the best way to solidify
1 something you've recently learned, so hopefully the material presented here will compliment that
of the last chapter well. This has actually been covered to some extent already; the last chapter’s
:I hypothetical RPG project showed you by example how scripting can ease the production of
games that require a lot of content. This chapter approaches the topic in a more detailed and
directly informative way, and focuses on more than just role-playing games. In an effort to keep
these examples of script applications as diverse as possible, the chapter also takes a look at a stark-
ly contrasting game genre, but one that gets an equal amount of attention from the scripting
community——the First-Person Shooter.

I should also briefly mention that if you're coming into the book with the sole purpose of applying
what you learn to an existing project, you probably already know exactly why you need to build a
scripting system and feel that you can sweat the background knowledge. Regardless of your skill
level and intentions, however, I suggest you at least skim this stuff; not only is it a light and fairly
non-technical read, butit sets the stage for the later chapters. The concepts introduced in this chap-
ter will be carried on throughout the rest of the book and are definitely important to understand.

But enough with the setup, huh? Let’s get going. This chapter will cover how scripting systems
can be applied to the following problems:

B An RPG’s story-related elements—non-player characters and plot details.
B RPG items, weapons and enemies.

B The objects, puzzles and switches of a first-person shooter.

B First-person shooter enemy behavior.

THE GENERAL PURPOSE OF SCRIPTING

As was explained in the last chapter, the most basic reason to implement a scripting system is to
avoid the perils of hardcoding. When the content of your game is separated from the engine, it
allows the tweaking, testing, and general fine-tuning of a game’s mechanics and features to be

THE GENERAL PURPOSE OF SCRIPTING E

carried out without constant recompilation of the entire project. It also allows the game to be eas-
ily expanded even after it’s been compiled, packaged, and shipped (see Figure 2.1).
Modifications and extensions can be downloaded by players and immediately recognized by the
game. With a system like this, gameplay can be extended indefinitely (so long as people produce
new scripts and content, of course).

anpleaion. wav

Figure 2.1
4@ . Game logic can be
villnbog treated as modular
thetie.mpd
o 3 content, allowing it to

be just as flexible and
interchangeable as
graphics and sound.

IlIII

!.

levell. scrigt
el Lecript

Because the ideal separation of the game engine and its content allows the engine’s executable to
be compiled without a single line of game-specific code, the actual game the player experiences
can be composed entirely of scripts and other media, like graphics and sound. What this means is
that when players buy the game, they’re actually getting two separate parts; a compiled game
engine and a series of scripts that fleshes it out into the game itself. Because of this modular archi-
tecture, entirely new games such as sequels and spinoffs can be distributed in scriptform only, run-
ning without modification on the engine that players already have.

One common application of this idea is distributing games in “episode” form; that means that
stores only sell the first 25 percent or so of the game at the time of purchase, along with the exe-
cutable engine capable of running it. After players finish the first episode, they’re allowed to
download or buy additional episodes as “patches” or “add-ons” for a smaller fee. This allows
gamers to try games before committing to a full purchase, and it also lets the developers easily
release new episodes as long as the game franchise is in demand. Rather than spend millions of
dollars developing a full-blown sequel to the game, with a newly designed and coded engine,
additional episodes can be produced for a fraction of the cost by basing them entirely on scripts
and taking advantage of the existing engine, while still keeping players happy.

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

With this in mind, scripting seems applicable to all sorts of games; don’t let the example from the
first chapter imply that only RPGs need this sort of technology. Just about any type of game can
benefit from scripting; even a PacMan clone could give the different colored ghosts their own
unique Al by assigning them individual scripts to control their movement. So the first thing I
want to impress upon you is how flexible and widely applicable these concepts are. All across the
board, games of every genre and style can be reorganized and retooled for the better by intro-
ducing a scripting system in some capacity.

So to start things off on a solid footing, let’s begin this tour of scripting applications with another
look RPGs. This time I'll of course go into more detail, but at least this gets you going with some
:I familiar terrain.

1 RoLE PLAYINnG GAMES [RPGs)

Although I've been going out of my way to assure you that RPGs are hardly the only types of

:I games to which one can apply a scripting system, you do hear quite a bit of scripting-related con-
versation when hanging around RPG developers; often more so than other genres in fact. The
reason for this is that RPGs lend themselves well to the concept of scripts because they require
truly massive amounts of game content. Hundreds of maps, countless weapons, enemies and
items, thousands of roaming characters, hundreds of megs worth of sound and music, and so on.
So, naturally, RPG developers need a good way to develop this content in a structured and organ-
ized manner. Not surprisingly, scripting systems are the answer to this problem more often than
not.

In order to understand why scripting can be so beneficial in the creation of RPGs, let’s examine
the typical content of these games. This section covers:

B Complex, in-depth stories

B Non-player characters (NPCs)
B Items and weapons

B Enemies

Complex, In-Oepth Stories

Role playing games are in a class by themselves when it comes to their storylines. Although many
games are satisfied with two paragraphs in the instruction manual that essentially boil down to
“You'’ve got 500 pounds of firepower strapped to your back. Blow up everything that moves and
you’'ll save democracy!”, RPGs play more like interactive novels. This means multi-dimensional
characters with endless lines of dialogue and a heavily structured plot with numerous “plot
points” that facilitate the progression of a player through the story.

RoLE PLAYING GAMES [RPGs) E

At any given point in the player’s adventure, the game is going to need to know every major thing
the player has done up until that point in order to determine the current state of the game
world, and thus, what will happen next. For example, if players can’t stop the villain from burn-
ing the bridge to the hideout early in the game, they might be forced to find an alternate way

in later.

The Solution mll

Many RPGs employ an array of “flags” that represent the current status of the plot or game world.
Each flag represents an event in the game and can be either true or false (although similar sys- i
tems allow flags to be more complex than simple Boolean values). At the beginning of the game, |:
every flag will be FALSE because the player has yet to do anything. As players progress through the
game, they’re given the opportunity to either succeed or fail in various challenges, and the flags [
are updated accordingly. Therefore, at any given time, the flag array will provide a reasonably
detailed history of the player’s actions that the game can use to determine what to do next. For
example, to find out if the villain’s bridge has been burned down, it’s necessary to check its corre- I:
sponding flag. Check out figure 2.2.

Game Flag Array
Index | | 0 ‘ i) 2 | 3| | - | N
Value | TRUE | FALSE | FALSE | TRUE [| FALSE
Defeated the Helped the Took the red pill Reached the escape Found the villian's
menacing ogre wizard find his boat before it secret lair
lost daughter left the harbor
Figure 2.2

Every event in the game is represented by an element (commonly Boolean) in the game flag
array. At any time, the array can be used to determine the general course the player has taken.
This can be used to determine future events and conditions.

Implementation of this system can be approached in a number of ways. One method is to build
the array of flags directly in the engine source code, and provide an interface to scripts that
allows them to read and write to the array (basically just “get” and “set” functions). This way, most
of the logic and functionality behind the flag system lies in external scripts; only the array itself
needs to be built into the game engine. Depending on the capabilities of your scripting system,
however, you might even be able to store the array itself in a script as well, and thus leave the

2. APPLICATIONS OF SCRIPTING SYSTEMS

engine entirely untouched. This is technically the ideal way to do it, because all game logic is
offloaded from the main engine, but either way is certainly acceptable.

Non-Player Characters (NPC(Cs)

One of the most commonly identifiable aspects of any RPG is the constant conversation with the
characters that inhabit the game world. Whether it be the friendly population of the hero’s home
village or a surly guard keeping watch in front of a castle, virtually all RPGs require the player to
talk to these non-player characters, or NPCs, in order to gather the information and clues neces-

i :I sary to solve puzzles and overcome challenges.

Generally speaking, the majority of the NPCs in an RPG will only spark trivial conversations, and
their dialogue will consist of nothing more than a linear series of statements that never branch

1 and always play out the same, no matter how many times you approach them. Kinda like that
loopy uncle you see on holidays that no one likes to talk about.

:I Things aren’t always so straightforward however. Some characters will do more than just ramble;
they might ask a question that results in the player being prompted to choose from a list of
responses, or ask the player to give them money in exchange for information or items, or any
number of other things. In these cases, things like conditional logic, iteration, and the ability to
read game flags become vital. An example of real character dialogue from Square’s Final Fantasy

9 can be found in Figure 2.3.
Figure 2.3
Exchanging dialogue
Al with an NPC in

“There is & proper reason for tnis!
We dre not here to stell, or connit
any form of crine~"

““—

Squaresoft’s Final
Fantasy 9.

1l

A
WA
."%
K, 3

.
‘.

RoLE PLAYING GAMES [RPGs) E

The Solution

First, let’s discuss some of the simpler NPC conversations that you'll find in RPGs. In the case of
conversations that don’t require branching, a command-based language system is more than
enough. For example, imagine you’d like the following exchange in your game:

NPC: “You look like you could use some garlic.”
Player: “Excuse me?” I‘_
NPC: “You're the guy who's saving the world from the vampires, right?”
Player: “Yeah, that’s me.” |:

NPC: “So you're gonna need some garlic, won’t your”

Player: “I suppose I will, now that you mention it.” [
NPC: “Here ya go then!” (Gives player garlic)
Player: “Uh...thanks, I guess.” (Player scratches head) I:

If you were paying attention, you might have noticed that only about four unique commands are
necessary to implement this scene. And if you weren’t paying attention, you probably still aren’t,
so I'll take advantage of this opportunity and plant some subliminal messages into your unknow-
ing subconscious: buy ten more copies of this book for no reason other than to inflate my royalty checks.
Anyway, here’s a rundown of the functionality the scene requires:

B Both the player and the NPC need the ability to talk.
B The NPC needs to be able to give the player an item (vampire-thwarting garlic, in this case).
B There should also be a general animation-playing command to handle the head scratching.

Here’s that same conversation, in command-based script form:

NPCTalk "You Took like you could use some garlic."

PTlayerTalk "Excuse me?

NPCTalk "You're the guy who's saving the world from the vampires, right?"
PlayerTalk "Yeah, that's me."

NPCTalk "So you're gonna need some garlic, won't you?"

PlayerTalk "I suppose I will, now that you mention it."

NPCTalk "Here ya go then!"

GetItem GARLIC

PlayerTalk "Uh... thanks, I guess."

PlayAnim PLAYER_SCRATCH_HEAD

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

Pretty straightforward, huh? Once written, this script would then be associated with the NPC,
telling the game to run it whenever the player talks to him (or her, or it, or whatever your NPCs
are classified as). It’s a simple but elegant solution; all you need to establish is a one-to-one map-
ping of scripts to NPCs and you’ve got an easy and reasonably flexible way to externally control
the inhabitants of your game world. To see this concept displayed in a more visual manner, check
out Figure 2.4.

Figure 2.4

Every NPC in an RPG
world is controlled and
described by a unique
script. The graphics

simply personify them

on-screen.

The honeymoon doesn’t last forever, though, and sooner or later some of the more audacious
characters roaming through your village will want to do more than just rattle off an unchanging
batch of lines every time the player talks to them. They might want to ask the player a question
that’s accompanied by an on-screen list of answers to chose from, and have the conversation take
different paths depending on the player’s response. Maybe they’ll need to be able to read the
game flags and say different things depending on the player’s history, or even write to the flags to
change the course of future events. Or perhaps one of your characters is short-tempered and
should become noticeably agitated if you attempt to talk to him repeatedly. The point is, a good
RPG engine will allow its NPCs to be as flexible and lifelike as necessary, so you're going to need
a far more descriptive and powerful language to program their behavior.

With this in mind, let’s take a look at some of the more complex exchanges that can take place
between the player and an NPC.

RoLE PLAYING GAMES [RPGs)

(Player talks to NPC for the first time)

NPC: “Hey, you look familiar.” (Squints at player’s face)

Player: “Do I? I don’t believe we’ve met.”

NPC: “Wait a sec— you’re the guy who’s gonna save the world from the vampires, right?”
NPC: (If player says Yes) “I knew it! Here, take this garlic!” (Gives player garlic)
Player: “Thanks!”

(Player talks to NPC again)

NPC: “Sorry, I don’t have any more garlic. I gave you all I had last time we spoke.”
Player: “Well that sucks. (Stamps feet)”

(Player talks to NPC a third time)

NPC: “Dude I told you, I gave you all my garlic. Leave me alone!”

Player: But I ran out, and there’s still like 10 more vampires that need to be valiantly defeated!”

NPC: “Hmm...well, my brother lives in the next town over, and he owns a garlic processing plant.

I’ll tell him you’re in the area, and to have a fresh batch ready for you. Next time you're there,
just talk to him, and he’ll give you all the garlic you need.”

Player: “Thanks, mysterious garlic-dispensing stranger!”
NPC: “My name’s Gary.”

Player: “Whatever.”

(Player talks to NPC more than three times)

NPC: “So, have you seen my brother yet?”

That’s quite a step up from the previous style of conversation, isn’t it? Don’t bother trying to fig-
ure out how many commands you’d need to script it, because command-based languages just
don’t deliver in situations like this. So instead, let’s look at the general features a language would
need to describe this scene.

B Basic conversational capabilities are a given; both the NPC and the player need to be
able to speak (which, more or less, just means printing their dialogue in a text box).

B There are a number of points during the conversation at which small animations would
be nice, such as the NPC squinting his eyes and the player stamping his feet, so you’ll
need to be able to tell the engine which animations to play and when.

W Just like the previous example, the NPC gives the player garlic. Therefore, he’ll need
access to the player’s inventory.

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

B Asyou can see in the first exchange, the NPC needs the ability to ask the player a ques-
tion. At the very least, he needs to prompt the player for a yes or no response and
branch out through the script’s code depending on the result. It'd be nice to provide a
custom list of possible answers as well, however, because not everything is going to be a
yes or no question (unless the player is a walking magic 8 ball, but to be quite honest I
can’t see that game selling particularly well outside of Japan).

B Obviously, because the NPC clearly says different things depending on how many times
the player has talked to him (up to four iterations, in this case), you need to keep track
of the player’s history with this character. Furthermore, because the player could theoret-

i :I ically quit and resume the game in between these separate conversations, you need not

only the ability to preserve this information in memory during play, but also to save it to
the disk in between game sessions. Generally speaking, you need the ability to store vari-

1 able information associated with the NPC indefinitely.

B Lastly, you need to alter the game flags. How else would Gary’s brother in the next town

:I over be aware of the player’s need for garlic cloves? To put it in more general terms,

NPCs need to be able to tell the engine what they’re up to so future events line up with
the things they say. Likewise, because Gary’s brother’s script will need to read from the
flags, this ability also lets NPCs base their dialogue on previous events. If you never talk
to Gary a third time, his brother will have no idea who you are. Figure 2.5 illustrates the
communication lines that exist between scripts, the game flags, and each other with this
concept.

Judging by this list, the most prominent features you should notice are the ability to read and
write variables and conditional logic that allows the script to behave differently depending on the
situation. Now that you've really dissected it, I think this is starting to sound a lot less like a

Figure 2.5

Scripts have the ability
to both read and write

: % > to the game flag array.
%, & . '
® & Reading allows the
gary.script garys_bro.script script to accurately

respond to the player’s

previous actions,

whereas writing allows
them to affect the

ol
[TRUE | FALSE | FALSE |

future.

RoLE PLAYING GAMES [RPGs) E

macro-esque, command-based script and a lot more like the beginnings a C/C++ program! In
essence, it will be. Let’s take a look at some C/C++like script code that you might write to imple-
ment this conversation.

static int iConverseCount = 0;
static bool bIsPlayerHero = FALSE;
main () C_
{
string strAnswer;
if (iConverseCount == 0) [
{
NPCTalk ("Hey, you look familiar."); [
PlayAnim (NPC, SQUINT);
PlayerTalk ("Do I? I don't believe we've met."); [:
strAnswer = NPCAsk ("Wait a sec-- you're the guy who's gonna save the world

from the vampires, right?", "Yes", "No");
if (iAnswer == "Yes")
{
NPCTalk ("I knew it! Here, take this garlic!");
Giveltem (GARLIC, 4);
PlayerTalk ("Thanks!");
bIsPlayerHero = TRUE;
}
else
{
NPCTalk ("Ah. My mistake.");
bIsPlayerHero = FALSE;
}
}
else
{
if (bIsPlayerHero)
{
if (iConverseCount == 1)
{
NPCTalk ("Sorry, I don't have any more garlic. I gave you all I had Tast
time we spoke.");
PlayerTalk ("Well that sucks.");

2. APPLICATIONS OF SCRIPTING SYSTEMS

PlayAnim (PLAYER, STAMP_FEET);
}
elseif (iConverseCount == 2)
{
NPCTalk ("Dude I told you, I gave you all my garlic. Leave me alone!");
PlayerTalk ("But I ran out, and there's still 1ike 10 more vampires that
need to be valiantly defeated!");
NPCTalk ("Hmm... well, my brother Tives in the next town over, and he owns
a garlic processing plant. I'11 tell him you're in the area, and to have a fresh
batch ready for you. Next time you're there, just talk to him, and he'll give you
_] all the garlic you need.");
PlayerTalk ("Thanks, mysterious garlic-dispensing stranger!");
NPCTalk ("My name's Gary.");
1 PlayerTalk ("Whatever.");

:I SetGameFlag (GET_GARLIC_FROM_GARYS_BROTHER);
}
else
{
NPCTalk ("Seen my brother yet?");
}
}
else
{
NPCTalk ("Hello again.");
}

iConverseCount ++;

Pretty advanced for a script, huh? In just a short time, things have come quite a long way from
simple command-based languages. As you can see, just adding a few new features can change the
design and direction of your scripting system entirely.

You might also be wondering why, just because a few features were added, the language suddenly
looks so much like C/C++. Although it would of course be possible to add variables, iteration
constructs and conditional logic to the original language from the first example without going so
far as to implement something as sophisticated as the C/C++variant used in the previous exam-
ple, the fact is that if you already need such advanced language features, you’ll most likely need

RoLE PLAYING GAMES [RPGs)

even more later. Throughout the course of an RPG project, you'll most likely find use for even
more advanced features like arrays, pointers, dynamic resource allocation, and so on. It’s a lot
easier to decide to go with a C/C++style syntax from the beginning and just add new things as
you need them than it is to design both the syntax and overall structure of the language simulta-
neously. Using C/C++ syntax also keeps everything uniform and familiar; you don’t have to
“switch gears” every time to move from working on the engine to working on scripts.

Anyway, there’s really no need to discuss the code; for one thing it’s rather self explanatory to I‘_
begin with, and for another, the point here isn’t so much to teach you how to implement that
specific conversation as it is to impress upon you the depth of real scripting languages. More or
less, that is C/C++ code up there. There are certainly some small differences, but for the most
part that’s the same language you're coding the engine with. Obviously, if scripts need a language
that’s almost as sophisticated as the one used to write the game itself, it’s a sign that this stuff can

get very advanced, very quickly. NPCs probably seemed like a trivial issue 10 minutes ago, but [
after looking at how much is required just to ask a few questions and set a few flags, it’s clear that

even the simpler parts of an RPG benefit from, if not flat-out require, a fully procedural scripting |:
language.

Items and Weapons

Items and weapons follow a similar pattern to most other game objects. Each weapon and item is
associated with a script that’s executed whenever it’s used. Like NPCs, a number of items can be
scripted using command-based languages because their behavior is very “macro-like”. Others will
require interaction with game flags and conditional logic. Iteration also becomes very important
with items and weapons because they’ll often require animated elements.

The last chapter took a look at the basic scripting of items. Actually, it really just looked at the
offloading of simple item descriptions to external files, but also touched upon the theory of
externally stored functionality. This chapter, however, goes into far more detail and looks at the
creation of a complete, functional RPG weapon from start to finish.

Because RPGs are usually designed to present a convincingly detailed and realistic game world,
there obviously has to be a large and diverse selection of items and weapons. It wouldn’t make
sense if, spread over the countless towns, cities, and even continents often found in role-playing
games, there was only one type of sword or potion. Once again, this means you're looking for a
structured and intelligent way to manage a huge amount of information. In a basic action game
with only one or two types of weapons, hardcoding their functionality is no problem; in an RPG,
however, anything less than a fully scripted solution is going to result in a tangled, unmanageable
mess.

2. APPLICATIONS OF SCRIPTING SYSTEMS

Furthermore, items and weapons in modern RPGs need to be attention-grabbers. Gone are the
days of casting a spell or attacking with a sword that simply causes some lost hit points; today,
gamers expect grandiose animations with detailed effects like glowing, morphing, and lens flares.
Because graphics programming is a demanding and complicated field, a feature-rich scripting
language is an absolute necessity.

Item and weapon scripts generally need to do a number of tasks. First to attend to is the actual
behind-the-scenes functionality. What this is specifically of course depends on the item or
weapon—it could be anything from damaging an enemy (decreasing its hit points) or healing a
member of your party (increasing their hit points) to unlocking a door, clearing a passage, or

:I whatever—the point though, is that it’s always just a simple matter of updating game variables
such as player/enemy statistics or game flags. It’s a naturally basic task, and can usually be accom-
plished with only a few lines of code. In most cases, it can be handled with a command-based lan-
1 guage just fine. Check out Figure 2.6.

The other side of things, however, is the version of the item or weapon’s functionality that the
:I player perceives. Granted, the player is well aware that the item is healing their party members, or
that the weapon is damaging the ogre they’re battling with simply because they’re the ones who

Figure 2.6
Like NPCs, weapons

D are mapped directly to
“ corresponding script
morning_star.script files. The script file

defines their behavior

by providing blocks of
code for the game to
run when the weapon

is used.

nunchaku.script

broadsword.script

RoLE PLAYING GAMES [RPGs)

selected and used it. But that’s not enough; like I mentioned earlier, these things need to be expe-
rienced—they need to be seen and heard. What’s the fun in using a weapon if you don’t get to see
some fireworks? So, the other thing you need to worry about when scripting items and weapons
are the visuals. This is where command-based languages fall short. Granted, it’d be possible to
code a bunch of effects directly in the engine and assign them commands that can be called from
scripts, but that’ll only result in your RPG having a processed, “cookie cutter” feel. You'll have a
large number of items and weapons that all share a small collection of effects, resulting in a lot of
redundancy. You’d also have a ton of game-specific effect code mixed up with your engine, which
is rarely a good thing. As for coding the effects directly with the language, commands just aren’t
enough to describe unique and original visual effects

The Solution

Generally speaking, it’s best to use a C/C++style, procedural language that will allow items and
weapons to define their own graphical effects, down to the tiniest details, from within the script
itself. This way, the script not only updates statistics and alters game flags, it also provides its own
eye candy. This whole process is actually pretty easy; it’s just a matter of providing at least a basic
set of graphical routines for scripts to call. All that’s really necessary is the typical stuff—pixel plot-
ting, drawing sprites, or maybe even playing movie files to allow for pre-rendered clips of anima-
tion—basically a refined subset of the stuff that your graphics API of choice like DirectX,
OpenGL, or SDL provides. With these in place, you can code up graphical effects just as you
would directly with C/C++.

Let’s try creating an example weapon.

What we’re going to design is a weapon called the Fire Sword (yeah I know, that sounds pretty
generic, but it’s just an example, so gimme a break, okay?). The Fire Sword is used to launch fire-
balls at enemies, and is especially powerful against aquatic or snow-based creatures such as hydras
and ice monsters. Conversely, however, it’s weaker against enemies that are used to hot, fiery envi-
ronments, such as dragons, demons, and Mariah Carey. Also, just to make things interesting and
force the player to think a bit more carefully about his strategy, the weapon, due to its heat,
should cause a slight amount of damage to the player every time it’s used. And, because it just
wouldn’t be fun without it, let’s actually throw in a fireball animation to complete the illusion.

That’s a pretty good description, but it’s also important to consider the technical aspect of this
weapon’s functionality:

B You'll need the capability to alter the statistics of game characters; namely their hit
points. You also need to factor in the fact that the sword causes serious damage to water-
or snow-based enemies, but is less effective against fire-based creatures.

2. APPLICATIONS OF SCRIPTING SYSTEMS

B The player needs to see an actual fireball being launched from the player’s on-screen
location to that of the enemy, as well as hear an explosion-like sound effect that’s played
upon impact. Because you’re now dealing with animation and sound, you’re definitely
going to need conditional logic and iteration. Command-based languages are no longer
an option. In addition, a basic multimedia API will have to be provided by the host appli-
cation that allows scripts to, at the very least, draw sprites on the screen and play sound
effects.

W Finally, the player must be dealt a small amount of damage due to the extreme heat lev-
els expelled by the sword. Like the first task, this is just a matter of crunching some num-

i :I bers and just means you need access to the player’s stats.

And there you have it. Two of the three tasks up there are simple and easily handled by a com-
mand-based language. Unfortunately, the need for animation, as well as the need to deal differ-
1 ent levels of damage based on the enemy’s type, rules them out and pretty much forces you to

adopt a language that gives you the capability to perform branches and loops. These concepts are
:I the very basis of animation and pretty much all other graphical effects, so your hands are tied. So,
let’s see some C/C++style code for this weapon:

Player.HP -= 4;

int Y = Player.0OnScreenyY;

for (int X = Player.OnScreenY; X < Enemy.OnScreen.X; X ++)
BTitSprite (FIREBALL, X, Y);

PTaySound (KA_BOOM);

if (Enemy.Type == ICE || Enemy.Type == WATER)
Enemy.HP -= 16;
elseif (Enemy.Type == FIRE)

Enemy.HP -= 4;
else
Enemy.HP -= 8;

Pretty straightforward, no? As you can see, once a reasonably powerful procedural language like
the C/C++variant is in place, actually coding the effects and functionality behind weapons like
the Fire Sword becomes a relatively trivial task. In this case, it basically just boiled down to a for
loop that moved a sprite across the screen and a call to a sound sample playing function.
Obviously it’s a simplistic example, but it should illustrate the fact that your imagination is the
only real limitation with such a flexible scripting system, because it allows you to code pretty
much anything you can imagine. This sort of power just isn’t possible with command-based lan-
guages. Check out Figure 2.7 to see the fire sword in all its fiery glory.

RoLE PLAYING GAMES [RPGs)

Figure 2.7

The fearsome Fire
Sword being wielded in

battle
|
Knight Lv 10 HP | | 59/64 » Fire Sword
MP (B 11/32 Nunchaku |:
Thorn Whip

Enemies

I've covered the friendlier characters, like NPCs, and you understand the basis for the items
and weapons you use to combat the forces of darkness, but what about the forces of darkness
themselves?

Enemies are the evil, hostile characters in RPGs. They roam the game world and repeatedly
attack the players in an attempt to stop them from fulfilling whatever it is their quest revolves
around. During battle, a group of enemies is very similar to the players and their travel compan-
ions; both parties are fighting to defeat the other by attacking them with weapons and aiding
themselves by using items such as healing elixirs and strength- or speed-enhancing potions.

In more general terms, they're the very reason you play RPGs in the first place; despite all of the
conversing, exploring and puzzle solving, at least half of the gameplay time (and sometimes quite
a bit more, depending on the game) is spent on the battlefield. Not surprisingly, the way enemies
are implemented in an RPG project will have a huge effect on both the success of the project
itself, as well as the quality of the final game. So don’t screw it up! Figure 2.8 is a screenshot from
Breath of Fire, a commercial RPG with battles in the style we’re discussing.

The great thing about enemies though, is that they draw primarily on the two concepts you've
already learned; they have the character- and personality-oriented aspects of NPCs, but they also

2. APPLICATIONS OF SCRIPTING SYSTEMS

Figure 2.8

A battle sequence in
Capcom’s Breath of

Fire series.

have the functional and destructive characteristics of items and weapons. As a result, determining
how to define an enemy for use in your RPG engine is basically just a matter of combining the
concepts behind these two other entities.

The Solution

You could approach this situation in any number of ways, but they all boil down to pretty familiar
territory. As was the case with NPCs, the most important characteristic to establish when describ-
ing an enemy is its personality and behavior. Is it a strong, fast and powerful beast that attacks its
opponents relentlessly and easily evades their counter-attacks? Or is it a meek, paranoid creature
with a slow attack rate and relatively weak abilities? It could be either of these, but it’ll most likely
lie somewhere in between——a gray area that demands a sensitive and easily-tuned method of
description.

You might be tempted to solve this problem by defining your enemies with a common set of
parameters. For example, the behavior of enemies in your game might be described by:

B Strength. How powerful each attack is.
B Speed. How likely each attack is to connect with its target, as well as how likely the
enemy is to successfully dodge a counter-attack.

RoLE PLAYING GAMES [RPGs)

B Endurance. How well the enemy will hold up after taking a significant amount of dam-
age. Higher endurance allows enemies to maintain their intensity when the going gets
rough.

B Armor/Defense. How much damage incoming attacks will cause. The lower the
armor/defense level, the faster its hit points will decrease over the course of the battle
due to its vulnerability.

B Fear. How likely the enemy is to run away from battles when approaching defeat.

B Intelligence. Determines the overall “strategy” of the enemy’s moves during battle.
Highly intelligent enemies might intentionally attack the weakest members of the play-
er’s party, or perhaps conserve their most powerful and physically draining attacks for
the strongest. Less intelligent creatures are less likely to think this way and might waste
their time attacking the wrong people with the wrong moves, plugging away with a brute
force approach until the opponent is defeated.

You could keep adding parameters like these all day, but this seems like a pretty good list. It’s
clear that you can describe a wide variety of enemies this way; obviously a giant ogre-like beast
would have super strength, endless endurance, rock-solid defense, and be nearly fearless. It
wouldn’t be particularly smart or fast, however. Likewise, a ninja or assassin would have speed and
endurance to spare, as well as high intelligence and a reasonable level of strength. A lowly slime
would probably have low levels of all of these things, whereas the final, ultimate villain might be
maxed-out in every category. Overall, this is a simple system but it allows you to rapidly define
large groups of diverse enemies with an adequate level of flexibility.

It should seem awfully suspicious, however, because as you learned in the last chapter with the item
description files, defining such a broad group of entities in your game with nothing more than a
set of common parameters can quickly paint you into a corner and deprive you of true creative con-
trol. As you’ve most certainly guessed by now, script code comes to the rescue once again.

But how do you actually organize the script’s code? Despite the parallels I've drawn between
enemy scripts and that of items and NPCs, astute readers might have noticed that there exists one
major difference between them. Items, weapons, and NPCs are all invoked on a singular basis;
they perform their functionality upon activation by some sort of trigger or event, and terminate
upon completing their task. The Fire Sword is inactive until the moment you use it, at which
point it hurls a fireball across the screen, decreases the enemy’s hit points, and immediately
returns control the game engine. Gary the NPC works the same way; the only real difference is
that he talks about garlic rather than attacking anyone. In either case though, the idea is that
NPCs and weapons work on a per-use basis.

Enemies, on the other hand, much like the player, are constantly affecting the game throughout
the course of their battles. From the moment the battle starts to the point at which either the
enemy or the player is defeated, the enemy must interpret to the player’s input and make

2. APPLICATIONS OF SCRIPTING SYSTEMS

decisions based on it. It’s in a constant state of activity, and as such, its script must be written in a
different manner. Basically, the difference is that you need to think of the code as being part of a
larger, constant loop rather than a single, self-contained event. Check out Figure 2.9 for a visual
idea of this.

Figure 2.9

The basic outline of an
RPG battle loop. At
each iteration of the
loop, the player and
enemies are both
polled for input. In the
case of the player, this

means handling incom-

:I Player Input

ing data from input

devices; in the case of
enemies, this means

executing their battle

scripts.

Enemy2.script

Like virtually all types of gameplay, an RPG battle is just a constantly repeating loop that, at each
iteration, accepts input from the player and the enemy, manages their interactions, and calculates
the overall results of their moves. It does this non-stop until either party is defeated, at which
point it terminates and a victor is declared. So, rather than writing a chunk of code that’s execut-
ed once and then forgotten, you need to write a much more specific and fine-grained routine
that the game engine can automatically call every time the battle loop iterates. Instead of doing
one thing and immediately being done with it, an enemy’s Al script must repeatedly process
whatever input was received since its last execution, and react to that input immediately. Here’s a
basic example:

void Act ()

{
int iWeakestPlayer, ilLastAttacker;

if (iHitPoints < 20)
if (rand () 310 =1)
Flee ();

RoLE PLAYING GAMES [RPGs)

else
{
iWeakestPlayer = GetWeakestPlayer ();

if (Player [iWeakestPlayer J].iHitPoints < 20)
Attack (iWeakestPlayer, METEQOR_SHOWER);
else
{
ilastAttacker = GetLastAttacker ();

switch (Player [ilastAttacker].iType)

{
case NINJA:
{
Attack (ilastAttacker, THROW_FIREBALL);
break;
}
case MAGE:
{
Attack (ilastAttacker, BROADSWORD);
break;
}
case WARRIOR:
{
Attack (ilastAttacker, SUMMON_DEMON);
break;
}
}

As you can see, it’s a reasonably simple block of code. More importantly, note that it doesn’t real-
ly have a beginning or an end; it’s written to be “inserted” into an already running loop that will
provide the initial input it uses to make its decisions.

In a nutshell, the Al works like this: First the enemy script determines how close to defeat it is. If
it’s lower than a certain threshold (fewer than 20 hit points in this case), it simulates an “attempt”
to escape the battle by fleeing only if a random number generated between 1 and 10 is 1. If it

m 2. APPLICATIONS OF SCRIPTING SYSTEMS

feels strong enough to keep fighting, however, it calls a function provided by the battle engine to
determine the identity of the weakest player. If the enemy deems the player suitably close to
defeat (in this case, if his HP is less than 20), it wipes him out with the devastating “Meteor
Shower” attack (whatever that is). If the weakest player isn’t quite weak enough to finish off yet,
the enemy instead goes after whoever attacked it last and chooses a specific counter-attack based
on that player’s type.

Not too shabby, huh? Parameter-based enemy descriptions hopefully aren’t looking too appealing
now, after seeing what’s possible with procedural code.

i Well that just about wraps up this discussion of RPG scripting, so you can now turn your attention
:I to a more action-oriented game genre—first-person shooters.

| FIRsT=-PERsSON SHOOTERS [(FPSs)

:I The first-person shooter is another hot spot for the research and development of scripting sys-
tems. Because such games are always on the cutting edge of realism in terms of both the game
environment as well as the player’s interaction with that environment’s inhabitants, scripting plays

an important role in breathing life into the creatures and objects of an FPS game world.
Although the overall volume of media required for an FPS is usually less than that of an RPG, the
flip side is that the expected detail and depth of both enemy Al as well as environmental interac-
tion is much higher. While RPGs are usually more about the adventure and storyline as a whole,
first-person shooters rely heavily on the immediate experience and reality of the game from one
moment to the next. Figure 2.10 is a screenshot from Halo, a next-generation FPS.

As a result, players expect crates to explode into flying shards when they blow up; windows to
shatter when they’re shot; enemies to be intelligent and strategic, attacking in groups and coordi-
nating their efforts to provide a realistic opposition; and powerful guns to fight their way from
one side of the level to the other. There’s no room in an FPS for cookie-cutter bad guys who all
follow the same pattern, or weapons that are all the same basic projectile drawn with a different
sprite. Even the levels themselves need a constantly changing atmosphere and sense of character.
This all screams for a scripted solution that allows these elements to be externally coded and con-
trolled with the same flexibility of the game’s native language. Furthermore, communication
between running scripts and the host application is emphasized to an almost unparalleled degree
in an FPS in order to keep the illusion of a real, cohesive environment alive during the game.

Although a fullfledged FPS is of course based on a huge number of game elements, this section
discusses the scripting possibilities behind two of the big ones: level objects, such as crates,
retractable bridges and switches, as well as enemy Al

FIrRsT-PERSON SHOOTERS [FPSS) E

Figure 2.10

‘m % Halo, a popular first
V7 3 Y A person shooter from
Bungee. It might be
harder to tell from a
still, black-and-white
image, but the game is
rife with living, moving
detail of all types. First
person shooters thrive
on this sort of relent-
less realism, and thus
require sophisticated
game engines, high-end
hardware and intelli-
gent use of scripting
systems.

Objects, Puzzles, and Switches
(Obligatory Oh My!)

The world of a highly developed FPS needs to feel “alive.” Ideally, everything around you should
properly react to your interaction with it, whether you’re using it, activating it, shooting it, throw-
ing grenades at it, or whatever else you like doing with crates and computer terminals.

If you see a light switch on the wall, you should be able to flip the lights on or off with it. If the
door you want to open is locked and you see a computer terminal across the room, chances are
that you can use the terminal to open the door. Crates, barrels, and pretty much any sort of
generic storage container (the more toxic, the better) should explode or at least fall apart when a
grenade goes off nearby. Bridges should retract and extend when their corresponding levers are
thrown, windows should shatter when struck, lights should crack and dim when shot, and, well,
you get the idea. The point is, objects in the game world need to react to you, and they should
react differently depending on how you choose to interact with them.

But it’s not entirely about property damage. As fun as it may be to blow up barrels, knock out
windows and demolish light fixtures, interaction with game objects is also a common way for the
player to advance through the level. Locating a hidden switch might be necessary in order to
extend a bridge over a chasm, gaining access to a computer terminal might be the only way to

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

lower the shields surrounding the reactor you want to destroy, or whatever. In these cases, objects
are no longer self-contained, privately-operating entities. They now work together to create com-
plex, interconnected systems, and can even be combined to form elaborate puzzles. Check out
Figure 2.11.

Figure 2.11

A mock-up hallway scene

from an FPS. In scenes such
as this, scripts are intercon-
nected as functional objects
that form a basic communi-

cation network. Pulling the

lever will send a message to
the bridge, telling it to either
extend or retract. The bridge

might then want to send a
message to the lever on the
other side, telling it to switch
positions. This kind of object-
to-object communication is

common in such games.

First-person shooters often use switches and puzzles to increase the depth of gameplay; when
pumping ammunition into aliens and zombies gets old, the player can focus instead on more
intellectual challenges.

The Solution

Almost everything in an FPS environment has an associated script. These scripts give each object in
the game world its own custom-tailored functionality, and are executed whenever said object
comes into contact with some sort of outside force, such as the shockwave of an explosion, a few
hundred rounds of bullets, or the player’s prying hands.

Within the script, functionality is further refined and organized by associating blocks of code with
events. Events tell the script who or what specifically invoked it, and allow the script to take appro-
priate action based on that information. Events are necessary because even the simplest objects
need to behave differently depending on the circumstances; it wouldn’t make much sense for a

FIrRsT-PERSON SHOOTERS [FPSS) E

crate to violently explode when gently pushed, and it’d be equally confusing if the crate only slid
over a few inches after being struck by a nuclear missile.

Events in a typical FPS relate to the abilities of the players and enemies who inhabit the game
world. For example, players might be able to perform the following actions:

W Fire. Fires the weapon the player is currently armed with.

B Use. Attempts to use whatever is in front of the player. “Using” a crate would have little
to no effect, but using a computer terminal could cause any number of things to hap-
pen. This action can also flip switches, throw levers, and open doors.

B Push/Move. Exerts a gentle force on whatever is in front of the player in an attempt to i
move it around. For example, if the player needs to reach the opening to an air vent I:
that’s a few feet too high, he or she might push a nearby crate under it to use as a inter-
mediate step. [

B Collide. Simply the result of walking into something. This is less of an “action” and more
of a resulting event that might not have been intentional. |:

These form an almost one-to-one relationship with the events that ultimately affect the objects in
question. For example, shooting a crate would cause the game engine to alert the crate’s respec-
tive script that it’s under fire by sending it a SHOT or DESTROYED event. It might even tell the crate
what sort of weapon was used, and who was firing it. Using a computer terminal would send a USE
event to the terminal’s script, and so on. Once these events are received by scripts, they’re routed
to the proper block of code and the appropriate action is subsequently taken. Let’s look at some
example code. I'm going to show you three object scripts; one for a crate, one for a switch that
opens a door, and one for an electric fence.

For the sake of the examples, let’s pretend that this is a structure that contains the properties of
each object, such as its visibility and location. Also, Event is a structure containing relevant event
information, such as the type of event, the entity that caused it, and the direction and magnitude
of force. Obviously, InvokingEvent is an instance of Event that is passed to each event script’s main
() function automatically by the host application (the game engine).

Here’s the crate:

/*

* Crate

*

* Can be shot and destroyed, as well as pushed around.
*/

main (Event InvokingEvent)
{
switch (InvokingEvent.Type)

2. APPLICATIONS OF SCRIPTING SYSTEMS

{

case SHOT:

{
/*
The crate has been shot and thus destroyed, so
first Tet's make it disappear.
*/
this.bIsVisibile = FALSE;

/*
_] Now let's tell the game engine to spawn an explosion

in its place.

1 !

CreateExplosion (this.iX, this.iY, this.iZ);

/*

To complete the effect, we'll tell the game engine to
spawn a particle system of wooden shards, emanating from
the explosion.

*/

CreateParticleSystem (this.iX, this.iY, this.iZ, WOOD);

break;
}
case PUSH:
{

/*

Something or someone is pushing the crate, so it's pretty much just a
simple matter of moving it in their direction. We'll assume that the game engine
will take care of collision detection. :) The force vector contains the force of the
event along each axis, so all we really need to do is add it to the location of the
crate.

*/

this.iX += InvokingEvent.ForceVector.iX;
this.iY += InvokingEvent.ForceVector.iY;
this.iZ += InvokingEvent.ForceVector.iZ;

FIrRsT-PERSON SHOOTERS [FPSS) E

}
}
}
And the door switch:
/*
* Door Switch C_
*
* Can be shot and destroyed, and is also
* used to open and close a door. [-
*/
main (Event InvokingEvent) [
{
switch (InvokingEvent.Type) [:
{
case SHOT:
{
/*

Just to be evil, let's make the switch very fragile.
Shooting it will destroy it and render it useless!
Ha ha!

*/

this.bIsBroken = TRUE;

/-k

And just to make things a bit more realistic, let's

emanate a small particle system of plastic shards.

*/

CreateParticleSystem (this.iX, this.iY, this.izZ, PLASTIC);
break;

case USE:
{

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

/*

This is the primary function of the switch. Let's
assume that the Tevel's doors exist in an array,

and the one we want to open or close is at index

Zero.

*/

if (Door [0 J.IsOpen)
CloseDoor (0);

else

'] OpenDoor (0);

1 break;

And finally, the electric fence.

/*
Electric Fence

* Simply exists to shock whoever or whatever comes in
* contact with it.
*/

main (Event InvokingEvent)
{
switch (InvokingEvent.Type)
{
case COLLIDE:
{
/*
The fence only needs to react to COLLIDE events because
its only purpose is to shock whatever touches it.
Basically, this means decreasing the health of whatever
it comes in contact with. The event structure will tell
us which entity (which includes players and enemies)
has come in contact with the fence.
*/

FIrRsT-PERSON SHOOTERS [FPSS)

Entity [InvokingEvent.iEntityIndex J].Health -= 10;

/*
But what fun is electrocution without the visuals?
*/

CreateParticleSystem (this.iX, this.iY, this.iZ, SPARKS);

/*
And to really drive the point home...
*/

PlaySound (ZAP_AND_SIZZLE);

And there you go. Three fully-functional FPS game world objects, ready to be dropped into an
alien corridor, a military compound, or a battle arena. As you can see, the real heart of this sys-
tem is the ability of the game engine to pass event information to the script; once this is in place,
objects can communicate with each other during gameplay via the game engine and form
dynamic, lifelike systems. Switches can open doors; players and enemies can blow up kerosene
barrels; or whatever else you can come up with.

Event-based script communication is an extremely important concept, and one that will be
touched upon many times in the later chapters. In fact, let’s discuss a topic that exploits it to an
even greater extent right now.

Enemy Al

If nothing else, an FPS is all about mowing down bad guys. Whether they’re lurking through cor-
ridors, hiding behind crates and under overhangs, or piling out of dropships, your job descrip-
tion is usually pretty straightforward—to reduce them to paint.

Of course, things aren’t so simple. Enemies don’t just stand there and accept your high-speed
lead injections with open arms; they’re designed to evade your attacks, return the favor with their
own, and generally do anything they can to stop you in your tracks. Naturally, the actual strategies
and techniques involved in combat such as this are complex, requiring constant awareness of the
surrounding environment and a capable level of intelligence. This is all wrapped up into a nice
tidy package called “enemy Al”.

E 2. APPLICATIONS OF SCRIPTING SYSTEMS

Al or artificial intelligence, is what makes a good FPS such a convincing experience. Games just
aren’t fun if enemies don’t seem lifelike and unique; if you’re simply bombarded with lemming-
like creatures that dive headlong into your gunfire, you’re going to become very bored, very
quickly. So, not surprisingly, the Al of FPS bad guys is a rapidly evolving field. With each new gen-
eration of shooter, players demand more and more intelligence and strategy on behalf of their
computer-controlled opponents in hopes of a more realistic challenge.

As a result, the days of simply hardcoding a player-tracking algorithm and slapping it into the
heads of every creature in your game are long gone. Different classes of enemies need to starkly
contrast others, so as to provide an adequate level of variety and realism, and of course, to keep
:I the player from getting bored. Furthermore, even enemies within the same class should ideally
exhibit their own idiosyncrasies and nuances—anything to keep a particularly noticeable pattern
from emerging. In addition to simply dodging attacks, however, enemies need to exhibit clearly
1 realistic strategies; taking advantage of crates as hiding places, blowing up explosive objects near
the player rather than directly shooting at him, and so on.

:I So far, so good; by now I think it’s safe to say that you're sold on the flexibility of scripts; obvious-
ly, a C/C++style scripting language with maybe a few builtin math routines for handling vectors
and such should be more than enough to program lifelike Al and associate it with individual ene-
mies. But smart enemies aren’t enough if they simply operate alone. More and more, the concept
of team play is taking over, and the real fun lies in taking on a hoard of enemies that have com-
plete awareness of and communication with one another. Rather than simply acting as a chaotic
mob that charges towards the player and relies solely on its size, enemies need to intelligently
organize themselves to provide a unique and constantly evolving challenge. In games like
Rainbow Six, when you’re up against a team of terrorists, the illusion would be lost if they simply
rushed you with guns blazing. Especially in the case of hostage situations, structured enemy com-
munication and intelligence is an absolute must.

Returning to the general action genre of first person shooters, however, consider a number of
group-based techniques enemies can employ when attacking the player:

B Breaking into simple groups for the purpose of attacking the player from a number of
angles, depriving the player of a single target to focus on.

B Breaking into logical “task groups” that hinder the player in different ways; as one group
directly attacks the player with a point-blank assault, other groups will set up more long-
term defenses, such as blocking off power-ups or access to the rest of the level or arena.

B Literally surrounding the player on all sides (assuming the group is large enough), leav-
ing no safe exit for the player.

As you can see, they’re rather simple ideas, but they all share a common thread—the concept of
enemy communication. In order to form any sort of group, pattern or formation, enemies need
to be able to share ideas and information that help transition their current positions and objec-

FIrRsT-PERSON SHOOTERS [FPSS) E

tives into the desired ones. So if one enemy, designated as the “leader” of sorts, decides that sur-
rounding the player would be the most effective strategy, that leader needs the ability to spread
that message around.

The Solution

If enemies need to communicate, and enemies are based on scripts, what I'm really talking about
here is inter-script communication. So, for example, the script that controls the “leader” needs to be
able to send messages directly to the scripts that control the other enemies. The enemy scripts
are written specifically with this message system in mind, allowing them to interpret incoming
messages and act appropriately.

I touched on this earlier in the section on FPS objects, where object scripts were passed event
descriptions that allowed them to act differently depending on the entity’s specific method of
interaction with them. In that case, however, you relied on the game engine to send the mes-
sages; although players and enemies were of course responsible for invoking the events in the
first place due to their actions, it was ultimately the game engine that noticed and identified the
events and properly informed the object. Although engine-to-script communication is a useful
and valuable capability in its own right, direct script-to-script communication is the basis for truly
dynamic systems of game objects and entities that can, entirely on their own, work together to
solve problems and achieve goals. Figure 2.12 depicts this process graphically.

Figure 2.12

FPS enemies using
scripting to communi-
cate. In this case,
they've used their com-
munication abilities to
form a surrounding for-
mation around the
player (the guy in

the center).

m 2. APPLICATIONS OF SCRIPTING SYSTEMS

An actual discussion of artificial intelligence, however, would be lengthy at best and is well
beyond the scope of this book. The main lesson here is that script-to-script communication is a
must for any FPS, because it’s required for group-based enemy AL

SUMMARY

With any luck, your interest in scripting has taken on a more focused and educated form over the

course of this chapter. This chapter took a brisk tour of a number of ways in which scripts can be

applied to two vastly different styles of games, and certainly you’ve seen plenty of reasons why

:I scripts are a godsend in more than a few situations. Fortunately, you're pretty much finished with
the introductory and background-information chapters, which means actually getting your hands

dirty with some real script system development is just around the corner.

1 Brace yourself, because the gloves are coming off and things are going to get messy!

PART TWO

ComMmAND-
EASED
SCRIPTING

This page intentionally left blank

CHAPTER 3

INTRODUCTION
TO COMMAND-
EASED

S CRIPTING

F ; “It’s not Irish, it’s not English,
i’s just... well... it’s just Pikey.”
: L\a; Turkish, Snatch

e]

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

w ith the introductory stuff behind you, it’s time to roll up your sleeves and take a stab at
some basic scripting. To get started, you're going to explore a simple but useful method
of scripting known as command-based scripting. Command-based scripts starkly contrast the types of
scripts you'll ultimately write—they don’t support common programming language features such
:I as variables, loops, and conditional logic. Rather, as their name suggests, command-based lan-
guages are entirely based on specific commands that can be called with optional parameters.
1 These commands directly cause the game engine to do something, such as move a player on the
screen, change the background music, or display a bitmapped image. By calling a number of
commands in a sequential fashion, you can externally control the engine’s behavior (albeit in a
:I rather simplistic way).

Command-based languages have a number of advantages and disadvantages, covered shortly. The
most important lesson to learn about them, however, is that they’re simple and relatively weak in
terms of capabilities, but they’re very easy to implement and can be used to achieve a lot of very
cool results. In this chapter, you’re going to

B Learn about the theory behind command-based languages, and how they’re
implemented.

B Implement a command-based language that manipulates the text console.

B Use a command-based language to script the intro sequence to a generic game.

B Apply command-based scripting to the behavior of the non-player characters in a basic
RPG engine.

This chapter introduces a number of very important concepts that will ultimately prove vital later.
Because of this, despite the relative simplicity of this chapter’s contents, it’s important that you
make sure to read and understand all of it before moving on to the following chapters.

THE BAsics oF CommAnNnD=-BASED
SCRIPTING

Command-based languages are based on a very simple concept—high-level control of a game
engine. I say high-level because command-based scripts are usually designed to do major things.
Rather than rasterize individual polygons or rotate bitmaps, for example, they’re more con-
cerned with moving characters around in the game world, unlocking doors in fortresses, scripting
the dialogue and events in cut scenes, and giving the player items and weapons. When you think

THE BAsics oF CoMmvAND=-BASED SCRIPTING E

in these terms, game engines really only perform a limited number of tasks. Even a game like
Quake, for example, is based primarily on only a few major actions, such as:

B Player and robot movement within the game world.

B The firing of player and robot (bot) weapons.

B Managing the damage taken by collisions between players, bots, and projectiles.

W Assigning weapons and items to players and bots who find them, and decreasing ammo
levels of those weapons as they’re used. —

B Loading new maps, changing background music, and other scene/background-oriented
tasks.

Now don’t get me wrong—Quake the engine is an extremely complex piece of software. Quake |:

the game, however, despite being highly complex, can be easily boiled down to these far simpler
concepts. This is true for virtually all games, and is the idea that command-based languages capi- [
talize on, as shown in Figure 3.1.

Figure 3.1 |:

Command-based
Game scripts control the

game’s basic
Load Level]

functionality.
Play BG Music J

Kill Player |

Add Item to Inventory

; Command-Based
PlayMovie | Script

[/

High-Level Engine Control

Because game engines are really only concerned with these high-level tasks, a lot can be accom-
plished by simply giving the engine a list of actions you want it to perform in a sequential order.
As an example, think about how a Quake-like, first-person shooter game engine would switch are-
nas, on both a high- and low-level. Here’s how it might work on a low-level:

B The screen freezes or is covered with a new bitmap to hide the inner workings of the
process from the player.
B The memory allocated to hold the current level is freed.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

B The file containing the new arena’s geometry, textures, shadow maps, and other such
resources is opened.

B The file format is parsed, headers are verified, and data is carefully extracted.

W New structures are allocated to store the arena, which are incrementally filled with the
data from the file.

B The existing background music fades out.

B The existing background music is freed.

B Some sort of sound is made to give the player an auditory cue that the level change has
taken place.

i :I B The new background music is loaded.

B The new background music fades in.
B The screen freeze/bitmap is replaced by the next frame of the game engine running
1 again, this time with the new level loaded.

As you can see, there are quite a lot of details to consider (and even now I'm skimming over
countless intricacies). On a high-enough level, however, you can describe this sequence in much
simpler terms:

B A background image is displayed (or the screen is frozen).
A new level is loaded.

The existing background music fades out.

A level-change sound is played.

A new background track is loaded.

The new background music fades in.

B The game resumes execution.

Issues like the de-allocation of memory and the individual placement of blocks of data read from
files can be glossed over entirely when explaining such a process in high-level terms, because all
you care about is what’s conceptually going on. In a lot of ways, it’s almost like the difference
between explaining this sequence to a technical person and a non-technical person. The techie
will understand the importance of memory allocation and file handles, whereas such details will
probably be lost on a less technical person, like your mail carrier. The mail carrier will, however,
understand concepts like fading music in and out, switching levels, and so on (or just hand you
some bills and catalogs and mysteriously stop delivering to your neighborhood the next day).
Figure 3.2 illustrates how these high- and low-level entities interact.

THE BAsics oF CoMmvAND=-BASED SCRIPTING

Figure 3.2
G ame The functiondlity of a
{Highest Level) game and its engine is
a multi-layered system
Start Play End of components.
Game Game Game

Handle | | Update | | Update Move
Input | | Stats | | Frame NPCs |

Blit Load Rotate Init.
Sprite | | MP3 Bitmap | | TCP/IP

The point to all this is that writing a command-based script is like articulating the high-level
explanation of the process in a reasonably structured way. Let’s just jump right in and see how
the previous process would look as a command-based script:

ShowBitmap "Gfx/Levelloading.bmp"
LoadLevel "Levels/Level4.lev"
FadeBGMusicOut

PTaySound "Sounds/Levelloaded.wav"
LoadBGMusic "Music/Level4.mp3"
FadeBGMusiclIn

As you can see, a command-based language is exactly that— a language based entirely on com-
mands. Each command maps to a specific action the game engine can perform, like displaying
bitmap images, loading MP3s, fading music in and out, and so on. As you can also see, these com-
mands can accept (and indeed, often require) various parameters to help specify their tasks more
precisely. In this regard, commands are highly analogous to functions, and can be thought of in
more or less the same ways.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

Commands

Specifically, a command is a symbolic name given to a specific game engine function or action.
Commands can accept zero or more parameters, which can vary in data types but must always be
literal values (command-based languages don’t support variables or other methods of indirec-
tion). Here’s the general syntax:

Command Param0 Paraml Param?

Imagine writing a C program that defines amain () function and a number of other random
functions, each of which accept zero to N parameters. Now imagine the main () function cannot
:I declare any local variables, or use any globals, and can only call the other functions with literal
values. That’s basically what it’s like to code in a command-based language.

1 Of course, the syntax presented here is different. For simplicity’s sake, extraneous whitespace is

not allowed—the command and each of its parameters must be separated by a single space.

:I There are no commas, tabs, or anything along those lines. Commands are always expressed on a
single line and must begin at the line’s first character.

Master of Your Domain

Another defining characteristic of command-based languages is that they’re highly domain-specif-
ic. Because general-purpose structures like loops and branches don’t exist, every line of code is
just a call to a specific game engine feature. Because of this, each language is custom-designed
around a single specific game, or type of game. This is known as the language’s domain.

As you’ll soon see, many of the underlying details of a command-based scripting system’s imple-
mentation can be ported from one project, but the command list itself, and each command’s
implementation, is more or less hard-coded and generally only applicable to that specific project.
For example, the following commands would suit an RPG or RPG-like game nicely:

MovePlayer
GetItem
CastSpell
PTayMovie
Teleport
InvokeBattle

These would hardly apply to a flight simulator or racing game, however.

CovivmAND=BASED ScRIPTING OVERVIEW E

Actually Getting Something Done

With all of these restrictions, you may be wondering if command-based languages (or CBLs, as
the street kids are saying nowadays) are actually useful for anything. Admittedly, the inability to
define or use variables, expressions, loops, branches, and other common features of program-
ming languages is a serious setback. What this means, however, is not that command-based script-
ing is useless, but rather that it has different applications. For example, a 16 MHz CPU that can
address 64KB of RAM might seem completely useless when compared to a 64-bit Pentium whose
speeds are measured in GHz. However, such a chip might prove invaluable when developing a
remote-controlled car or clock radio. Rather than thinking in terms of whether something is use-
ful or useless, think in terms of its applications.

Remember, a command-based language is a quick and easy way to define a sequential and static
series of events for the game engine to perform. Although this is obviously useless when attempt-
ing to script a particle system or complex Al logic for your game’s final boss, it can be applied to
simpler things like the details of your game’s intro sequence, or the behavior of simple NPCs
(non-player characters) in an RPG engine. In fact, you’ll see examples of both of these applica-
tions in the following pages.

CovimAnD=-BASED ScRIPTING OVERVIEW

Now that you understand the basics of command-based scripting, you're ready to take a brief
look at how it’s actually done.

Engine Functionality Assessment

Before doing anything else, the first step in designing and implementing a command-based lan-
guage is determining two points:

B What the engine can do.
B What the engine’s scripts will need to do.

It’s important to differentiate between something the engine can do, and something scripts will
actually need it to do. Also, just because an engine is capable of something doesn’t mean a script
can access or invoke it. All of the functionality you’d like to make available to scripts must first be
wrapped in a command handler, which is a small piece of code that actually performs the action
associated with each command.

For example, let’s consider a simple, top-down, 2D RPG engine like the ones seen on the
Nintendo, Super Nintendo, and Sega Saturn. These games were based around 2D maps com-
posed of small, square graphics called tiles. These maps defined the background and general

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

environment of each location in the game and could scroll in all four directions. On top of these
maps, sprite-based characters would move around and interact with one another, as well the
underlying background map. As you learned in the last chapter, one major issue of such games is
the non-player characters (NPCs). NPCs need to appear lifelike, at least to some extent, and
therefore can’t simply stand still and wait for the player to approach them. They must move
around on their own, which generally translates into code that must be written to define their
actions.

In the case of this example, the commands listed in Table 3.1 might prove useful for scripts:

Table 3.1 RPG Engine Script Commands

Command Description

:I SetNPCDir Sets the direction in which the NPC is facing.
MoveNPC Moves the NPC along the X andY axes by the specified distances.
Pause Causes the NPC to stand still for the specified duration.
ShowTextBox Displays the specified string of text in a text box; used for dialogue.

Each of these commands requires some form of parameters to help direct its action. Such param-
eters can be expressed as one of two data types—integers and strings. Parameters are not separat-
ed by commas, but by a single space instead. The parameter list is also separated from the com-
mand itself by a single space, which means the overall syntax of a command in this language is as
follows:

Command Param0O Paraml Param?

And exactly this. The language is in no way free-form, so arbitrary use of whitespace is not
permitted.

With only four commands, this particular language is hardly feature-rich. You’d be surprised by
how much these four simple commands can accomplish, however. Consider the following script.

SetNPCDir "Up"
MoveNPC 0 -20
Pause 200
SetNPCDir "Left"
MoveNPC -20 0

CovivmAND=BASED ScRIPTING OVERVIEW

Pause 400
SetNPCDir "Down"

ShowTextBox "Hmmmmm... I know I left it here somewhere..."

Pause 400

Can you tell what this does just by looking at it?
In only a few lines of simplistic script code, I've
defined the behavior for an NPC who’s clearly
looking for something. He starts off in a given
position, facing a given direction, and turns
“up” (which actually just means north). He
walks in that direction 20 pixels, pauses, and
then turns left (west) and walks 20 more pixels.
He pauses again, this time for a longer dura-
tion, and finally turns back towards the camera
(“down”; or south) and makes a comment
about something he lost. The script then paus-
es briefly to allow the player a chance to read
it, and, presumably, the script loops back to the
beginning and starts over.

For such a simple scripting system, and even
simpler script, this is quite a lively little charac-
ter. Imagine how much personality you could

squeeze out of your NPCs if you added just a few more commands! Hopefully, you're beginning

NOTE

You may be wondering why the cardi-
nal directions'in the NPC. script like
"Up" and "Down" are expressed as a
string.This is because the'language
doesn’t support symbolic constants
like C’s fdefine or C++’s const.lt
would be just as easy to create a
SetNPCDir command that accepted
integer codes that specified directions
(0-3, for example), but it’s a lot harder
to remember an arbitrary number
than it is to simply write the string.
Regardless, this is still a messy solution,
so keep reading—the next chapter will
revisit this matter.

to understand that you don’t need too much complexity to get decent results when scripting.

Loading and Executing Scripts

The lifespan of a script spans multiple phases, each of which are illustrated in Figure 3.3. First,
the script is loaded. In this simple language, where vertical whitespace and comments are not
permitted, this simply means loading every line of the source file into a separate element of an
array of strings. Once this process is complete, the array contains an in-memory copy of the
script, ready to run. Check out Figure 3.4 for a visual idea of a script’s in-memory form.

Once in memory, the script is executed by passing each line of code to a script handler (or

executor, or whatever you want to call it) that processes each command, reads in parameters, and
so forth. After a command and its parameters are processed and understood, the command han-
dler performs whatever task the command is associated with. The command handler for MoveNPC,

for example, uses the two integer parameters (the X and Y movement) to make direct changes to

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

| SetPlayerDir "Up"

Game
|HoveP1ayer 20 0 | Script e |
= i Handler| - oo]I
1 i |Pause 800 | Executor P — |
Pinblen |
Command-Based | ShowTextBox "Hey!"l Gams Englhe
Script

In-Memory Script
Code Array

':I Figure 3.3

The lifespan of a script.The script is loaded into an array of strings, executed through the script handler, and

1 finally exerts its control of the game engine.

:I Figure 3.4

0 | MovePlayer 0 -20 A script in memory.

1| PlaySound "Rain.wav"

2 | GetItem "RedSword"

3 | SetPlayerDir "Left"

Command-Based
Script

4 | IncHP 48

5 | SetBGMusic "Marching"

the NPC data within the game engine. At this point, the script has succeeded in controlling the
game engine.

The execution of command-based scripts is always purely sequential. This means that execution
starts with the first command (line 0) and runs until the last command (line 5, in the case of
Figure 3.4). At each step of the way, a global variable representing the current line of code within
the script is updated to reflect the next command to process. This global might be called some-
thing like g_iCurrLine, for “current line”. When this process is repeated in a loop, the script

CovivmAND=BASED ScRIPTING OVERVIEW

executes quickly and continually, simulating the execution of actual code. Once the last com-

mand in the script is reached, the script can either stop or loop back to the beginning and run

again. Figure 3.5 illustrates the execution of a script.

Figure 3.5

0 | MovePlayer 0 -20

The execution of a

script.

1| PlaySound "Rain.wav"

2 | GetItem "RedSword"

Sequential Flow of Execution

g_iCurrlLine = 3
4 | IncHP 48
5 | SetBGMusic "Marching" '

Looping Scripts

So should your scripts loop or stop when the last command ends? There’s no straight answer to

this question, because this is a decision that must be made on a per-script basis. For example,

continuing on with the RPG engine theme,
an example of a script that should exe-
cute once and immediately stop would be
the script that defines the behavior of an
item or weapon. When the player uses
the item, the script needs to execute
once, allowing the item to perform its
task or action, and then immediately ter-
minate. The item shouldn’t operate more
than once unless the player has specifical-
ly requested it to do so, or if the item has
some sort of persistent nature to it (such
as a torch that must remain lit).

Scripts that should loop are those that
primarily control background-related or

TIP

The issue of looping scripts and their ten-
dency to appear contrived or predictable
can be resolved in a number of ways. First
of all, scripts that are sufficiently long can
produce enough unique behavior before
looping that players won’t have the time (or
interest) to notice a pattern develop.Also,
it’s possible to write a number of small
scripts that all perform the same action in a
slightly different way, which are then loaded
at random by the game engine to produce
behavior that is truly random (or nearly so).

[1 [1

[

[

3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

otherwise ambient entities. For example, NPCs represent the living inhabitants of the game
world, which means they should be constantly moving to keep the player’s suspension of
disbelieve intact. NPC scripts, therefore, should immediately revert to the first command after
executing the last so that their actions never cease. Granted, this means that looped scripts will
demonstrate a discernable pattern sooner or later, which might not be a good thing. I didn’t say
command-based scripts weren’t without their disadvantages, though.

IMPLEMENTING A CommAND=-BASED
LANGUAGE

With the theory out of the way, you can now actually implement a small, command-based lan-

guage. To get things started, you're going to keep it simple and design a set of commands for
1 scripting a scrolling text console like the ones seen in old text mode programs, or any Win32
console app.

Designing the Language
The first step is establishing a list of commands the language will need in order to effectively con-
trol the console. Table 3.2 lists them.

Again, just four commands. Because text consoles are pretty simple by nature, you don’t need a
lot of options and can get by with just a handful of commands. Remember, just because you can
make something complex doesn’t mean you should. Now that you have a language specification
to work with, you're ready to write an initial script to test it.

Table 3.2 Text Console Commands

Command Parameters Description
PrintString String Prints the specified string.
PrintStringloop String, Count Prints the specified string the specified num-

ber of times.
Newline None Prints an empty line.

WaitForKeyPress None Suspends execution until a key is pressed.

IMPLEMENTING A CoMvAND=-BASED LANGUAGE

Writing the Script

It won’t take much to test this language, because you can deem it functional after implementing
just four commands. Here’s a reasonable test script, though, that will help determine whether
everything is working right in the following pages:

PrintString "This is a command-based Tanguage."

PrintString "Therefore, this is a command-based script." C_
Newline

PrintString "...and it's really quite boring."

Newline [-
PrintStringlLoop "This string has been repeated four times." 4

Newline

PrintString "Okay, press a key already and put us both out of our misery."” [
PrintString "The next demo is cooler, I swear."

WaitForKeyPress [:

Yeah, this particular script is a bit of a downer, but it will get the job done. With your first script in
hand, it’s time to write a program that will execute it.

Implementation

Implementing a command-based language is a mostly straightforward task. Here’s the general
process:

B The script is loaded from the file into an in-memory string array.

B The line counter is reset to zero.

B The command is read from the first line of code. A line’s command is considered to be
everything from the first character of the string, all the way up to the first space.

B Based on the command, any of a number of command handlers is invoked to handle it.
These command handlers need to access the command’s parameters, so two functions
are created for that (one for reading integer parameters, the other for reading strings).
With the parameters processed, the command handler goes ahead and performs its task.
At this point, the current line of the script is completely executed.

B The instruction counter is incremented and the process continues.

W After the script finishes executing, its array is freed.

Basic Interface

On a basic level, all the scripting system needs to do is load scripts, run them, and unload them.
Let’s look at the load and unload functions now.

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

LoadScript () is used to load scripts into memory. It works like this:

B The file is opened in binary mode, and every instance of the '\n' (newline) character is
counted to determine how many lines it contains.

B A string array is then allocated to hold the script based on this number.

B The script is then loaded, line-by-line, and the file is closed.

Here’s the code behind LoadScript ():

void LoadScript (char * pstrFilename)

{

:I // Create a file pointer for the script
FILE * pScriptFile;

1 // ---- Find out how many Tines of code the script is

:I // Open the source file in binary mode
if (! (pScriptFile = fopen (pstrFilename, "rb")))
{

printf ("File I/0 error.\n");
exit (0);

// Count the number of source Tlines
while (| feof (pScriptFile))
if (fgetc (pScriptFile) == "\n')
++ g_iScriptSize;
++ g_iScriptSize;

// Close the file
fclose (pScriptFile);

// ---- Load the script

// Open the script and print an error if it's not found
if (! (pScriptFile = fopen (pstrFilename, "r")))
{

printf ("File I/0 error.\n");

exit (0);

IMPLEMENTING A CoMvAND=-BASED LANGUAGE

// Allocate a script of the proper size
g_ppstrScript = (char **) malloc (g_iScriptSize * sizeof (char *));

// Load each line of code

for (int iCurrLinelndex = 0;
iCurrLineIndex < g_iScriptSize;
++ iCurrLinelndex)

// Allocate space for the 1ine and a null terminator
g_ppstrScript [iCurrLinelndex] = (char *)
malloc (MAX_SOURCE_LINE_SIZE + 1);

// Load the Tine
fgets (g_ppstrScript [iCurrLinelndex 1,
MAX_SOURCE_LINE_SIZE, pScriptFile);

// Close the script
fclose (pScriptFile);

Notice that this function makes a reference to a constant called MAX_SOURCE_LINE_SIZE, which is
used to read a specific amount of text from the script file. I usually set this value to 4096, just to
eliminate all possibilities of leaving something out, but this is overkill—especially in the case of a
command-based language, I can virtually guarantee you’ll never need more than 192 or so. The
only possible exceptions will be huge string parameters, which may come up now and then when
scripting complicated dialogue sequences. So no matter what, with a large enough value this con-
stant will have you covered (besides, you're always free to change it).

Once the source is loaded into the array, it can be executed. Before getting to that, however,
check out UnloadScript (), which is called just before the program ends to free the script’s
resources:

void UnloadScript ()
{
// Return immediately if the script is already free

if (! g_ppstrScript)
return;

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

// Free each Tine of code individually

for (int iCurrLinelndex = 0;
iCurrLinelIndex < g_iScriptSize;
++ iCurrLinelndex)
free (g_ppstrScript [iCurrlLinelndex 1);

// Free the script structure itself

free (g_ppstrScript);

The function first makes sure the g_ppstrScript [] array is valid, and then manually frees each
line of code. After this step, the string array pointer is freed, which completely unloads the script
from memory.

Execution

With the script in memory, it’s ready to run. This is accomplished with a call to RunScript (),
which will run until the entire script has been executed. The execution cycle for a command-
based language is really quite simple. Here’s the basic process:

B The command is read from the current line.

B The command is used to determine which command handler should be invoked, by
comparing the command string found in the script to each command string the lan-
guage supports. In this case, the strings are PrintString, PrintStringLoop, Newline, and
WaitForKeyPress.

B Each of these commands is given a small block of code to handle its functionality. These
blocks of code are wrapped in a chain of if/else if statements that are used to deter-
mine which command was specified.

B Once inside the command handler, an optional number of parameters are read from
the current line and converted from strings to their actual values. These values are then
used to help perform the commands action.

B The command block terminates, the line counter is incremented, and a check is made
to determine whether the end of the script has been reached. If so, RunScript ()
returns; otherwise the process repeats.

Allin all, it’s a pretty straightforward process. Just loop through each line of code and do what
each command specifies. Now that you understand the basic logic behind RunScript (), you can
take a look at the code. By the way, there will be a number of functions referenced here that you
haven’t seen yet, but they should be pretty self-explanatory:

IMPLEMENTING A CoMvAND=-BASED LANGUAGE

void RunScript ()

{
// Allocate strings for holding source substrings
char pstrCommand [MAX_COMMAND_SIZE 1;
char pstrStringParam [MAX_PARAM_SIZE 1;

// Loop through each 1ine of code and execute it
for (g_iCurrScriptLine = 0;

g_iCurrScriptLine < g_iScriptSize;

++ g_iCurrScriptLine)

// ---- Process the current line

// Reset the current character [
g_iCurrScriptLineChar = 0;

// Read the command
GetCommand (pstrCommand);

// ---- Execute the command

// PrintString
if (stricmp (pstrCommand, COMMAND_PRINTSTRING) == 0)
{

// Get the string

GetStringParam (pstrStringParam);

// Print the string

printf ("\t%s\n", pstrStringParam);

// PrintStringlLoop
else if (stricmp (pstrCommand, COMMAND_PRINTSTRINGLOOP) == 0)
{

// Get the string

GetStringParam (pstrStringParam);

// Get the Toop count
int ilLoopCount = GetIntParam ();

// Print the string the specified number of times
for (int iCurrString = 0;

m 3. INTRoODUCTION TO CoMMAND-BASED SCRIPTING

iCurrString < iloopCount;
++ iCurrString)
printf ("\t%d: %s\n", iCurrString, pstrStringParam);

// Newline

else if (stricmp (pstrCommand, COMMAND_NEWLINE) == 0)
{

// Print a newline

printf ("\n");

// WaitForKeyPress
1 else if (stricmp (pstrCommand, COMMAND_WAITFORKEYPRESS) == 0)
{
:] // Suspend execution until a key is pressed
while (kbhit ())
getch ();
while (! kbhit ());

// Anything else is invalid

else

{
printf ("\tError: Invalid command.\n");
break;

The function begins by creating two strings—pstrCommand and pstrStringParam. As the script is
executed, these two strings will be needed to hold both the current command and the current
string parameter. Because it’s possible that a command can have multiple string parameters, the
command handler itself may have to declare more strings if they all need to be held at once, but
because no command in this language does so, this will be fine. Note also that these two strings
use constants as well to define their length. I have MAX_COMMAND_SIZE set to 64 and MAX_PARAM_SIZE
set to 1024, just to make way for the potential huge dialogue strings mentioned earlier.

A for loop is then entered that takes you from the first command to the last. At each iteration, an
index variable called g_iCurrScriptLineChar is set to zero, and a call is made to a function called

IMPLEMENTING A CoMvAND=-BASED LANGUAGE E

GetCommand () that fills pstrCommand with a string containing the specified command (you’ll learn
more about g_iCurrScriptLineChar momentarily.) A series of if/else if’sis then entered to deter-
mine which command was found. stricmp () is used to make the language case-insensitive, which
I find convenient. As you can see, each comparison is made to a constant relating to the name of
a specific command. The definitions for these constants are as follows:

Jidefine COMMAND_PRINTSTRING "PrintString"
Jidefine COMMAND_PRINTSTRINGLOOP "PrintStringlLoop"
Jtidefine COMMAND_NEWLINE "Newline"
jtdefine COMMAND_WAITFORKEYPRESS "WaitForKeyPress"

The contents of each
of these if/else if NOTE
blocks are the com-

mand handlers them-
selves, which is where

Why are the.command names case-insensitive? Don’t C/C++
and indeed most otherlanguages do just.the opposite with
their reserved words? Although it’s'true.that.most-modern

you'll ﬁr_ld the com- languages are largely case-sensitive, |.personally find this
mand’s implementa- approach arbitrary and annoying. All it seems case-sensitivity
tion. You'll find calls is good for is actually allowing you to.create multiple identi-
to parameter-return- fiers with the same name, as long'as their case differs, which is
ing functions through- a practice | find messy and highly prone to logicerrors. Unless
out these blocks of you really want to differentiate between MyCommand and
code—two of them, myCommand (which will only end in tears and turmoil), | suggest
specifically—called you stick with case-insensitivity.

GetStringParam () and
GetIntParam (). Both of
these functions scan through the current line of code and extract and convert the current param-
eter to its actual value for use within the command handler. I say “current” parameter, because
repetitive calls to these functions will automatically return the command’s next parameter, in
sequence. You’'ll learn more about how parameters are dealt with in a second.

After the command handler ends, the for loop automatically handles the incrementing of the
instruction counter (g_iCurrScriptLine) and makes sure the script hasn’t ended. If it has, howev-
er, the RunScript () simply returns and the job is done.

Command and Parameter Extraction

The last piece of the puzzle is determining how these parameters are read from the source file.
To understand how this works, take a look first at how GetCommand () works; the other functions
do virtually the same thing it does.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

GetCommand ()

The key to everything is g_iCurrScriptLineChar. Although g_iCurrScriptLine keeps track of the
current line within the script, g_iCurrScriptLineChar keeps track of the current character within
that line. Whenever a new line is executed by the execution loop, g_iCurrScriptLineChar is imme-
diately set to zero. This puts the index within the source line string at the very beginning, which,
coincidentally, is where the command begins. Remember, because of this language’s strict white-
space policy, you know for sure that leading whitespace will never come before the command’s
first character. For example, in the following line of code:

:I PrintStringlLoop "Loop" 4

The first character of the command, P, is found at character index zero. The name of the com-
mand extends all the way up to the first space, which, as you can see, comes just after p.

1 Everything in between these two indexes, inclusive, composes a substring specifying the com-
mands name. GetCommand () does nothing more than scans through these characters and places
:I them in the specified destination string. Check it out:

void GetCommand (char * pstrDestString)
{
/1 Keep track of the command's length
int iCommandSize = 0;

// Create a space for the current character
char cCurrChar;

// Read all characters until the first space to isolate the command
while (g_iCurrScriptLineChar <
(int) strlen (g_ppstrScript [g_iCurrScriptLine 1))
{
// Read the next character from the Tine
cCurrChar = g_ppstrScript
[g_iCurrScriptLine J[g_iCurrScriptLineChar 1;

// If a space (or newline) has been read, the command is complete
if (cCurrChar == "' ' || cCurrChar == "\n')
break;

// Otherwise, append it to the current command
pstrDestString [iCommandSize 1 = cCurrChar;

// Increment the length of the command
++ iCommandSize;

IMPLEMENTING A CoMvAND=-BASED LANGUAGE E

// Move to the next character in the current line
++ g_iCurrScriptLineChar;

// Skip the trailing space
++ g_iCurrScriptLineChar;

// Append a null terminator
pstrDestString [iCommandSize 1 = '\0"';

// Convert it all to uppercase
strupr (pstrDestString);

Just as expected, this function is little more than a character-reading loop that incrementally
builds a new string containing the name of the command. There are a few details to note, howev-
er. First of all, note that the loop checks for both single-space and newline characters to deter-
mine whether the command is complete. Remember, commands like Newline and
WaitForKeyPress don’t accept parameters, so in their cases, the end of the command is also the
end of the line.

Also, after the loop finishes, you increment the g_iCurrScriptLineChar character index once
more. This is because, as you know, a single space separates the command from the first parame-
ter. It’s much easier to simply get this space out of the way and save subsequent calls to the
Get*Param () functions from having to worry about it. A null terminator is then appended to the
newly created string, and it’s converted to uppercase.

By now, it should be clear why
g_iCurrScriptLineChar is so
important. Because this is a glob-
al value that persists between
calls to GetCommand () and
Get*Param (), each of these three

NOTE

You may be wondering why I’'m using both strupr ()
to convert the command string to uppercase, and
using stricmp () when.comparing.it to each.com-
mand name. stricmp () is.all I'need to perform a

functions can use it to deter-
mine where exactly in the cur-
rent source line you are. This is
why repeated calls to the param-
eter extraction functions always
produce the next parameter,
because they’re all updating the
same global character index.

case-insensitive comparison,but ’m a bit anal reten-

tive when it comes to this sort of thing and like to
simply convert all human-written input to uppercase
for that added bit of cleanliness and order. Now'if
you’ll excuse me, I’'m going to adjust each of'the
objects on my desk until they’re all at perfect 90-
degree angles and make sure the oven‘is still off.

[

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

The process followed by GetCommand () is repeated for both GetIntParam () and GetStringParam (),
so you should have no trouble following them. The only real difference is that unlike GetCommand
(), both of these functions convert their substring in some form to create a “final value” that the
command handler will use. For example, integer parameters found in the script will, by their very
nature, not be integers. They’ll be strings, and will have to be converted with a call to the atoi ()
function. This function will return an actual int value, which is the final value the command han-
dler will want. Likewise, even though string parameters are already in string form, their surround-
ing double-quotes need to be dealt with, because the script writer obviously doesn’t intend them
to appear in the final output. In both cases, the substring extracted from the script code must

i :I first be converted before returning it to the caller.

GetIntParam ()

1 GetIntParam (), like GetCommand (), scans through the current line of code from the initial posi-
tion of g_iCurrScriptLineChar, all the way until the first space character is encountered. Once this
:I substring has been extracted, atoi () is used to convert it to a true integer value, which is
returned to the caller. Have a look at the code:

int GetIntParam ()

{
// Create some space for the integer's string representation
char pstrString [MAX_PARAM_SIZE 1;

// Keep track of the parameter's length
int iParamSize = 0;

// Create a space for the current character
char cCurrChar;

// Read all characters until the next space to isolate the integer
while (g_iCurrScriptLineChar <
(int) strlen (g_ppstrScript [g_iCurrScriptLine 1))
{
// Read the next character from the Tine
cCurrChar = g_ppstrScript
[g_iCurrScriptLine I[g_iCurrScriptLineChar 1;

// If a space (or newline) has been read, the command is complete
if (cCurrChar == ' ' || cCurrChar == "\n')
break;

IMPLEMENTING A CoMvAND=-BASED LANGUAGE E

// 0therwise, append it to the current command
pstrString [iParamSize] = cCurrChar;

// Increment the length of the command
++ iParamSize;

// Move to the next character in the current line
++ g_iCurrScriptLineChar;

// Move past the trailing space
++ g_iCurrScriptLineChar;

// Append a null terminator
pstrString [iParamSize] = "\0';

// Convert the string to an integer
int iIntValue = atoi (pstrString);

// Return the integer value
return iIntValue;

There shouldn’t be any real surprises here, because it’s virtually the same logic found in
GetCommand (). Remember that this function must also check for newlines before reading the
next character, because the last parameter on the line will not be followed by a space.

GetStringParam ()

Lastly, there’s GetStringParam (). At this point, the function’s code will almost seem redundant,
because it shares so much logic with the last two functions you’ve looked at. You know the drill;
dive right in:
void GetStringParam (char * pstrDestString)
{

// Keep track of the parameter's length

int iParamSize = 0;

// Create a space for the current character
char cCurrChar;

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

// Move past the opening double quote
++ g_iCurrScriptLineChar;

// Read all characters until the closing double quote to isolate
// the string
while (g_iCurrScriptLineChar <

(int) strlen (g_ppstrScript [g_iCurrScriptlLine 1))
{

// Read the next character from the Tine

cCurrChar = g_ppstrScript
J [g_iCurrScriptLine I[g_iCurrScriptLineChar 1;

// 1f a double quote (or newline) has been read, the command
1 // is complete

if (cCurrChar == '"" || cCurrChar == "\n')

:I break;

// Otherwise, append it to the current command
pstrDestString [iParamSize] = cCurrChar;

// Increment the length of the command
++ iParamSize;

// Move to the next character in the current line
++ g_iCurrScriptLineChar;

// Skip the trailing space and double quote
g_iCurrScriptLineChar += 2;

// Append a null terminator
pstrDestString [iParamSize 1 = '"\0';

As usual, it extracts the parameter’s substring. However, there are a few subtle differences in the
way this function works that are important to recognize. First of all, remember that a string para-
meter’s final value is the version of the string without the double-quotes, as the parameter
appears in the script. Rather than read the entire double-quote delimited string from the script
and then attempt to perform some sort of physical processing to remove the quotes, the function
just works around them entirely. Before entering the substring extraction loop, it increments

IMPLEMENTING A CoMvAND=-BASED LANGUAGE

g_iCurrScriptLineChar to avoid the first quote. It then runs until the next quote is found, without
including it. This is why it’s very important to note that GetStringParam () reads characters until a
quote or newline character is encountered, rather than a space or newline, as the last two func-

tions did.

Lastly, the function increments
g_iCurrScriptLineChar by two.
This is because, at the moment
when the substring extraction
loop has terminated, the char-
acter index will point directly
to the string’s closing double-
quote character. This closing
quote, as well as the space
immediately following it, are
both skipped by incrementing
g_iCurrScriptLineChar by two,
which once again sets things
up nicely for the next call to a
parameter-extracting function.

TIP

You may have noticed that each of these three func-
tions share a main loop that is virtually identical. I did
this purposely to help illustrate their individual func-
tionality more clearly, but in practice, | suggest you
base all three functions on a more basic function that
simply extracts a substring starting from the current
position of g_iCurrScriptLineChar until a space, dou-
ble-quote, or newline is found. This function could
then be used as a generic starting point for extracting
commands and both types of parameters, saving you |:
from the perils of such otherwise redundant code.

1 [

The Command Handlers

At this point, you’ve learned about every major aspect of the scripting system. You can load and
unload scripts, run them, and manage the extraction and processing of each command and its
parameters. At this point, you have everything you need to implement the commands themselves,
and thus complete your first implementation of a command-based language.

With only four commands, and such simplistic ones at that, you’d be right in assuming that this is
probably the easiest part of all. Let’s take a look at the code first:

// PrintString

if (stricmp (pstrCommand, COMMAND_PRINTSTRING) == 0)

{
// Get the string

GetStringParam (pstrStringParam);

// Print the string

printf ("\t%s\n", pstrStringParam);

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

// PrintStringlLoop

else if (stricmp (pstrCommand, COMMAND_PRINTSTRINGLOOP) == 0)

{
// Get the string
GetStringParam (pstrStringParam);
// Get the loop count
int iloopCount = GetIntParam ();
:I // Print the string the specified number of times
for (int iCurrString = 0; iCurrString < ilLoopCount; ++ iCurrString)
printf ("\t%d: %s\n", iCurrString, pstrStringParam);
I
:I // Newline
else if (stricmp (pstrCommand, COMMAND_NEWLINE) == 0)
{

// Print a newline
printf ("\n");

// WaitForKeyPress
else if (stricmp (pstrCommand, COMMAND_WAITFORKEYPRESS) == 0)

{
// Suspend execution until a key is pressed
while (kbhit ())
getch ();
while (! kbhit ());
1

Just as you expected, right? PrintString is implemented by passing the specified string to printf
(). PrintStringLoop does the same thing, except it does so inside a for loop that runs until the
specified integer parameter is reached. Newl1ine is yet another example of a printf ()-based com-
mand, and WaitForKeyPress just enters an empty loop that checks the status of kbhit () at each
iteration. By the way, the two lines prior to this loop, as follows,

while (kbhit ())
getch ();

IMPLEMENTING A CoMvAND=-BASED LANGUAGE E

are just used to make sure the keyboard buffer is clear beforehand. Also, just to make things a bit
more interesting, PrintStringLoop prints each string after a tab and a number that marks where it
is in the loop.

Figure 3.6 illustrates this general process of the script controlling the text console.

PrintString

Newline RunScript ()

WaitForKeyPress

A/

Figure 3.6

The process of commands in a script making their way to the text console.

Now, at long last, here’s the mind-blowing output of the script. It’s clearly the edge-of-your-seat
thrill ride of the summer:

This is a command-based language.
Therefore, this is a command-based script.

...and it's really quite boring.

This string has been repeated four times.
This string has been repeated four times.
This string has been repeated four times.
: This string has been repeated four times.

w N kO

Okay, press a key already and put us both out of our misery.
The next demo is cooler, I swear.

Granted, slapping some strings of text onto the screen isn’t exactly revolutionary, but it’s a work-
ing basis for command-based scripts and can be almost immediately put to use in more exciting
demos and applications. Hopefully, however, this section has taught you that even in the case of
very simple scripting, there are a lot of details to consider.

m 3. INTRoODUCTION TO CoMMAND-BASED SCRIPTING

Before moving on, there’s an important lesson to be learned here about command-based lan-
guages. Because these languages consist entirely of domain-specific commands, the actual body of
RunScript () has to change almost entirely from project to project. Otherwise, the existing com-
mand handlers will almost invariably have to be removed entirely and replaced with new ones.
This is one of the more severe downsides of command-based scripting. Although the script load-
ing and unloading interface remains the same, as well as the helper functions like GetCommand (),
GetStringParam (), and GetIntParam (), the real guts of the system— the command handlers— are
unfortunately rarely reusable.

] ScrRIPTING A GAME INTRO SEQUENCE

You'll now apply your newfound skills to something a bit flashier. One great application of com-
1 mand-based scripting is static game sequences, like cinernatic cut scenes, or a game’s intro. Game
intros generally follow a basic pattern, wherein various copyright info and credits screens are dis-
:I played, followed by some sort of a title screen. These various screens are also generally linked
together with transitions of some sort.

This will be the premise behind this next example of command-based scripting. I've prepared the
graphics and some very basic transition code to be used in a simple game intro sequence you’ll
write a script to control. Figure 3.7 displays the general sequence of the intro as I've planned it:

Transition Transition

Copyright Info Credits Title Screen

Figure 3.7

The intro sequence will be composed of three full-screen images, each of which is separated by a transition.

First a copyright screen is displayed, followed by a credits screen, followed by the game’s title
screen. To go from one screen to the next, I've chosen one of the simplest visual transitions I
could think of. It’s sort of a “double wipe,” or “fold” as I call it, wherein either the two horizontal
or vertical edges of the screen move inward, covering the image with two expanding black bor-
ders until the entire screen is cleared. Figure 3.8 illustrates how both of these work.

SCRIPTING A GAME INTRO SEQUENCE E

Vertical Transition

Horizontal Transition

Figure 3.8

Horizontal and vertical folding transitions. Simple but effective.

The Language

In addition to displaying these images and performing transitions, the intro program plays
sounds as well. Table 3.3 lists each of the commands the language will offer to facilitate every-
thing you need.

I just added an Exit command on a whim here; it doesn’t really serve a direct purpose because
the script will end anyway upon the execution of the file line. You’ll also notice the addition of
Pause, which will allow each graphic in the intro to remain on-screen, undisturbed, for a brief
period before moving to the next.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

Table 3.3 Intro Sequence Commands

Command Parameters Description
DrawBitmap String Draws the specified .BMP file on the screen.
PlaySound String Plays the specified .WAV file.
Pause Integer Pauses the intro for the specified duration.
_] WaitForKeyPress None Pauses the intro until a key is pressed.
FoldCloseEffectX ~ None Performs a horizontal “fold close” effect.
1 FoldCloseEffectY ~ None Performs a vertical “fold close” effect.
:I Exit None Causes the program to terminate.

The Script

You know what you want the intro to look like, roughly at least, so you can now write the script:

DrawBitmap "gfx/copyright.bmp"
PTaySound "sound/ambient.wav"
Pause 3000

PTaySound "sound/wipe.wav"
FoldCloseEffectY

DrawBitmap "gfx/ynh_presents.bmp”
PTaySound "sound/ambient.wav"
Pause 3000

PlaySound "sound/wipe.wav"
FoldCloseEffectX

DrawBitmap "gfx/title.bmp"
PTaySound "sound/title.wav"
WaitForKeyPress

PlaySound "sound/wipe.wav"
FoldCloseEffectY

Exit

If you follow along carefully, you should be able to visualize exactly how it will play out. Each
screen is displayed, along with an ambient sound effect of some sort, and allowed to remain on-

SCRIPTING A GAME INTRO SEQUENCE E

screen for a few seconds thanks to Pause. FoldCloseEffect transitions to the next screen, along
with a transition sound effect. Finally, the title screen (which plays a different effect) is displayed
and remains on-screen until a key is pressed.

It may be simple, but this is the same idea behind just about any game intro sequence. Add some
commands for playing .MPEG or .AVI movies instead of displaying bitmaps, and you can easily
choreograph pro-quality introductions with nothing more than a command-based language.

The Implementation

The implementation for the commands is by no means advanced, but this is a graphical demo,
which ends up making things considerably more complex. All graphics and sound code have
been implemented with my simple wrapper API, so the code itself should look more or less self-
explanatory.

The real difference, however, is that this program runs alongside a main program loop, which
prevents RunScript () from simply running until the script finishes. Because games are generally
based around the concept of a main game loop, it’s important that RunScript () be redesigned to
simply execute one instruction at a time, so that it can be called iteratively rather than once. By
executing one instruction per frame, your scripts can effectively run concurrently with your game
engine. Figure 3.9 illustrates this concept.

Figure 3.9

Running the script
alongside the game
engine.

++ g_iCurrlLine;

Main
j RunScript () —
oop Execute the next
command in the

seript

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

The actual demo code is rather cluttered with calls to my wrapper API, so I've chosen to leave it
out here, rather than risk the confusion it might cause. I strongly encourage you to check it out
on the CD, however, although you can rest assured that the implementation of each command is
simple either way. Here’s the code to the new version of RunScript () with the command han-
dlers left out:

void RunScript ()

{
// Make sure we aren't beyond the end of the script
if (g_iCurrScriptline > g_iScriptSize)

:I return;

// Allocate some space for parsing substrings
1 char pstrCommand [MAX_COMMAND_SIZE 1;
char pstrStringParam [MAX_PARAM_SIZE 71;

:I // ---- Process the current Tine

// Reset the current character
g_iCurrScriptLineChar = 0;

// Read the command
GetCommand (pstrCommand);

// ---- Execute the command
// Move to the next line

++ g_iCurrScriptlLine;

As you can see, the for loop is gone. Because the function is now only expected to execute one
command per call, the function now manually increments the current line before returning, and
always checks it against the end of the script just after being called.

SCRIPTING AN RPG CHARACTER’S BEHAVIOR E

ScrRIPTING AN RPG CHARACTER’S
BEHAVIOR

The game intro was an interesting application for command-based scripting, but it’s time to set
your sights on something a bit more game-like. As you learned in the last chapter, and as was
mentioned earlier in this chapter, RPGs have a number of non-player characters, called NPCs,
that need to be automated in some way so they appear to move around in a lifelike fashion. This —
is accomplished, as you might imagine, with scripts. Specifically, however, command-based scripts
can be used with great results, because NPCs, at least some of the less pivotal ones, generally |
move in predictable, static patterns that don’t change over time. Figure 3.10 illustrates this. |:

Figure 3.10
MoveNPC -20 0 . [
NPCs often move in

static, unchanging pat- |:
terns, which naturally

o o8 =l
__/
oo} . lend themselves to
e ‘ command-based
L8] ..
e = scripting.
0 P
=
o _—
= S
! o
o 0 =)

MoveNPC 8 0

>

The Language

This means you can now actually implement a version of the commands listed earlier when dis-
cussing RPG scripting. Table 3.4 lists these commands.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

Table 3.4 RPG Commands

Command Parameters Description
MoveChar Integer, Integer Moves the character the specified X and Y
distances.
SetCharLoc Integer, Integer Moves the character to the specified X,Y
i :I location.
SetCharDir String Sets the direction the character is facing.
1 ShowTextBox String Displays the specified string of text in the
text box.
:I HideTextBox None Hides the text box.
Pause Integer Halts the script for the specified duration.

Using these commands, you can move the character around in all directions, change the direc-
tion the player’s facing, display text in a text box to simulate dialogue, and cause the player to
stand still for arbitrary periods. All of these abilities come together to form a lifelike character
that seems to be functioning entirely under his or her own control (and in a manner of speaking,
actually is).

Improving the Syntax

Before continuing, I should mention a slight alteration I made to the script interpreter used by
this demo. Currently, the syntax of this language prevents some of the more helpful aspects of
free-form code, like vertical whitespace and comments. These are usually used to help make code
more readable and descriptive, but have been unsupported by this system until now.

The addition of both of these syntax features is quite simple. Let’s look at an example of a script
with both vertical whitespace and a familiar syntax for comments:

// Do something
ShowTextBox "This is something."
PlaySound "Explosion.wav"

SCRIPTING AN RPG CHARACTER’S BEHAVIOR

// Do something else
ShowTextBox "This is something else."
PTaySound "Buzzer.wav"

Much nicer, eh? And all it takes is the following addition to RunScript (), which is added to the
beginning of the function just before the command is read with GetCommand ():

if (strlen (g_NPC.ppstrScript [g_NPC.iCurrScriptlLine 1) == 0 ||
(g_NPC.ppstrScript [g_NPC.iCurrScriptLine 1L 0 1 == "/' &&
g_NPC.ppstrScript [g_NPC.iCurrScriptLine JL 1 1 =="/"))

// Move to the next line
++ g_NPC.iCurrScriptLine;

// Exit the function
return;

First, the length of the line is checked. If it’s zero, meaning it’s an empty string, you know you’re
dealing with vertical whitespace and can move on. The first two characters are then checked, to

determine whether they’re both slashes. If so, you're on a comment line. In both cases, the cur-

rent line is incremented and the function returns.

Managing a Game Character

The last thing you need to worry about before moving on to the script is how the NPC will be
stored internally. Now obviously, because this is only a demo as opposed to a full game, all you
really need is the bare minimum.

Because the extent of this language’s control of the NPC is really just moving him around, all his
internal structure needs to represent is his current location. Of course, you also need to know
what direction he’s facing, so add that to the list as well. That’s not everything though, because
there’s the issue of how he’ll move exactly.

The MoveChar command moves the character in pixel increments, but you certainly don’t want the
NPC to simply disappear at one X, Ylocation and appear at another. Rather, he should smoothly
“walk” from his current location to the specified destination, pixel by pixel. The only problem is
that RunScripts () can’t simply enter a loop to move the character then and there, because it
would cause the rest of the game loop to stall until the loop completed. This wouldn’t matter
much in the demo, but it would ruin a real game—imagine the sheer un-playability of a game in
which every NPC’s movement caused the rest of the game loop to freeze.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

So, you'll instead give the NPC two fields within his structure that define his current movement
along the X and Y movements. For example, if you want the NPC to move north 20 pixels, you
set his ¥movement to 20. At each iteration of the game loop, the NPC’s Ymovement would be
evaluated. If it was greater than zero, he would move up one pixel, and the ¥movement field
would be decremented. This would allow the character to move in any direction, for any dis-
tance, without losing sync with the rest of the game loop.

So, with all of that out of the way, take a look at the structure.

typedef struct _NPC
i {
J /1 Character
1 int iDir; // The direction the character is
// facing
int iX, // X Tocation
:] iY; // Y location
int iMoveX, // X-axis movement
iMoveY; // Y-axis movement
/1 Script
char ** ppstrScript; // Pointer to the current script
int iScriptSize; // The size of the current script
int iCurrScriptline; // The current Tine in the script
int iCurrScriptLineChar; // The current character in the current
/] Tine
int iIsPaused; // Is the script currently paused?

unsigned int iPauseEndTime; // If so, when will it elapse?
NPC;

Wait a sec, what’s with the stuff under the // Script comment? I've decided to directly include
the NPC’s script within its structure. This is a bit more reflective of how an actual game imple-
mentation would work, because in an environment where 200 NPCs are active at one time, it
helps to make each individual character as self-contained as possible. This way, the script is direct-
ly bound to the NPC himself. Also, you’ll notice the iIsPaused and iPauseEndTime fields. iIsPaused
is a flag that determines whether the script is currently paused, and iPauseEndTime is the time,
expressed in milliseconds, at which the script will become active again. Again, because the script

SCRIPTING AN RPG CHARACTER’S BEHAVIOR E

must remain synchronous with the game loop, the Pause command can’t simply enter an empty
loop within RunScript () until the duration elapses. Rather, RunScript ()will check the script’s
pause status and end times each time it’s called. This way, the script can pause arbitrarily without
stalling the rest of the game loop.

The Script

The script for the character is pretty straightforward, but is considerably longer than anything
you've seen before, and is the first to use lines that consist of comments or vertical whitespace.
Take a look: [_

// RPG NPC Script
// A Command-Based Language Demo
// Written by Alex Varanese [

// ---- Backing up [:
ShowTextBox "WELCOME TO THIS DEMO."

Pause 2400

ShowTextBox "THIS DEMO WILL CONTROL THE ONSCREEN NPC."
Pause 2400

ShowTextBox "LET'S START BY BACKING UP SLOWLY..."
Pause 2400

HideTextBox

Pause 800

MoveChar 0 -48

Pause 800

// ---- Walking in a square pattern
ShowTextBox "THAT WAS SIMPLE ENOQUGH."
Pause 2400

ShowTextBox "NOW LET'S WALK IN A SQUARE PATTERN."
Pause 2400

HideTextBox

Pause 800

SetCharDir "Right"

MoveChar 40 0

MoveChar 8 8

SetCharDir "Down"

MoveChar 0 80

MoveChar -8 8

m 3. INTRoODUCTION TO CoMMAND-BASED SCRIPTING

SetCharDir "Left"
MoveChar -80 0
MoveChar -8 -8
SetCharDir "Up"
MoveChar 0 -80
MoveChar 8 -8
SetCharDir "Right"
MoveChar 40 0
Pause 800

_] // Random movement with text box

ShowTextBox "WE CAN EVEN MOVE AROUND WITH THE TEXT BOX ACTIVE!"
Pause 2400

1 ShowTextBox "WHEEEEEEEEEEE!!!"

Pause 800

:] SetCharDir "Down"

MoveChar 12, 38

SetCharDir "Left"

MoveChar -40, 10

SetCharDir "Up"

MoveChar 7, 0

SetCharDir "Right"

MoveChar -28, -9

MoveChar 12, -8

SetCharDir "Down"

MoveChar 4, 37

MoveChar 12, 4

// Transition back to the start of the demo
ShowTextBox "THIS DEMO WILL RESTART MOMENTARILY..."
Pause 2400

SetCharlLoc 296 208

SetCharDir "Down"

Who says command-based scripts can’t be complex, huh? As you'll see in the demo included on
the CD, this little guy is capable of quite a bit. You can find the scripted RPG NPC demo on the
CD in the Programs/Chapter 3/Scripted RPG NPC/ folder.

ScRIPTING AN RPG CHARACTER’s Benavior [ET=p1)

The Implementation

The demo requires two major resources to run—the castle background image and the NPCs ani-
mation frames. Figure 3.11 displays some of these.

These of course come together to form a basic but convincing scene, as shown in Figure 3.12.

Figure 3.11 C_
Resources used by the
NPC demo. I:
Castle Background NPC Sprite
Figure 3.12
/| The running NPC
_,.-/ demo.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

Of course, the real changes lie in RunScript (). In addition to the new command handlers, which
should be pretty much no-brainers, there are some other general changes as well. Here’s the
function, with the command handlers this time (notice I left them in this time because the
graphics-intensive code has been offloaded to the main loop):

void RunScript ()
{
// Only perform the next Tine of code if the player has stopped moving

if (g_NPC.iMoveX || g_NPC.iMoveY)
return;
J // Return if the script is currently paused
if (g_NPC.iIsPaused)
1 if (W_GetTickCount () > g_NPC.iPauseEndTime)
g_NPC.iIsPaused = TRUE;
:] else
return;

// If the script is finished, Toop back to the start
if (g_NPC.iCurrScriptLine >= g_NPC.iScriptSize)
g_NPC.iCurrScriptLine = 0;

// Allocate some space for parsing substrings
char pstrCommand [MAX_COMMAND_SIZE 1;
char pstrStringParam [MAX_PARAM_SIZE 1;

// ---- Process the current Tine

// Skip it if it's whitespace or a comment
if (strlen (g_NPC.ppstrScript [g_NPC.iCurrScriptlLine 1) =0 ||
(g_NPC.ppstrScript [g_NPC.iCurrScriptLine I[0] == "/' &&
g_NPC.ppstrScript [g_NPC.iCurrScriptline JL 1 1 =="/"))

// Move to the next Tine
++ g_NPC.iCurrScriptLine;

// Exit the function
return;

SCRIPTING AN RPG CHARACTER’S BEHAVIOR E

// Reset the current character
g_NPC.iCurrScriptLineChar = 0;

// Read the command
GetCommand (pstrCommand);

// ---- Execute the command

// MoveChar
if (stricmp (pstrCommand, COMMAND_MOVECHAR) == 0)
{

// Move the player to the specified X, Y location

g_NPC.iMoveX = GetIntParam ();
g_NPC.iMoveY = GetIntParam ();

// SetCharlLoc
if (stricmp (pstrCommand, COMMAND_SETCHARLOC) == 0)
{
// Read the specified X, Y target location
int iX = GetIntParam (),
iY = GetIntParam ();

// Calculate the distance to this location
int iXDist = iX - g_NPC.iX,
iYDist = 1Y - g_NPC.iY;

// Set the player along this path
g_NPC.iMoveX = iXDist;
g_NPC.iMoveY = iYDist;

// SetCharDir
else if (stricmp (pstrCommand, COMMAND_SETCHARDIR) == 0)
{
// Read a single string parameter, which is the direction
// the character should face
GetStringParam (pstrStringParam);

3. INTRoDUCTION TO COMMAND-BASED SCRIPTING

if (stricmp (pstrStringParam, "Up") == 0)
g_NPC.iDir = UP;

if (stricmp (pstrStringParam, "Down") == 0)
g_NPC.iDir = DOWN;

if (stricmp (pstrStringParam, "Left") == 0)
g_NPC.iDir = LEFT;

if (stricmp (pstrStringParam, "Right") == 0)
g_NPC.iDir = RIGHT;

_] // ShowTextBox
else if (stricmp (pstrCommand, COMMAND_SHOWTEXTBOX) == 0)
{
1 // Read the string and copy it into the text box message
GetStringParam (pstrStringParam);
:] strcpy (g_pstrTextBoxMssg, pstrStringParam);

// Activate the text box
g_iIsTextBoxActive = TRUE;

// HideTextBox
else if (stricmp (pstrCommand, COMMAND_HIDETEXTBOX) == 0)
{

// Deactivate the text box

g_ilsTextBoxActive = FALSE;

// Pause

else if (stricmp (pstrCommand, COMMAND_PAUSE) == 0)
{
// Read a single integer parameter for the duration
int iPauseDur = GetIntParam ();

// Calculate the pause end time
unsigned int iPauseEndTime = W_GetTickCount () + iPauseDur;

SCRIPTING AN RPG CHARACTER’S BEHAVIOR E

// Activate the pause
g_NPC.iIsPaused = TRUE;
g_NPC.iPauseEndTime = iPauseEndTime;

// Move to the next Tine
++ g_NPC.iCurrScriptLine;

The function begins by checking the NPC’s X and Y movement. If he’s currently in motion, the
function returns without evaluating the line or incrementing the line counter. This allows the
character to complete his current task without the rest of the script getting out of sync. The status
of the script’s pause flag is then determined. If the script is currently paused, the end time is
compared to the current time to determine whether it’s time to activate again. If so, the script is
activated and the next line is executed. Otherwise, the function returns. The current line is then
compared to the last line in the script, and is looped back to zero if necessary. This allows the
NPC to continue his behavior until the user ends the demo.

The typical scripthandling logic is up next, along with the newly added code for handling verti-
cal whitespace and comments. The actual command-handlers should be pretty self-explanatory.
Commands for NPC movement set the movement fields with the appropriate values, the direc-
tion-setting command sets the NPC’s iDir field, and so on. Notice, however, that the commands
for hiding and showing the text box don’t actually blit the text box graphic to the screen or print
the string. Rather, they simply set a global flag called g_iIsTextBoxActive to TRUE or FALSE, and
copy the specified string parameter into a global string called g_pstrTextBoxMssg (in the case of
ShowTextBox, that is). This is because the game loop is solely responsible for managing the demo’s
visuals. All RunScript () cares about is setting the proper flags, resting assured that the next itera-
tion of the main loop will immediately translate those flag updates to the screen. The next sec-
tion, then, discusses how this loop works.

The Demo’s Main Loop

It’s generally good practice to design the main loop of your game in such a way that it’s primarily
responsible for the physical output of graphics and sound. That way, the actual game logic
(which will presumably be carried out by separate functions) can focus on flags and other global
variables that only indirectly control such things.

This demo does exactly that. At each frame, it does a number of things:

W Calls RunScript () to execute the next line of code in the NPC’s script.
B Draws the background image of the castle hall.

m 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

B Updates the current frame of animation, so the character always appears to be walking
(even when he’s standing still, heh).

B Sets the direction the character is facing, in case it was changed within the last frame by
RunScript ().

B Blits the appropriate character animation sprite based on the direction he’s facing and
the current frame.

W Draws the text box if it’s currently active, as well as the current text box message (which
is centered within the box).

W Blits the entire completed frame to the screen.

i :I B Moves the character along his current path, assuming he’s in motion.

B Checks the status of the keyboard and exits if a key has been pressed.

Just to bring it all home, here’s the inner-most code from the game’s main loop. Try to follow
1 along, keeping the previous bulleted list in mind:

:] // Execute the next command
RunScript ();

// Draw the background
W_BlitImage (g_hBG, 0, 0);

// Update the animation frame if necessary
if (W_GetTimerState (g_hAnimTimer))
if (iCurrAnimFrame)
iCurrAnimFrame = 0;
else
iCurrAnimFrame = 1;

// Draw the character depending on the direction he's facing
switch (g_NPC.iDir)
{
case UP:
if (iCurrAnimFrame)
phCurrFrame = & g_hCharUp0;
else
phCurrFrame = & g_hCharUpl;
break;

case DOWN:
if (iCurrAnimFrame)
phCurrFrame = & g_hCharDown0;

SCcRIPTING AN RPG CHARACTER’S BEHAVIOR [Rinly4

else
phCurrFrame = & g_hCharDownl;
break;
case LEFT:
if (iCurrAnimFrame)
phCurrFrame = & g_hCharlLeft0;
else E—
phCurrfFrame = & g_hCharLeftl;
break; [
case RIGHT:
if (iCurrAnimFrame)
phCurrFrame = & g_hCharRight0; [
else
phCurrFrame = & g_hCharRightl; [:
break;

W_BlitImage (* phCurrFrame, g_NPC.iX, g_NPC.iY);

// Draw the text box if active

if (g_ilsTextBoxActive)

{
// Draw the text box background image
W_BlitImage (g_hTextBox, 26, 360);

// Determine where the text string should start within the box
int iX = 319 - (W_GetStringPixellength (g_pstrTextBoxMssg) / 2);

// Draw the string
W_DrawTextString (g_pstrTextBoxMssg, iX, 399);

// B1it the framebuffer to the screen
W_BlitFrame ();

// Move the character if necessary
if (W_GetTimerState (g_hMoveTimer))
{

m 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

// Handle X-axis movement
if (g_NPC.iMoveX > 0)
{
++ g_NPC.iX;
-- g_NPC.iMoveX;
}
if (g_NPC.iMoveX < 0)
{
-- g_NPC.iX;
++ g_NPC.iMoveX;

// Handle Y-axis movement

1 if (g_NPC.iMoveY > 0)
{
] + g_NPC.iY;

-- g_NPC.iMoveY;
}
if (g_NPC.iMoveY < 0)
{

-- g_NPC.iY;

++ g_NPC.iMoveY;

// 1f a key was pressed, exit
if (g_iExitApp || W_GetAnyKeyState ())
break;

So that wraps up the NPC demo. Not bad, eh?
Imagine creating an entire town, bustling with
the lively actions of tens or even hundreds of
NPCs running on command-based scripts.
They could carry on conversations when spo-
ken to, walk around and animate on their own,
and seem convincingly alive in general. That
does bring up an important issue that hasn’t
been addressed yet, however—how exactly do
you get more than one script running at once?

NOTE

Notice that rather than animate the
character only while he’s moving, the
NPC is constantly'in an animated

state, even when standing still. 1.did
this as a subtle nod to the old Dragon
Warrior games for the Nintendo and
the Japanese Super Famicom, which did
the same thing. | find it strangely cute.

CONCURRENT ScCRIPT EXECUTION m

ConNncUuRRENT ScriIPT EXECUTION

Unless your game has some sort of Twilight Zonelike premise in which your character and one
NPC are the only humans left on the planet, you’re probably going to want more than one game
entity active at once. The problem with this is that so far, this scripting system has been designed
with a single script in mind.

Fortunately, command-based scripting is simple enough to make the concurrent execution of
multiple scripts yet another reasonably easy addition. The key is noting that the current system
executes the next line of the script at each iteration of the main loop. All that’s necessary to facili-
tate the execution of multiple scripts is to execute the next line of each of those scripts, in
sequence, rather than just one. By altering RunScripts () just slightly to accept an index parame-
ter that tells it which NPC’s script to execute, this can be done easily. This is demonstrated in
Figure 3.13.

The only major change that needs to be made involves using an array to store NPCs instead of a
single global instance of the NPC structure. Of course, in order to properly handle the possibility
of multiple scripts, each scriptrelated function must be changed to accept a parameter that helps
it index the proper script, which means that LoadScript (), UnloadScript (), RunScript (),
GetCommand (), GetIntParam (), and GetStringParam () need to be altered to accept such a
parameter.

Figure 3.13

Executing a single

instruction from each

script.
RunScript () s
Main ;
/]
RunScript () e
RunScript () e
. Execute the next

command in each
script

m 3. INTRoDUCTION TO CoMMANDO-BASED SCRIPTING

Once these changes have been made (which you can see for yourself on the demo included on
the CD), it becomes possible to create any number of NPCs, all of which will seem to move
around simultaneously. Check out Figure 3.14.

Figure 3.14

The multiple NPC
demo.

SUMMARY

You must admit; this is pretty cool. You're only just getting warmed up, and you've already got
some basic game scripting going! The last demo even got you as far as the concurrent execution
of multiple character scripts, which should definitely help you understand the true potential of
command-based scripting. Simplistic or not, command-based scripts can pack enough power to
bring moderately detailed game worlds to life.

In the next chapter, you're going to cover a lot of ground as you take a mainly theoretical

tour of the countless improvements that can be made on the scripting system built in this chap-
ter. Along the way, the fundamental concepts presented will form a foundation for the more
advanced material covered in the book’s later chapters, which means that the next chapter is an
important one.

Team-F [lf"’

CHALLENGES m

Overall, command-based languages are a lot of fun to play with. They can be implemented
extremely quickly, and once up and running, can be used to solve a reasonable amount of basic
scripting problems. After the next chapter, you’ll have command-based languages behind you
and can move on to designing and implementing a C-style language and truly becoming a game
scripting master.

How much harder can it be, right?

On THE CD

The CD contains the four demos created in this chapter, available in both source and executable
form. All demos except the first, the console text output demo, require a Win32/DirectX plat-
form to run and therefore must be compiled as such. Check out the Read Me!.txt file in their
respective directories for compilation information.

The demos for this chapter can be found on the accompanying CD-ROM in Programs/Chapter 3/.

The following is a breakdown of this folder’s contents:

B Console CBL Demo/. A simple demo that demonstrates the functionality of a command-
based scripting language by printing text to the console.

B Scripted Intro/. This demo makes things a bit more interesting by applying a command-
based language to the scripting of a game intro sequence.

B Scripted RPG NPC/. In our first taste of the scripting of dynamic game entities, this
next demo uses a command-based script to control the movement of a role playing game
(RPG) non-player character (NPC).

B Multiple NPCs/. The chapter’s final demo builds on the last by introducing an entire
group of concurrently moving NPCs that seem to function entirely in parallel.

Each demo comes in both source and executable forms, in appropriately named Source/ and
Executable/ directories. I recommend starting with the executables, as they can be tested right
away to get a quick idea of what’s going on.

CHALLENGES

B FEasy: Add and implement new commands for controlling the characters in the RPG NPC
demos.

W Intermediate: Rework the script interpreter so it can handle whitespace more flexibly. Try
allowing commands and parameters to be separated from one another by any arbitrary
amount of spaces and tabs, in turn enabling you to be more free-form about your code.

E 3. INTRoODUCTION TO CoOMMAND-BASED SCRIPTING

W Intermediate: Add escape sequences that allow the double-quote symbol (") to appear
within string literals without messing up the interpreter. Naturally, this can be important
when scripting dialogue sequences.

B Difficuli: Implement anything from the next chapter (after reading it, of course).

Al e j I .

CHAPTER 4

HDVANCED
COMMAND-

EASED
S CRIPTING

\Hj “We gotta take it up a notch or shut it down for good.”

| L\a‘ ——Tyler Durden, Fight Club

4. ADVANCED CoMMVAND-BASED SCRIPTING

The last chapter introduced command-based scripting, and was a gentle introduction to the
process of writing code in a custom-designed language and executing it from within the
game engine. Although this form of scripting is among the simplest possible solutions, it has
proven quite capable of handling basic scripting problems, like the details of a game’s intro
sequence or the autonomous behavior of non-player characters.

:I Ultimately, you need to write scripts in a C/Ct++-style language featuring everything you are used

to as a programmer, including variables, arrays, loops, conditional logic, and functions. In addi-

1 tion, it would be nice to be able to compile this code down to a lower-level format that is not only
faster to execute within the game engine, but much safer from the prying eyes of malicious

:I gamers who would otherwise hack and possibly even break the game’s scripts. You’ll get there
soon enough, but you don’t have to abandon command-based languages entirely. You can still

improve the system considerably, perhaps even to the point that it remains useful for certain spe-

cialized tasks regardless of how powerful other scripting solutions may be.

This chapter discusses topics that bring the simple command-based language closer and closer to
the high-level procedural languages you're used to coding in. Although the language won’t attain
such flexibility and power entirely, along the way you’ll be introduced to many of the concepts
that will form the groundwork for the more advanced material presented later in the book. For
this reason, I strongly suggest you read this chapter carefully. Even if you think command-based
scripting is a joke, you’ll still learn a lot about general scripting concepts and issues here.

This chapter is largely theoretical, introducing you to the concepts and basic implementation
details of some advanced command-based language enhancements. The final implementation of
these concepts isn’t covered here , because most of it will intrude on the material presented by
later chapters and disrupt the flow of the book. Fortunately, most of what’s discussed here should
be easy to get working for at least intermediate-level coders, so you're encouraged to give it a shot
on your own. Anything that doesn’t make sense now, however, will certainly become clear as you
progress through the rest of the book.

In this chapter, you’re going to learn about

B New data types

B Symbolic constants

B Simple iterative and conditional logic

B Eventbased scripting

B Compiling command-based scripts to a binary format
B Basic script preprocessing

New DATA TYPES E

NeEw DATA TYPES

The current command-based scripting system is decidedly simple in its support for data types.
Parameters can be integers or strings, with no real middle ground. You can simulate symbolic
constants in a brute-force sort of manner using descriptive string literals, like "Up" and "Down", for
example, but this is obviously a messy way to solve the problem.

Furthermore, any sort of 3D game is going to need floating-point support; moving characters
around in a top-down 2D game engine is one thing, because screen coordinates map directly to
integers. 3D space, however, is generally independent of any specific resolution (within reason)
and as such, needs floating-point precision to prevent character movements from being jerky and
erratic.

Boolean Constants

Before moving into general-purpose sym- L] L
bolic constants, you can start small by TIP

adding a builtin Boolean data type.
Boolean data, of course, is always either :I
true or false, which means the addition
of such a type is a simple matter of cre-
ating a new function, perhaps called

Unless you like the idea of making an explicit
separation between integer and Boolean I:
parameters (which is understandable), there’s
an even easier way to support Booleans with-
out making a significant change to your exist-

GetBoolParam (), that returns 1 or 0 if ing code base. Rather than writing a separate
the parameter string it extracts is function called GetBoolParam (), you can just
equal to TRUE or FALSE, respectively. rewrite GetIntParam () to automatically
This doesn’t require any major addi- detect the TRUE and FALSE keywords, and
tions to syntax, minus the two keywords, return | or 0 to the caller. This would allow
and is a fastand-easy improvement that your existing commands to keep functioning

prevents you from having to use 1 or 0 :|

the way they do, and make the addition of I:
or string literals. Figure 4.1 illustrates

such keywords virtually transparent to the

rest of the system.

M1 M1

this concept.

Floating-Point
Support

Floating-point support is, fortunately, extremely easy to add. All it really comes down to is a func-

tion just like GetIntParam (), called GetFloatParam (), which passes the extracted parameter string
to atof () instead of atoi (). This function converts a string to a floating-point value automatical-
ly, immediately making floating-point parameters possible. Check out Figure 4.2.

!

m 4. ADvANnceD CoMvAND-BASED SCRIPTING

Figure 4.1
Parameter 1 TRUE O FALSE The Boolean TRUE and
| I | I FALSE keywords map
‘ directly to integer val-
T l ues | and 0.
Value 1 0
-:I Figure 4.2
ny ;g :: Routing the parameter
., . atoi () Int Value string to the proper
1 3.14159 numeric-conversion
"32768" function allows float-
:I 2. 178" atof () - = Float Value ing-point and integer
44" data to be supported.
" 0 . 5 L)

General-Purpose Symbolic Constants

Having builtin TRUE and FALSE constants is great, but there will be times when an enumeration of
arbitrary symbolic constants will be necessary. You've already seen an example of this in the last
chapter, when you were forced to use the string literal values "Up", "Down", "Left", and "Right" to
represent the cardinal directions. It would be much cleaner to be able to define constants UP,
DOWN, LEFT, and RIGHT as symbols that mapped to the integer values 0-3 (or any four unique integer
values, for that matter).

Interpreting these constants as parameters is very simple—you’ve already seen how this works
with the GetBoolParam () function proposed in the last section. The problem, however, is the actu-
al mapping of the constant identifier to its value. Much like higher-level languages like C/C++,
you need to define a constant’s value if you want it to actually mean anything to the runtime
interpreter.

A clean and simple solution is to define a new command called DefConst (Define Constant) that
accepts two parameters—a constant identifier and an integer value. When this command is exe-
cuted, the interpreter will make a record of the constant name and value, and use the value in
place of any reference to the name it finds in subsequent commands. DefConst is a special com-
mand in that it’s not part of any specific domain—any command-based language, whether it’s for

New DATA TYPES 117

a puzzle game or a flight simulator, can use it in the same way (as illustrated in Figure 4.3).
Here’s an example:

DefConst UP 0O

DefConst DOWN 1
DefConst LEFT 2
DefConst RIGHT 3
il
Figure 4.3
Domain Independant DefConst is a
domain-independent I:_
DefConst command.
Domain Dependant [
RPG Shooter Racing |:
MoveNPC LoadWeapon SwitchGear
GetItem FireWeapon Break
CastSpell RaiseSheilds VeerRight
VeerlLeft

An Internal Constant List

The question is, how does the interpreter “make a record” of the constant? The easiest approach
is to implement a simple linked list wherein each node maintains two values—a constant identifi-
er string (like "UP", "DOWN", or "PLAYER_ANIM_JUMP") and an integer value. When a DefConst com-
mand is executed, the first parameter will contain the constant’s identifier, and the second will be
its value. A new node is then created in the list and these two pieces of data are saved there.
Check out Figure 4.4.

Node 0 (Head) Node 1 Node 2 (Tail)

dentifier identitier [T

Figure 4.4

A script’s constants can be stored in a linked list called the constant list.

m 4. ADvANnceD CoMvAND-BASED SCRIPTING

From this point on, whenever a command is executed, constants can be accepted in the place of
integer parameters. In these cases, the specified identifier is used as a key to search the constant
list and find its associated value. In fact, a slick way to add constants to your existing commands
without changing them is to simply rewrite GetIntParam () to transparently replace constants with

their respective values. Whenever the
function reads a new parameter, it
determines whether the first letter of
the string is a letter or an underscore—
because valid identifiers are generally
i :I sequences of numbers, letters, and
underscores with a leading character
that is never a number, this simple test
1 tells you whether you're dealing with a
constant. If not, you pass it to atoi () to
:I convert it to an integer just like always.
Otherwise, you search the constant list
until its matching record is found and
return its associated integer value
instead. If the constant is not found, the
script is referencing an undefined iden-
tifier and an error should be reported.
This process is illustrated in Figure 4.5.

This brings up an important issue, however.
The implementation of DefConst will have
to be more intelligent than simply dump-
ing the specified identifier into the list.
One of two cases could prevent the con-
stant from functioning properly and should
be checked for before the command exe-
cutes. First and foremost, the constant’s
identifier must be valid. Due to the simplis-
tic nature of the language’s syntax, this real-
ly just means making sure the constant
doesn’t start with a number. Second, the
identifier specified can’t already exist in the
list. If it does, the script is attempting to
redefine an existing constant, which is ille-
gal. Figure 4.6 illustrates the process of
adding a new constant to the list.

NOTE

Of course, constants can store more than just
integer values.You can probably find uses for
both floating-point and string values as well;
I’m sticking to integers here, however,
because they’re simpler. Another reason
they’re generally more useful than anything

else, however, is that the real goal of using
this sort of constants isn’t so much to repre-
sent data symbolically, but rather simulate
enumerations. Individual constants like char-
acter names aren’t as important as groups of
constants, wherein the values‘of the con-
stants don’t matter as long as each'is unique.

L L1

TIP

Linked lists, although simple to implement,

:I actually aren’t the best way to store the

constant list. Remember, every time a com-
mand executes that specifies a constant for
one or more parameters, GetIntParam ()
has to perform a full search of each node in
the list. This can begin to take its toll on the
script’s performance, as string comparisons
aren’t exactly the fastest operation in the
world and slow down more and more
depending on the size of the list. Among
the most efficient implementations is using

:| the hash table, which can search huge lists

of strings in nearly linear time, making it
almost as fast as an array.

M M /

New DATA TYPES E

Figure 4.5
DefConst MY_CONST 24
MyCommand 16 MY_CONST Handling constant
parameters.
| Begins with a c i
letter, must be onstant List
a constant
Begins with a "Up" | 0
number, must be C_
an integer "DOWN" 1
Use as Constant VLR || |
List search key I:
y "RIGHT" 3
Convert to integer
atoi () Match Found ; 1 e [
" RED" 0
l r L
Final Value Final Value GREEN 1
16 24 "BLUE" 2

DefConst MY_CONST ————# Identifier valid and unused —— Legal
DefConst 6CONST ~————=|dentifier invalid = [llegal
DefConst MY_CONST ——— Identifier already used = [llegal

Figure 4.6

Adding a new constant to the constant list.

So, to summarize, the implementation of constants is twofold. First, DefConst must be used to
define the constant by assigning it an integer value. This value is added to the constant list and
ready to go. Then, GetIntParam () is rewritten to transparently handle constant references, which
allows existing commands to keep functioning without even having to know such constants exist.
Here’s a simple example of using constants:

// Define some directional constants
DefConst LEFT 0

DefConst RIGHT 1

DefConst PAUSE_DUR 400

E 4. ApDvAnceD CoMvAND-BASED SCRIPTING

// Cause an NPC to pace back and forth
SetNPCDir LEFT

MoveNPC 20 0

Pause PAUSE_DUR

SetNPCDir RIGHT

MoveNPC -20 0

Pause PAUSE_DUR

Cool, huh? Now the NPC can be moved around using actual directional constants, and the dura-
i tion at which he rests after each movement can even be stored in a constant. This will come in

:I particularly handy if you want to use the same pause duration everywhere in the script but find
yourself constantly tweaking the value. Using a constant allows you to automatically update the

1 duration of every pause using that constant with a single change, as illustrated in Figure 4.7.

Figure 4.7
] DefConst PAUSE DUR 400

Constants allow multi-

ple references to a sin-
gle value to be

SetNPCDir LEFT
1o MoveNPC 20 0
———= Pause PAUSE_DUR

SetNPCDir RIGHT
wo MoveNPC -20 0
———= Pause PAUSE_DUR

changed easily.

A Two-Pass Approach

The approach to implementing the previous constants is simple, straightforward, and robust.
There are numerous other ways to achieve the same results, however, some of which provide
additional flexibility and functionality. One of these alternatives borrows some of the techniques
used to code assemblers and compilers, and involves making two separate passes over the script—
the first of which collects information regarding each of its constants, the second of which actual-
ly executes the commands. Check out Figure 4.8.

Despite the added complexity, there are definite advantages to this approach. First of all, remem-
ber that, as you saw in the last chapter, it’s often desirable for scripts to loop indefinitely (or at
least more than once). This comes in particularly handy when creating autonomous game enti-
ties like the NPCs in Chapter 3’s multiple NPC demo. However, this means that all DefConst com-
mands will be executed multiple times as well, causing immediate constant redefinition errors.

New DATA TYPES E

Figure 4.8

Script Info In a two-pass inter-

preter, initial informa-

tion about the script is

Collects Info Uses Info

assessed in the first

pass, whereas the sec-

First Pass Second Pass ond pass deals with

the actual execution.

// Do some stuff
MovePlayer -20 O
ShowTextBox "Hello!”
Pause 400

J/ Do some other stuff
SetPlayerDir LEFT
PlaySound "Kaboom.wav'"
PlayAnim PLAYER DIVE

// Do more stuff
SetPlayerDir RIGHT
ShowTextBox "Ack!”
PlaySound "Fire.wav"
Pause 1000
ShowTextBox "RUNLIL™
MovePlayer 200 0

Full Source Code Scan
Full Source Code Scan

One easy way around this is to maintain a flag that monitors whether the script is in its first itera-
tion; if so, constant declarations are handled; if not, they’re ignored because the constant list has
already been built. Check out Figure 4.9.

This is a reasonable solution, and will be necessary if you stick to a single-pass approach. However,
the two-pass approach allows you to solve the problem in a more elegant way. Remember, even if
the DefConst commands are ignored in subsequent iterations of the script, there’s still the small
overhead of reading each command string from the script buffer and determining whether it’s a
constant declaration. This in itself takes time, and although individual instances will seem instan-
taneous, if you have 20 constant declarations per script, and have 50 script-controlled characters
running around, you're looking at quite a bit of useless string comparisons.

The two-pass method lets you define your constants ahead of time, and then immediately dispose
of all instances of DefConst so that they won’t bog you down later. Remember, even though this
method operates in two passes, the first pass is only performed once—looping the script only
means repeating the second pass (execution). If the first pass over the script builds up the con-
stant list by handling each DefConst command, there’s no need to hold on to the actual code in
which these constants are defined any longer. On the most basic level, you can simply free each

E 4. ADvANnceD CoMvAND-BASED SCRIPTING

Execution // Define some directions
Begins DefConst UP 0
E— DefConst DOWN 1
DefConst LEFT 2
DefConst RIGHT 3
Constant
declarations
handled,
// Move the player in a circle ?,;Egi:ns;
SetPlayerDir UP
MovePlayer 0 -20
SetPlayerDir LEFT
MovePlayer -20 0 -
SetPlayerDir DOWN
. MovePlayer 0 20
w':h ﬂ*:g SetPlayerDir RIGHT
SeLOMY "~ MovePlayer 20 0
script code
executes
again
Figure 4.9
A flag can be maintained to prevent constant declarations to be executed multiple times.
L LT

string in the script array that con-
tains a DefConst command, and
tell the interpreter to check for
and ignore null pointers. Now, the
comparison of each line’s com-
mand to DefConst can be eliminat-
ed entirely, saving time when large
numbers of scripts are running
concurrently.

So one benefit of the two-pass
approach is that it alleviates a
small string comparison overhead.
Granted, this is mostly a theoreti-
cal advantage, but it’s worth

TIP

An even better way to handle the initial disposal of
DefConst lines from the script is to store the script’s
code in a linked list, rather than a static array.This
way, nodes containing DefConst lines can be
removed from the list entirely, further saving you
from having to check for a null pointer every time a
line of code is executed. Because removing a node
from a linked list automatically causes the pointers
in the previous and next nodes to link directly to
each other, the script will execute at maximum
speed, completely oblivious to the fact that it con-
tained constant declarations in the first place.

[[1

[

New DATA TYPES E

mentioning nonetheless. A real application of two-pass execution, however, is eliminating the
idea of constants altogether at runtime.

If you think about it, constants don’t provide any additional functionality that wasn’t available
before as far as actual script execution goes. For example, consider the following script fragment:

DefConst MY_CONST 20
MyCommand MY_CONST

This could be rewritten in the following manner and have absolutely no impact on the script’s
ultimate behavior whatsoever:

MyCommand 20

In fact, the previous line of code would run faster, because the DefConst line would never have to
be executed and the constant list would never have to be searched in order to convert MY_CONST to
the integer literal value of 20. When you get right down to it, constants are just a human luxury—
all they do is let programmers think in more natural, tangible terms (it’s easier to remember UP,
DOWN, LEFT, and RIGHT than it is to remember 0, 1, 2,
and 3). Furthermore, they let you use the same

value over and over within scripts without worrying NOTE :

about needing to change each instance individually Cohstants defined with C’s

later. Although these are indeed useful benefits, ffdefine directive don’tactually
they don’t help the script accomplish anything new ‘persist until runtime— the com-
that it couldn’t before. And as you've seen, they add piler (or rather, the preprocessor)
an overhead to the execution that, although often replaces all instances of the con-

negligible, does exist. stant’s name with its value. This

) allows the coder to deal with the
The two-pass approach lets you enjoy the best of symbol, whereas the processor is
both worlds, however, because it gives you the ability just fed raw data as it likes it.

to eliminate constants entirely from the runtime
aspect of the script. This is done through some basic
preprocessing of the script, which means you actually make changes to the script code before
attempting to execute it. Specifically, as the first pass is being performed, each parameter of each
command is analyzed to determine whether it’s a constant. If so, it’s replaced with the integer
value found in its corresponding node in the constant list. This can be done a number of ways,
but the easiest is to create a new string about the same size as the existing line of code, copy
everything in the old line up until the first character of the constant, write the integer value, and
then write everything from just after the last character in the constant to the end of the line. This
will produce a new line of code wherein the constant reference has been replaced entirely with
its integer value. This can even be applied to the otherwise builtin TRUE and FALSE keywords for
the same reasons. Check out Figure 4.10 to see this in action.

4. ADVANCED CoMMVAND-BASED SCRIPTING

Original Code

SetPlayerDir [LEFT —
MovePlayer -20 0
Pause PAUSE DUR
ShowTextBox "Hey!"

Constant List

Up |0

DOWN | 1

LEFT 2 |

1 . i

Figure 4.10
Preprocessed Code
Directly replacing con-

SetPlayerDir 2 stant references with
MovePlayer -20 0
8
Pause 200

ShowTextBox "Hey!"

their values improves

runtime performance.

Now, with the preprocessed code entirely devoid of constant references, the constant list can be
disposed of entirely and any extra code written into GetIntParam () for handling constants can be
removed. The finished script will now appear to the interpreter as if it were written entirely by
hand, and execute just as fast. How cool is that?

Loading Before Executing

Aside from the added complexity

of the two-pass method, there is
one downside. Especially in the
case of constant preprocessing,
a two-pass interpreter will be
performing a considerable
amount of string processing
and manipulation in its first
pass, which means steps should
be taken to ensure that only the
second pass is performed at
runtime.

Just as graphics and sound are
always loaded from the disk

TIP

In addition to loading all scripts up front, another way |:
to improve overall performance is to implement a
caching mechanism that orders scripts based on how
recently they were active.This way, scripts can slowly
be phased out of the system. A script that hasn’t
been used recently is less likely to be reused than a
script that has just finished executing. Once a script
reaches the end of the cache, it can be unloaded
from memory entirely. This is an efficient method of
memory organization that helps intelligently opti-
mize the space spent on in-memory scripts.

[1 [1

SIMPLE ITERATIVE AND ConDITIONAL LoGIc E

long before they’re actually used, scripts should be both loaded and preprocessed before run-
ning. This allows the first of the two passes to take as much time as it needs without intruding on
the script’s overall runtime performance. What this does mean, however, is that your engine
should be designed specifically to determine all of the scripts it will need for a specific level,
town, or whatever, and make sure to load all of them up front.

Once in memory, a preprocessed script can be run once or looped with no additional perform-
ance penalty. This allows the game engine to invoke and terminate scripts at will, with the assur-
ance that all scripts have been loaded and prepped in full already.

SIvMPLE ITERATIVE AND
ConoiTioNAL Loaic

It goes without saying that, just as in traditional programming, iterative and conditional logic play
a huge role in scripting. Of course, simple command-based languages are designed specifically to
avoid these concepts, as they’re generally difficult to implement and require a number of other
features to be added as well (for example, its hard to use both looping and branching without
variables and expressions).

However, applications for both loops and branching logic abound when scripting games, so you
should at least investigate the possibilities. For example, consider the NPC behavior you scripted
in the last chapter. NPCs are a great example of the power of command-based scripting, because
they can often get by with simple, predictable, static movement and speech. However, especially
in the case of RPGs, with the turbulent nature of their always-changing game worlds, even non-
pivotal NPCs help create a far more immersive world if they can manage to react to specific
events and conditions (Figure 4.11 illustrates this).

Conditional Logic and Game Flags

For example, imagine a simple villager in an RPG. The player can talk to this character, invoking
a script that defines his reaction to the player’s presence via both speech and movement. The
character talks about the weather, or whatever global plague you’re in the process of valiantly
defeating, and seems pretty lifelike in general. The problem arises when you talk to him more
than one time and receive the same canned response every time. Also, imagine returning to town
after your quest is complete and hearing him make continual references to the villain you've
already destroyed! The player won’t appreciate going to the trouble of saving the world if none of
its inhabitants is intelligent enough to know the difference.

The common thread between both repeatedly talking to the character, as well as talking to him
or her again after completing a large task, is that the conditions of the world are slightly differ-
ent. In the first case, nothing has really changed, aside from the fact that this particular NPC has

E 4. ADvANnceD CoMvAND-BASED SCRIPTING

Figure 4.11
MoveNPC -20°0 Command-based
° e | =il .0 scripts are good for
N o/ predictable, “canned”
%2 NPC movement.
(e
.
@ <
= o]
o =
1 :I = >
o
e o — °e e
1 N S i
. o
MoveNPC 8 0
e @

been talked to already. In the second case, the NPC now lives in a world no longer threatened by
“the ultimate evil,” and can probably react in a much cheerier manner. As discussed in Chapter 2,
these are all examples of game flags.

Game flags are set and cleared as various events transpire, and persist throughout the lifespan of
the game. Each flag corresponds to a specific and individual event, ranging from mundane details
like whether you've talked to Ed on the corner, all the way up to huge accomplishments like defus-
ing the nuke embedded in the planet’s central fusion reactor. Check out Figures 4.12 and 4.13.

In both cases, the change was binary. You've talked to Ed or you haven’t. You've defused the
bomb or you haven’t. You have enough money to buy a sword
or you don’t. Because all of these conditions are either on or
off, you can add very simple conditional logic to your scripts NOTE _

that does nothing more than perform one of two possible Of course, game flags
actions depending on the status of the specified flag. don’t have to be binary.

Because the game’s flags are probably going to be stored in "PHcy can also restieith-

an array or something along those lines, each flag can likely
be referenced with an integer index. This means a condition-
al logic structure would only need the integer of the flag the
script wants to check, which is even easier to implement.

in a range of values or
states, but for simplicity’s
sake. this chapter uses off
and on for now.

SIMPLE ITERATIVE AND ConDiTIoNAL LoGic =4

Figure 4.12
S 2 .
‘g s - Game flags maintain a
© c ::. - S list of the status of the
- = o o=} - = .
= = = ot s = game’s major chal-
= = = = =
= B = = ot = lenges and milestones.
@] @ [=] = -
= = = = = s
E a & S & S c
0 1 2 3 4 5 I:
. D , i
—— TRUE —= _j ShowTextBox "Great Job!"
Defused
Nuke
Flag
L 1 "
L FALSE —= /_j ShowTextBox "Help Us!

Figure 4.13

Using game flags to alter the behavior of NPCs based on the player’s actions.

Furthermore, you can use the symbolic constants described in the previous section to give each
flag a descriptive name such as ED_TALKED_TO or NUKE_DEFUSED.

Specifying a flag with either an integer parameter or constant is easy. The real issue is determin-
ing how to group code in such a way that the interpreter knows it’s part of a specific condition.
One solution is to take the easy way out and place a restriction on scripts that only allows individ-
ual commands to be executed for true and false conditions. This might look like this:

If NUKE_DEFUSED
ShowTextBox "You did it! Congrats!"
ShowTextBox "Help! There's a nuke in the reactor!”

E 4. ADvANnceD CoMvAND-BASED SCRIPTING

In this simple example, the new If command works as follows. First, its single integer parameter
(which, of course, can also be a constant) is evaluated. The following two lines of code provide
both the true and false actions. If the flag is set, the first of these two lines is executed and the
second is skipped. Otherwise, the reverse takes place. This is extremely easy to implement, but it’s
highly restrictive and doesn’t let you do a whole lot in reaction to various flag states. If you want
to do more than one thing as a the result of a flag evaluation, you have to precede each com-
mand with the same If NUKE_DEFUSED line, which will obviously result in a huge mess.

Grouping Code with Blocks

:I An easier and more flexible solution is to allow the script to encapsulate specific chunks of its
code with blocks. A block of script code is just like a block of C/C++ code, and even more like a

1 C/C++ function—it wraps a sequential series of commands and assigns it a single name by which
it can be referenced. In this way, the commands can be thought of by the rest of the script as a
:I singular unit. Here’s an example of a block definition:

// 1f the nuke has been defused

Block NukeDefused

{

// The NPC should congratulate the player
ShowTextBox "You did it! Congrats!"

Pause 400

// Then he should jump up and down
PlayNPCAnim JUMP_UP_AND_DOWN

// If the nuke is still primed to detonate

Block NukePrimed

{

// The NPC should seem worried

ShowTextBox "Help! There's a nuke in the reactor!"
Pause 400

// So worried, in fact, that he runs in a circle
SetNPCDir LEFT

MoveNPC -24 0

SetNPCDir DOWN

MoveNPC 0 24

SetNPCDir RIGHT

MoveNPC 24 0

SIMPLE ITERATIVE AND ConDITIONAL LoGIc E

SetNPCDir UP
MoveNPC 0 -24
}

These blocks provide much fuller reactions to each condition, and can be referred to with a sin-
gle name. Now, if the If command is rewritten to instead accept three parameters—an integer
flag index and two block names—you could rewrite the previous code like this:

If NUKE_DEFUSED NukeDefused NukePrimed

Slick, eh? Now, with one line of code, you can easily reference arbitrarily sized blocks that can
fully handle any condition. Of course, you can still only handle binary situations, but that should
be more than enough for the purposes of a command-based language. Check out Figure 4.14.

Figure 4.14
If FLAG_INDEX TrueBlock FalseBlock)
Using blocks to encap-

Block TrueBlock sulate script code and

{ refer to it easily.
ShowTextBox "False."
Pause 800

}

Block TrueBlock
{
- ShowTextBox "True."”
Pause 800
1

Of course, this only a conceptual overview. The real issue is actually routing the flow of execution
from the If command to the first command of either of the blocks, and then returning when fin-
ished. The first and most important piece of information is where the block resides within the
script. Naturally, without knowing this, you have no way to actually invoke the proper block after
evaluating the flag. In addition, you need to know when each block ends, so you know how many
commands to execute before returning the flow of the script back to the If.

The Block List

This information can be gathered in the same way the constant list was pieced together in the
first pass of the two-pass approach discussed earlier. In fact, blocks almost require an initial pass to

E 4. ApDvAnceD CoMvAND-BASED SCRIPTING

be performed after loading the script, because attempting to collect information about a script’s
blocks while executing that same script is tricky and error-prone at best.

Naturally, you’ll store this information in another linked list called the block list. This list will con-
tain the names of each block, as well as the indexes of the first and last commands (or, if you pre-
fer, the amount of commands in the block, although either method will work). Therefore, in
addition to scouting for DefConst lines, the first pass also keeps an eye out for lines that begin with
the Block command. Once this is found, the following process is performed:

B The block name, which follows the Block command just as the constant identifier fol-
lowed DefConst, is read.
:I B The name of the block is verified to ensure that it’s a valid name, and the block list is
searched to ensure that no other block is already using the name.

'I B The next line is read, which should contain an open brace only.
B The next line contains the block’s first command; this index is saved into the block list.
B Each subsequent command is read until a closing brace is found. This is the final com-
:I mand of the block and is also saved to the table.

Check out Figure 4.15 to see this process graphically. With the block list fully assembled, the exe-
cution phase can begin and the If commands can vector to blocks easily. Of course, there’s one
final issue, and that’s how the If command is returned to once the block completes. An easy solu-
tion consists simply of saving the current line of code into a variable before entering the block.
Once the block is complete, this line of code is used to return to the If (or rather, the command
immediately following it), and execution continues. As you'll see later in the book, this process is
very similar to the way function calls are facilitated in higher-level languages. Figure 4.16 illus-
trates the process.

Block Name

Block MyBlock Block List
{

MovePlayer -20 0
ShowTextBox "Hello!™
PlaySound "Echo.wav"
Pause 400
}

First Command Index Name | MyBlock

——=| First Index | 2

First Index | 4

Last Command Index

[= L » B — T L R X B —

Figure 4.15

Saving a block’s info in the block list.

SIMPLE ITERATIVE AND ConDITIONAL LoGIc E

g_iCurrLine

* Save current line <~
® Read Block List to find
block's first command

e — Block TrueBlock

{
If FLAG_INDEX TrueBlock FalseBlock ShowTextBox "True."

t Pause 800
= Read current line 1

N g iCurrLine

Figure 4.16 |:

Saving the current line of code before vectoring to a block allows the block to return.

| — |S——

TIP

Earlier in the chapter | discussed directly replacing constants within the
script’s code with their respective values in a preprocessing step that
allowed the script to execute faster and without the need for a separate
constant list. This idea can be applied to blocks as well; rather than forc-
ing If commands to look up the block’s entry in the block list in order
to find the index of its first command, that index can be used to directly
replace the block name.

1 1

Iterative Logic

Getting back to the original topic, there’s the separate issue of looping and iteration. Much like
the If command, a command for looping needs the capability to stop at a certain point, in
response to some event. Because this simple scripting system is designed only to have access to
binary game flags, these will have to do.

Looping can be implemented with a new command, named While because it most closely match-
es the functionality of C/C++’s while loop. While takes two parameters, a flag index and a block
name. For example, if you wanted an NPC to run to the east (away from the reactor), stopping to
yell and scream periodically, until the nuke was defused, you might write a script like this:

E 4. ADvANnceD CoMvAND-BASED SCRIPTING

Block RunlLikeHell

{

// Run to the left/east, away from the reactor
MoveNPC 80 0

// Stop for a moment to scream bloody murder
ShowTextBox "WE'RE ALL GONNA DIE!!!"

Pause 300

// Keep moving!

MoveNPC 80 0

// Scream some more

_] ShowTextBox "SERIOUSLY! IT'S ALL OVER!!!"
Pause 300

1 // As long as the loop runs, this block will be executed over and over
}

:I // If the nuke is still primed, keep our poor NPC moving
While NUKE_PRIMED RunLikeHell

The cool thing is, the syntax of While almost gives it an English-like feel to it: “While the nuke is
primed, run like hell!” Check out Figure 4.17 for a visual idea of how this works.

You may have noticed, however, that you’re now using a flag called NUKE_PRIMED instead of
NUKE_DEFUSED, like you were earlier. This is because, so far, there’s no way to test for the opposite of
a flag’s status, whether it be set or cleared. You can alleviate this problem by adding the possibility
for a C/C++style negation operator to precede the flag index in a While command, which would
look like this:

While ! NUKE_DEFUSED RunLikeHell

Figure 4.17

TRUE —= e Execute Block Looping the same
block until the speci-

fied flag is cleared.

Loop [:FI:::I(
Execution Staug:s

& Skip Block
® Terminate Loop

FALSE —==

SIMPLE ITERATIVE AND ConDITIONAL LoGIc E

This is a decent solution, but it’s a bit complex; you now have to test for optional parameters,
which is more logic than you're used to. Instead, it’s easier to just add another looping com-
mand, one that will provide the converse of While:

Until NUKE_DEFUSED RunLikeHell

Simple, huh? Instead of looping while a flag is set, Unti1 loops until a flag is set. This allows you to
use the same techniques you're used to. Of course, there’s no need to actually implement two
separate loop commands in the actual interpreter’s code. While and Unti1 can be handled by the
same code; Unti1 just needs to perform an automatic negation of the flag’s value.

The looping commands of course use the same the block list gathered to support If, so overall,
once If is implemented, While and Unti1 will be trivial additions. Also, just as If saves the current
line of code before invoking a block, the looping commands will have to do so as well so sequen-
tial execution can resume when the loop terminates.

Nesting

The addition of looping and branching commands inadvertently exposed you to the concepts of
grouping common code in blocks, and invoking those blocks by name. Because this concept so
closely mirrors the concept of functions, you may be wondering how nesting would work. In
other words, could a Block contain an If or While command of its own?

Given the current state of the runtime interpreter, the answer is no. Remember, the only reason
you can safely invoke a block in the first place is because you save the line of script to which it will
have to return in a variable. If you were to call another block from within this block, it would per-
manently overwrite that variable with a new index, thus robbing the first block of the ability to
return to the command that invoked it.

The best way to support nesting is to implement an invocation stack that maintains each of the
indexes that blocks will need to return, in the order in which the blocks were invoked. For exam-
ple, consider the following code:

While FLAG_X BlockX

Block BlockX

{

ShowTextBox "Block X called."
Pause 400

While FLAG_Y BlockY

}

4. ADVANCED CoMMVAND-BASED SCRIPTING

Block BlockY

{

ShowTextBox "Block Y called."
Pause 400

While FLAG_Z BlockZ

}

Block BlockZ

{

ShowTextBox "Block Z called."
:I Pause 400

}

1 First BlockX is called, which will push the index of the first While line onto the stack. Then, BlockY
is called, which pushes the index of BlockX’s While line onto the stack. The same is done for

:I BlockY and its While command, which finally calls BlockZ. BlockZ immediately returns after display-
ing the text box and pausing, which pops the top value off of the stack and uses it as the index to
return to. Execution then returns to BlockY, which pops the new top value off the stack and uses
it to return to BlockX. BlockX, which is also returning, pops the final value off the stack, leaving the
stack once again empty, and uses that value to return to the initial While command. Figure 4.18
illustrates an invocation stack in action.

Block Z
{
Block Y
L —
Block X (Execute 1
oC — [Black
{ Execute 1
Timgy Block
1
g_iCurrLine g_iCurrLine
—= | g iCurrline g _iCurrlLine g _iCurrLine
Execute
Block

Figure 4.18

An invocation stack allows nested iterative and conditional logic.

EVENT-BASED SCRIPTING E

As you can see, support for nested block invocation is not a trivial matter, so I won’t discuss it past
this. Besides, as the book progresses, you'll get into real functions and function calls, and learn all
about how this process works for serious scripting languages. Until then, nesting is a luxury that

isn’t necessary for the basic scripting that command-based languages are meant to provide.

EVENT=-BASED SCRIPTING

Games are really nothing more than a sequence of events, which naturally plays an important
role in scripting. Events are triggered in response to both the actions of the player and non-
player entities, and must be handled in order to create a cohesive and responsive game environ-
ment. Because scripts are often used to encapsulate portions of the game’s logic, it helps to be
able to bind scripts to specific events, so that the game engine will automatically invoke the script

upon the triggering of the event.

You can already do this, because your scripts are stored in memory and can be run at any time (if
you recall, the final demo of the last chapter stored a script within each NPCs structure, which
could be invoked individually by passing an index parameter to RunScript ()). All that’s necessary

!

[

is to let the game engine know the index into your array of currently loaded scripts of the specific
script you'd like to see run when a certain event happens, and the engine’s event handler should

take care of the rest.

Events, like many things, however, come in varying levels. There are very high-level events, such
as the defusing of the nuke. There are then lower-level events, like talking to a specific NPC in a

specific town. Events can be even of a lowerlevel than

that. That individual NPC alone may be

able to respond to a handful of its own events. In this regard, events often form a hierarchy,
much like a computer’s file system. Figure 4.19 illustrates an event hierarchy.

As it stands now, your system only deals with scripts on the file level. Each file maps directly to

one script, which, in turn, can be used to react to one

event. This is fine in many cases, but when

Figure 4.19
Game Game events form a
)'s . hierarchy.
NPC Interaction Reactor
~ N
Steve Ed
VA SN

Push Talk Offer Money

E <. ADVANCED CoMMAND-BASED SCRIPTING

you start getting lower and lower on the heirarchy, and events become more and more specific, it
gets cumbersome to implement each of these events’ scripts in separate files. For example, if an
NPC named Steve can react to three events—being talked to, being pushed, and being offered
money—ryour current system would force you to write the following scripts:

steve_talk.chl
steve_push.cbl
steve_offer_money.cbl

After a while, creating a new file for each event will get ridiculous. It won’t be long before you
:I reach this point:

steve_approach_while_holding_red_sword.cbl

1 It would be much nicer to be able to store Steve’s entire event handling scripts in a single file
called steve.cbl. You already have a system for defining blocks with symbolic names, so all you
:I really need to do is allow the game engine to request a specific block to run, rather than an

entire script. For example, imagine rewriting RunScript () to accept a script index as well as a
block name. You could then use it like this:

RunScript (SCRIPT_NPC_STEVE, "Talk");

This allows script files and blocks to map more naturally to levels of the event hierarchy, as shown
in Figure 4.20. Inside the function, RunScript () would then simply reposition the current line of
the script to the first function of the block, using the block list in the same way If, While, and
Until did. This is actually even easier, because there’s no return index to worry about; once the
block is finished, the RunScript () function just returns to its caller.

NOTE

One important issue regarding the invocation of specific script blocks
e is that it will disrupt execution if that script is already running.
AL Because of this, it’s bestto write certain scriptsfor.the-purpose of
' running concurrently in the background with the game engine (syn-
chronously), whereas other scripts are designed specifically to provide

a number of blocks to be invoked on a non-looping basis in reaction to
events (asynchronously). Therefore, Steve may instead be implemented
with two files: steve_sync.cb1, which runs.in the background indefi-
nitely like the NPC scripts of the last chapter, and'steve_async.cbl,
which solely exists to provide blocks the game engine can invoke to
handle Steve-specific events.

CoviPILING SCRIPTS TO A BINARY FORMAT BREY/

Figure 4.20
Scripts/ Mapping scripts’
file/directory structure
— | NPCs/ to the game’s event
hierarchy.
—— | Steve.cbl
Block Push
Block Talk
Block OfferMoney
L | | Ed.cbl
- | Reactor/

CoviPILING SCRIPTS TO A
BINARY FORMAT

Thus far you’ve seen a number of ways to enhance a script’s power and flexibility, but what about
the script data itself? You're currently subjecting your poor real-time game engine to a lot of string
processing that, at least when compared to dealing strictly with integer values, is slow. Just as you
learned in Chapter 1, interpreting a script on a source-code level is considerably slower than execut-
ing a compiled script expressed in some binary format, yet that’s exactly what you’re doing.

Fortunately, it would be relatively easy to write a “compiler” that would translate human-readable
script files to a binary format, and there are a number of important reasons why you would want
to do this, as discussed in the following sections.

Increased Execution Speed

First and foremost, scripts always run faster in a compiled form than they do in source code form.
It’s just a simple matter of logic—if processing human-readable source code is more complex and
taxing on the processor than processing a binary format, the binary format will obviously execute
much faster.

Think about it—currently, every time a command is executed, the following has to be done:

B The command is read with a call to GetCommand (). This involves reading each character
from the line until a space is found and placing these characters in a separate string buffer.

E 4. ADvANnceD CoMvAND-BASED SCRIPTING

B The string buffer containing the command is then compared to each possible command
name, which is another operation that requires traversing each character in the string.
Each character is read from the string buffer and compared to the corresponding char-
acter in the specified command name to make sure the strings match overall.

B Once a command has been matched, its handler is invoked which performs even more
string processing. GetStringParam () and GetIntParam () are used to read string and
integer parameters from the source line, performing more or less the same operation
performed by GetCommand ().

W GetIntParam () might not have to traverse the constant list, depending on whether a pre-

i :I processing phase was applied to the script upon its loading.

B The If, While, and Until commands will have to search the block list in order to find the
first command of the destination block, again, unless the script was preprocessed to

1 replace all block names with such information.

Yuck! That’s a lot of work just to execute a single command. Now multiply that by the number of
:I commands in your script, and further multiply that by the number of scripts you have running
concurrently, and you have a considerable load of string processing bearing down on the CPU
(and that says nothing of any script blocks that may be called by the game engine asynchronously
in response to events, which of course add more overhead).

Fortunately, compilation provides a much faster alternative. When all of this extraneous string
data is replaced with numeric data that expresses the same overall script, scripts will execute
exponentially faster. Check out Figure 4.21.

String-Based
MovePTlayer : i
Substring | String
ShowTextBox M Comparison |
Pause '
Slow Slow
— Execution
Numeric
i[} Integer |
i Compaisn
Fast
Figure 4.21

Numeric data executes much faster than string data.

CoviPiLING SCRIPTS TO A BINARY FORMAT E

Detecting Compile-Time Errors

The fastest script format in the world doesn’t matter if it has errors that cause everything to
choke and die at runtime. Despite the simplicity of a command-based language, there’s still plen-
ty of room for error, both logic errors that simply cause unexpected behavior, and more serious
errors that bring everything to a screeching halt. For example, how easy is it to misspell a com-
mand and not know it? The current implementation would simply ignore something like
“MuveNPC”, causing your NPC to inexplicably do nothing. Of course, parameters are a serious
source of potential errors as well. Parameters of the wrong type can cause serious errors as well—
providing an integer when a string is expected will cause GetStringParam () to scan through the
entire line looking for a non-existent double-quote terminator. Simply not providing enough
parameters can lead to runtime quirks, from simple logic errors to string boundary violations.

A compiler can detect all of this long before the script ever has to execute, allowing you to make
your changes ahead of time. A compiler simply won’t produce a binary version of the script until
all errors have been dealt with, allowing you to run your scripts with confidence. Also, less poten-
tial for runtime errors means less runtime error checking is needed, contributing yet another
small performance boost.

Malicious Script Hacking

Lastly, and in many ways most importantly, is the issue of what malicious players can do when a
script is in an easily readable and editable form. For example, the While and Unti1 loops practical-
ly read like broken English, which just screams “hack me!” to anyone who happens to load them
into a text editor.

When scripts are that easily modifiable, every line of dialog, every NPC movement, and every oth-
erwise cinematic moment in your game is at the mercy of the player. In the case of single player
games, this a marginally serious issue, but when multiplayer games come into play, true havoc can
be wreaked. With a single player game, it’s really only your artistic vision that’s at stake, and the
possibility of the player either cheating or screwing up their personal version of the game.
Obviously this isn’t ideal, but it’s nothing to get worked up over because it won’t affect anyone
other than the hacker.

Script hackers can ruin multiplayer games, however, which often rely on clientside scripts to con-
trol certain aspects of the game’s logic. Like all clientside cheats, such hacks may result in one
player having an unfair advantage over the rest of the players. For example, if one of your scripts
causes the players character to slow down and lose accuracy when he’s hit with a poison dart, a
quick change to poison_dart.cbl can give that player an unconditional immunity that puts every-
one else at a disadvantage.

4. ADVANCED CoMVAND-BASED SCRIPTING

Compiled scripts are not in a format that’s easily readable by humans, nor are they even easily
opened in a text editor in the first place. Unless the player is willing to crack them open in a hex
editor and understands your compiled script format, you can sleep tight knowing that your game
is safe and all is well.

How a CBL Compiler Works

A command-based language is easily compiled. Really, all you need to do is assign each command
a unique integer value, and write a program that will convert each command from a string to this
i value. This compiled data is then written sequentially to a separate, binary file, and a new run-

:I time environment is created to load and support the new format.

For example, imagine your game’s particular language is composed of the commands listed in

1 Table 4.1.

:I Of course, it also supports the more generic, domain-independent commands, listed in Table 4.2.

These commands can each be assigned a unique integer value, which could be called a command
code, as listed in Table 4.3.

Table 4.1 Example Language Commands

Command Description
MovePlayer Moves the player to a specified X,Y location.
GetItem Adds the specified item to the player’s inventory.

PlayPlayerAnim Plays a player animation.

MoveNPC Moves the specified NPC to the specified X,Y location.
PTayNPCAnim Plays an NPC animation.

PlaySound Plays a sound.

PlayMovie Plays a full-screen movie.

ShowTextBox Displays a string of text in the text box.

Pause Pauses execution of the script for the specified duration.

CoviPiLING SCRIPTS TO A BINARY FORMAT 141

Table 4.2 Domain-Independent Commands

Command Description
DefConst Defines a constant and assigns it the specified integer value.
If Evaluates the specified flag and executes one of the two specified —
blocks based on the result.
While Executes the specified block until the specified flag is cleared. |:
Until Executes the specified block until the specified flag is set.
|

Table 4.3 Command Codes

Command Code

DefConst 0
If

While

Until
MovePlayer
GetItem
PlayPlayerAnim
MoveNPC
P1ayNPCAnim

VO 00 N o0 U1 A W BN

PTaySound

o

PTayMovie

ShowTextBox

N

Pause

4. ADVANCED CoMMVAND-BASED SCRIPTING

This means that, if the compiler were fed a script that consisted of the following sequence of
commands (ignore parameters for now):

DefConst
DefConst
MovePlayer
MoveNPC
PTaySound
MovePlayer
GetItem
-] PlaySound

The compiler would translate this to the following numeric sequence (see for yourself by compar-
1 ing it to the previous table):

00479459

:I As long as you keep ignoring parameters for just a moment, you can turn this into a fully descrip-
tive, compiled script by simply preceding this data with another integer value that tells the script
loader how many instructions there are to load:

800479459

The script loader then reads this first integer value, uses it to determine how many instructions
the file contains, and reads them into an array.

Executing Compiled Scripts

Once this file is loaded into memory, it can be executed easily—a lot more easily than source
code can be interpreted. Instead of reading the command string from the current source line,
you can just read the value of the array index that corresponds to the current line and enter a
switch block that routes control to the proper handler. For example:

// Read the command
int iCurrCommand = g_Script [iCurrLine 1;

// Route control to the proper command handler
switch (iCurrCommand)
{
case COMMAND_DEFCONST:
// DefConst handler
break;

CoviPILING SCRIPTS TO A BINARY FORMAT LS =S

case COMMAND_MOVEPLAYER:
// MovePlayer handler
break;

case COMMAND_PAUSE:
// Pause handler
break;

These new numeric “command codes” make everything much faster, smaller, easier, and more
robust. Of course, you are skipping one major advantage that you can easily take advantage of
when compiling.

Compile-Time Preprocessing

You've already seen the advantage of preprocessing the DefConst command, as well as references
to constants to block names. Of course, you had to do this when the script was loaded, in the
game engine, which meant more room for error as the game is initializing and running.
Offloading this process to the compiler makes the game engine’s code much simpler and, as
always, reduces the chances of runtime errors.

Preprocessing Constants

Because of this, DefConst doesn’t even need to be compiled to a command code; rather, it can
simply be preprocessed out of the script at compile-time, thus shifting all of the codes down by
one. The language’s new codes are listed in Table 4.4.

This means the compiler will now be responsible for generating the constant list and using it to
replace constant references with their values. Scripts can now be executed with no preprocessing
step and without the need to maintain or consult a constant list.

Block Reference Preprocessing

The block list can, for the most part, be handled by the compiler as well. In the compiler’s first
pass over the source, the block list described earlier will be built up and used to replace all refer-
ences to block names with the block’s index into the list so the string component can be discard-
ed. At runtime, this index will be used to find the block’s information when executing If, While,
and Unti1 instructions. Of course, the block list still has to persist until runtime, because the
game engine will need to know where each block begins and ends.

Each entry in the block list can therefore be written out to the compiled script file as two integer
values, the locations of the block’s beginning and terminating commands. In addition, this list

4. ADVANCED CoMMVAND-BASED SCRIPTING

Table 4.4 Revised Command Codes

Command Code

If 0
While

Until
:I MovePlayer
GetItem

1 PlayPTayerAnim
:I MoveNPC
PTayNPCAnim

PTlaySound

VO 00 N o0 U1 A W BN

PlayMovie

o

ShowTextBox

Pause

will be preceded with the number of entries it contains, just like you did with the command list
itself. For example, imagine a script has two blocks. The first block begins at the seventh com-
mand and ends at the twelfth, and the second begins at the 22nd and ends at the 34th. The
block list would then be written out like this:

27 12 22 34

The leading 2 tells you how many blocks are in the list, whereas the following values are the start-
ing and ending commands. The runtime environment can then load this into an in-memory
array and be ready to roll.

Parameters

Last is the issue of compiling parameters. Parameters are a bit more complex than commands,
because they come in a number of different forms. Fortunately, however, by the time preprocess-
ing is through, you’ll only have integers and strings to deal with. Naturally, integers are extremely

CoviPiLING SCRIPTS TO A BINARY FORMVAT R

simple to compile, because they’re already in an irreducible format. Strings, although more com-
plex, really can’t be compiled much either, aside from attempting to perform some sort of com-
pression (but then, that’s not compiling, it’s just compressing).

The first and most important step when compiling parameters is ensuring that the command has
been supplied with both the right number of parameters, as well as parameters of the proper
data type. Once this is taken care of, the next step is to write them out to the file, immediately fol-
lowing the command code. Because each command has a fixed number of parameters, the I‘_
loader can tell how many instructions to read based on the command code alone. The loader
then knows to read this number of parameters before expecting the next command code.
Integers can be written out as-is, as long as the script loader knows to always read four bytes. |:
Strings can be written out in their typical null-terminated form, as long as the loader knows this
as well. Figure 4.22 illustrates the storage of commands and parameters in a compiled script file.

Figure 4.22
MovePlayer -20 0 ShowTextBox "Hello!"
Commands and |:

\ / parameters are stored

in a tightly packed for-

3 -20 0 10 Hello!\o i cmpie

script.

The real issue is what to do with them in memory. Because parameters add a whole new dimen-
sion of data to deal with, you can no longer simply store the compiled script in an integer array.
Rather, each element of this array must be a structure that contains the command code and the
parameters. For simplicity’s sake, you can just give each element the capability to store a fixed
number of parameters, so you can pick some maximum that you know you’ll never exceed. Eight
should be more than enough.

However, because a parameter can be either a string or an integer, you need a way to allow either
of these possibilities to exist at any of the array’s indexes. This can be easily accomplished with
the following union:

union Param // A parameter

{
int iIntlLiteral; // An integer value
char * pstrStringliteral; // A string value

4. ADVANCED ComMvAND-BASED SCRIPTING

NOTE

On most 32-bit platforms, the size of an integer is usually indicative of

the size of a far/long pointer as well, which means that the total size of
the Param union will most often be four bytes, because the integer and

string pointer will perfectly overlap -with one another.

These parameters can then be stored in a static array, which is itself part of a larger structure that
:I represents a compiled command:

typedef struct Command // A compiled command

{

1 int iCommandCode; // The command code
Param ParamlList [MAX_PARAM_COUNT 1; // The parameter list

Remember, MAX_PARAM_COUNT is set to some number that is most likely to support any command,
like 8 or 16 (both of which are total overkill). Lastly, within each command handler, you can
now easily access parameters simply by referencing its ParamList [] array. There’s no dire need
for specific GetIntParam () or GetStringParam () functions, but it is always a good idea to wrap
array access in such functions to help abstract things. Figure 4.23 illustrates the in-memory
command array.

Figure 4.23

: Co l'ld Col 4 Storing commands and
: parameters in a single

BAsIC SCRIPT PREPROCESSING

The last subject I'd like to mention is the preprocessing of scripts as they’re compiled. You’ve
already seen some basic examples of preprocessing—both the compiler and an earlier version of
the script loader made multiple passes over the source code to replace constant and block refer-
ences with direct numeric values. In a lot of ways, this process is analogous to the #define direc-
tive of C/C++’s preprocessor. For example, the following script:

BAsIC ScRIPT PREPROCESSING 147

DefConst MY_CONST 256
MyCommand MY_CONST

Is basically doing the same thing as the small C/C++ code fragment:

fidefine MY_CONST 256
MyCommand (MY_CONST);

DefConst can therefore be viewed as a way to define simple macros, especially because the compil-
er will literally perform the same macro expansion that C/C++’s #define does. Of course, there’s
one other extremely useful preprocessor directive in C/C++ that everyone uses: #include.

Why would such simplistic command-based scripts need to include other files within themselves?
Well, under normal circumstances they wouldn’t, but with the introduction of the DefConst com-
mand, it’s possible for scripts to define large quantities of constants that are useful all across the
board. Without the capability to include scripts within other scripts, these constants would have
to be re-declared in each script that wanted to use them. This would be bad enough for reasons
of redundancy, but it can really cause problems when one or two of those constants need to be
changed, and 20 files have to be updated to fully reflect it.

For example, any decent RPG will have countless NPCs, all of which need to move around on the
map. As you've seen, the cardinal directions play an important part in this, which is why DefConst
proved so useful. So, imagine that you have 200 NPCs in your game, all of which need UP, DOWN,
LEFT, and RIGHT constants. Declaring them in all 200 files would be insanity.

The solution is a new command, IncludeFile, that includes files with the main script. For exam-
ple, let’s look at a file called directions.cbl that declares constants for the cardinal directions:

// The cardinal directions
DefConst UP 0

DefConst DOWN 1

DefConst LEFT 2

DefConst RIGHT 3

Note the file doesn’t even have any code in it; all it does is declare constants. Now, let’s look at an
NPC script file:

// Load the direction file
IncludeFile "directions.cbl"

// Use the directions in the code
SetPlayerDir UP

MovePlayer 0, -40

4. ADVANCED CoMMVAND-BASED SCRIPTING

Directions and other miscellaneous constants are one thing, but the real attraction here are

game flags. Remember, games may have hundreds or even thousands of flags, the constants for
which need to be available to all scripts. Declaring all of your flags in a single file means every
script can easily reference various events and states. For example, here’s a file called flags.cbl:

// Game flags

DefConst NUKE_DEFUSED 0
DefConst REACTOR_POWERED_DOWN 1
DefConst TOWN_DESTROYED 2
DefConst STEVE_TALKED_TO 3

And here’s a sample script that uses it:

1 // Include the game's flags
IncludeFile "flags.chl"

:I Until TOWN_DESTROYED MoveNPCs

[[

TIP

The game flag example
brings up an interesting
point—not only can con-
stant declarations be
included, but entire blocks
can be as well.

1 1

Assuming this file also declares a block called MoveNPCs, this script will cause the town’s NPCs to
move around until it’s destroyed. Check out Figure 4.24 for a graphical view of file inclusion.

game flags.chl

directions.chl

seript 0.chl seript 1.chl

seript 2.chl

seript 3.chl

Figure 4.24

Storing game flags and
other common con-
stants in a single file
that all scripts can
access is an intelligent

way to organize data.

BAsIC SCRIPT PREPROCESSING RIS

File-Inclusion Implementation

A file-inclusion preprocessor command is simple to implement, at least on a basic level. The idea
is that, whenever an IncludeFile command is found, that particular line of code is removed from
the script and replaced with the contents of the file it specifies. This means that a single line of
code can be expanded to N lines, which in turn means that you’ll have to make a change to the
way the compiler stores the source code internally. Assuming the compiler loads script source
files just as the examples from Chapter 3 did, it’s going to have everything locked up in a static
array. This is fine until a file needs to be loaded into the script at the position of an IncludeFile
command, at which point a large number of extra lines will need to be inserted into the array. |:

For this reason, the compiler should store the source in a linked list. This allows entire files to be
inserted at will.

The only real caveat to the file-inclusion command is that included files can in turn include files [
of their own. Because of this, the inclusion macro must be recursive—after a file is loaded into
the source code linked list, each of the nodes it added must be searched to determine whether I:
they too include files. If so, the process completes until a file is loaded that doesn’t include any
files of its own.

Remember, the inclusion command doesn’t — =

perform any syntax checking or compiling on CAUTION

its own—all it does is load into the raw text :| Because it’s entirely possible that two |:
data. The compiler then deals with everything files will attempt to include each other,

as if it were one big file; it has no idea that the there’s always the potential for such

files to catch themselves in an infinitely
recursive loop.To prevent this, you

should maintain an list of filenames ref-
erenced by IncludeFile commands, and
ignore any instances of IncludeFile that

contents of the source code linked list were
ever spread out among multiple files. For
example, the previous game flag example
would ultimately appear to the compiler like

this: reference filenames already in this list.

// Include the game's flags This will prevent any file from being

// Game flags :| loaded more than once, as well as any |:
DefConst NUKE_DEFUSED 0 recursive nightmares from emerging.
DefConst REACTOR_POWERED_DOWN 1 1 |

DefConst TOWN_DESTROYED 2
DefConst STEVE_TALKED_TO 3

Until TOWN_DESTROYED MoveNPCs

E 4. ApDvAnceD CoMvAND-BASED SCRIPTING

As you can see, even the comments were included, but of course, that doesn’t matter to the com-
piler. The contents of the source code linked list after every file has been included would most
likely appear cluttered and disorganized if you were to print it, but of course, the compiler could-
n’t care less as long as the code is syntactically valid. Check out Figure 4.25.

L

Compiled
{ Script

‘\\\
1 Fi-‘i! — —————= | Compiler — -
/

3 ‘ Preprocessor

File Inclusion
seript_0.chl ——

Figure 4.25

The preprocessor simply loads each file into a large script linked list as if they have always been one large unit.

SUMMARY

Phew! This chapter has covered a lot of ground, even if it was largely theoretical. Remember, this
chapter wasn’t designed to help you literally implement the topics covered here. Rather, I just
wanted to introduce a number of possible improvements to the system created in the last chapter,
as well as lay the groundwork for some of the fundamental concepts you’ll be exploring later in
the book.

Issues such as preprocessing, macro and file expansion, managing constants, and grouping code
into blocks all overlap heavily with the real compiler theory you’ll be learning as you progress
through the following chapters. Although everything discussed here was highly simplified and
watered down, the underlying ideas are all there and will hopefully put you in a better frame of
mind for tackling them in their true, real-life forms later. I personally find difficult stuff much eas-

ier to master when I've had a chance to think about it on a more simplistic level beforehand.
That was the idea of this chapter—whether you try to implement any of this stuff or not, it will
hopefully get the gears turning in your head a bit, so by the time you reach real compiler issues,
the light bulbs will already be flashing and you’ll find yourself saying “Hey! That’s almost exactly
how I thought it would work!”

Like I said, everything presented here is to be taken as theory, because I've hardly given you
enough details to outline a full implementation. However, you'll notice that every concept I used
to explain the conceptual implementation of these features was intermediate at best: string pro-
cessing, textbook data structures like linked lists and hash tables, and so on. Although this chap-
ter alone isn’t going to help a total beginner get anywhere, any coder with a decent grasp on
basic computer science should have no trouble getting virtually everything covered in this chap-
ter to work in a command-based scripting system.

In the end, my goal is to help you understand that even simple scripting can be extremely useful
if it’s applied properly, and maybe given some help with the sort of boosted feature set we dis-
cussed here. Actually implementing everything this chapter covered would be a lot of work, but it
would solve the vast majority of the scripting problems presented by mid-range games. Granted,
the triple-A titles out there on the market will need something more sophisticated, but what luck!
That’s exactly what the following pages will cover.

This page intentionally left blank

PART THREE

INTRODUCTION
TO PROCEDURHAL
S CRIPTING
LANGUAGES

This page intentionally left blank

et [. L 1[—-1 1

CHAPTER 5

INTRODUCTION
TO PROCEDURAL
S CRIPTING
SYSTEMS

\Hﬁ “Well, when all else fails, fresh tactics!”

_ L\a; ——=Castor Troy, Face/Off

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

1 n the last section, you took your first steps towards developing your own scripting system by
designing and implementing a command-based language from the ground up. Although the
finished product was rather modest, many of the concepts behind basic script execution were
illustrated first hand. The following chapters take things to the next level, however. In fact, it'd

:I probably be more appropriate to refer to what’s ahead as a entire paradigm shift—the sheer com-
plexity and depth of the components involved with the finished scripting system will require not
only a significant amount of structure and foresight, but a marathon runner’s endurance as well.

1 You'll learn how compilers, assemblers, and runtime environments work together to simulate a
basic CPU running inside your game, turning your engine into a virtual machine capable of run-
:I ning extremely powerful compiled scripts. No detail will be spared, so you probably won’t be sur-
prised that this topic will comprise the largest portion of the book—four sections to be exact.
The system you’re going to build over the course of these sections, called XtremeScript, will be
capable of handling virtually any task you can think of. If you can do it with C/C++, you can more
than likely do it with XtremeScript.

But before you get hip-deep in the nitty gritties, the first and most important step is to become
fully acquainted with this type of scripting system as a whole. A clear view of the big picture will
be more helpful in getting you started than anything else, so it’s first on the list of things to cover.

If you're ready, let’s get started. This chapter will cover

B The compilation of high-level code.

B The assembly of low-level code.

B The basic layout of a virtual machine.

B The design and arrangement of the XtremeScript system, which we’ll build throughout
the remainder of this book.

OVERALL SCRIPTING ARCHITECTURE

The overall architecture of a system like XtremeScript involves many interconnected compo-
nents, which themselves can be broken down considerably, as most of them are complex individ-
ual systems in their own right. On the most basic level, however, you have the layout illustrated in
Figure 5.1.

As you can see, there are really only three major components when you pan out far enough. All
three were briefly introduced in Chapter 1, but this time we’re going to dig a little deeper.

OVERALL SCRIPTING ARCHITECTURE Ri=w/

Figure 5.1

| High-Level Language l The high-level lan-

guage, low-level lan-

* guage, and virtual

| Low-Level Language machine can be con-

sidered the three most
*- basic parts of the
XtremeScript system.

High-Level Code

High-level code is the most widely recognized part of a scripting system. Because it’s what scripts
are written with in the first place, it’s the human interface to the script module and perhaps the
system’s most useful component. High-level languages (HLLs), which include examples such as
C, G++, Pascal and Java, were created so that problems could be described in an abstract, English-
like manner. This makes HLLs extremely versatile and directly applicable to countless fields, but
it’s in fact due to this human-friendly nature that they’re extremely inefficient when read directly
by a CPU.

Humans think in high-level terms; our minds are almost entirely based on the concept of multi-
ple levels of abstraction. This unfortunately separates us from our silicon-based friends, who pre-
fer to see things in much finer, absolute terms; in other words, they speak a low-level language of
their own. Naturally, high-level code must eventu-
ally be reduced to low-level code in order for a
CPU to execute it, so you use a program called a NOTE

compiler to handle this translation. The end Technically, XtremeScript isn’t exactly.
result is the same program, differing only in the a C subset; in addition to implement-
way it’s described. ing a smaller portion of the C lan-

. . guage, it also introduces a few of'its
XtremeScript, while also the name of our future

own constructs and features;and

scripting system as a whole, is more precisely the makes subtle changes to some of C’s
name of the high-level language that the system existing aspects. Either way, the lan-

is based around. XtremeScript is what’s known guage is clearly influenced heavily by
as a Csubset language, meaning it implements the C, so we might as well use the term.
majority of the C language you already use (but

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

not quite all). This is great news because it means you can write your script code in almost the
same language you’d use to write a game engine itself. The downside, however, is that C is a com-
plex language, and writing a program that compiles C code anything but a trivial task. The extra
effort involved, however, will be more than worth it in the end. In many ways, XtremeScript is
also very similar to other scripting languages like JavaScript and PHP. If you have experience with
either of these, you'll feel right at home.

In short, high-level code is what you write scripts with. A compiler translates it to a low-level code,
which can then be easily executed.

1 Low-Level Code

Low-level code, which most commonly refers to assembly language and machine code, is a way to
1 directly control a processor such as your central processing unit, floating-point processing unit,
or virtual machine (which is what you’re interested in). In order to maximize speed and mini-

:I mize memory requirements, low-level code consists of very simple instructions that, although of
limited use on their own, can be combined to solve problems of limitless complexity. For an
example of what low-level code is like, check out the following example.

Here’s some C code to execute a simple assignment expression:
A=(B+C)*8/5;

Here’s the same line of code after being reduced to a generic assembly language:

mov Tmp, B
add Tmp, C
mul Tmp, 8
div Tmp, 5
mov A, Tmp

Notice that the assembly version is, to put it in rather primitive terms, only doing “one thing” per
line. Although the C version can handle not only the entire expression but also the assignment
with only a single line, the assembly version requires five. To briefly explain what’s actually going
on here, assume that Tmp is a temporary storage location of some sort (often called a register). First
B is moved into T (notice that this notation places the destination (Tmp) before the source (B)). C is
then added to Tmp, so the temporary location now holds the sum of B and C. This sum is then
multiplied by 8 and divided by 5. With the expression completed, Tmp now holds the final result,
which is assigned to A with another mov (“move”) instruction.

Assembly language isn’t particularly difficult to code with once you're used to it, but it should
now be easy to understand why C is the preferred choice in most cases. The good news is that, for
the most part, all of your scripting will be done in XtremeScript rather than assembly. Although

OVERALL SCRIPTING ARCHITECTURE E

PC developers often turn to assembly language coding for an extra speed boost when maximum
performance is required (such as in the case of graphics routines), scripts stand to gain little
from it by comparison.

In accordance with my continuing theme of borrowing syntax from popular languages to make
your script system as familiar and easy-to-use as possible, the assembly language of the
XtremeScript system will be loosely based on the Intel 80X86 syntax that you might already be
familiar with. We’ll indeed take a number of creative liberties, but the Intel syntax will be pre-
served whenever possible. Once again, this eases the transition from writing engine code to writ-
ing script code in a game project and helps keeps things uniform and consistent.

Lastly, low-level code designed specifically to run on a virtual machine is often referred to as byte-
code; this is an important term, so keep it in mind.

The Virtual Machine

With the two major languages involved in your scripting system accounted for, the last piece of
the puzzle is the runtime environment. The virtual machine ultimately makes your scripts usable
because XtremeScript code isn’t compiled to the machine code of a physical processor such as
the 80X86. To reiterate what you learned in Chapter 1, recall that the general purpose of a VM is
to run code “on top” of the hardware CPU. It allows scripts to control the game engine just as the
interpreter component of your command-based script module did, albeit in a far more sophisti-
cated manner. See Figure 5.2.

Figure 5.2

When virtual machine
code (bytecode) runs inside
the VM, it’s said to be run-
ning on top of the CPU,
rather than inside it. This
once again refers to the
“levels” that you use to
describe languages; just as
C is a higher-level language
than assembly,
XtremeScript bytecode is a
higher level language than
80X86 machine code.

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

The XtremeScript virtual machine closely mirrors a hardware-based computer in many ways. For
example, it provides its own threading system to allow multiple scripts to run simultaneously; it
manages protected memory and other resources required by a running script; it allows scripts to
communicate with one another via a message system; and perhaps most importantly, it provides
an interface between scripts and the host application (the game itself), allowing the two to com-
municate easily. Figure 5.3 is a diagram of the VM’s general layout.

Figure 5.3

The basic layout of the

XtremeScript Virtual Machine (XVM)

:I Thread 0 Thread 1 Thread 2

Stack Stack Stack
M

7

XtremeScript virtual

machine.

[lue;e llue;e

—\ .

Because the VM is designed to run inside a host application rather than directly on the CPU, it
makes the scripts themselves completely platform independent. For instance, if you create and
release a game for Windows, and later decide to port it to Linux, the game’s scripts will run with-
out modification once the game engine and virtual machine have been rewritten for the new
platform. This is also how Java achieves its platform independence—the JVM (Java Virtual

A | DeePER Look AT XTREMESCRIPT E

Machine) has been written for a vast number of systems, allowing Java code to run on any of
them without rewriting a single line.

The XtremeScript Virtual Machine, referred to as the XVM, will be implemented as a static
library that can be dropped into any game project with minimal setup. It will be highly portable
from one project to the next, making it an invaluable tool in your game development arsenal.

A DEEPER Look AT XTREMESCRIPT =

Now that you understand the most fundamental layout of the XtremeScript system, let’s look a
bit closer. As mentioned, a scripting engine such as the one you’re going to build is naturally a |:
highly complex piece of software, so the best way to learn how it works is to take a “top-down”
approach, wherein you start with the basics and slowly work your way towards the specifics. In the [
last section, you learned that the XtremeScript system is based on three major entities: the high-

level language that scripts are written in, the low-level language that scripts are translated into by
the compiler, and the virtual machine that executes the low-level language version and manages |:
communication with the host application (the game). The next level of detail will bring into
focus two new topics—what these basic components are themselves made of, and specifically how
they interact with each other.

Each of these elements is of course covered extensively in their own dedicated set of chapters
later in the book, but before you get there, you're going to learn how they interact with each
other and why they’re individually important. In order to do that, we’ll now look at the complete
process of turning a text-based script into a compiled, binary version running inside the VM.
Along the way you’ll see why each component is necessary and what each is composed of.

The basic process, as you might have already gathered, is as follows:

1. Write the script using the XtremeScript language in a plain text file.

2. Compile the script with the XtremeScript compiler. This will produce a new text file contain-
ing the assembly language (low-level) equivalent of the original high-level script.

3. Assemble the low-level script with the XtremeScript assembler. This will produce a binary ver-
sion of the low-level script in XVM machine code.

4. Link the XVM static library into your game engine.

5. Atruntime, load the binary script file. The XVM will now process the machine code and the
script will execute.

Figure 5.4 illustrates this process in a bit more detail.

That’s definitely more complicated! But before your head explodes, let’s get right down to what’s
going on in this diagram.

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

Figure 5.4

Front End Back End

A slightly more com-
plex look at the
lifespan of a script
in the XtremeScript

MyScript.xss MyScript.xasm
system.

1001011
0100110

1001101
]

'I MyScript.xasm MySecript.xse

Thread 0 Thread 1 Thread 2
;g:;:i; > Stack Stack Stack
1001101
—
MySeriptse m m
Message Message Message
Queue Queve

High-Level Code/Compilation

Once again, you can start with the high-level code. This is without a doubt the most profoundly
convoluted step in the entire process of passing a script through the XtremeScript system, and
that’s no coincidence. In all of computer science, the most difficult problems faced by software
engineers are often the ones that deal with the complexities of the interface between humans

A | DeePER Look AT XTREMESCRIPT E

and computers. Natural language synthesis, image recognition, and artificial intelligence are but
a few of the fields of study that have puzzled programmers for decades. Not surprisingly, the area
of scripting that involves understanding and translating a human-readable language like C (or a
derivative of that language like XtremeScript) is significantly more complex than understanding
the lower-level steps, which operate entirely on computer-friendly code and data. The complexity
of this step is proportional to its significance, however; the purpose of building a system like this
in the first place is to the convenience and flexibility of scripting with high-level code. Without
this first step, you probably wouldn’t waste your time building the rest.

There are two major entities in the high-level portion of your scripting system. First you have the
XtremeScript language itself, and second, the compiler that understands it and translates it to
assembly. Designing the language will be a relatively easy job; all you really have to do is pick and
choose the features you like from C, add a few of your own, and put this together in a formal lan-
guage specification that you can refer to later. The compiler, on the other hand, is orders of mag-
nitude more difficult to implement. In order to build it, you have to delve into the complex and
esoteric world of compiler theory, the field of computer science that deals specifically with translat-
ing high-level languages. Compiler theory has earned something of a bad reputation over the
years; many programmers simply look at the complexities of a language like C or C++ and imme-
diately assume that the idea of writing software that would understand it is a virtually insurmount-
able task.

Make no mistake—compiler theory is
hard stuff, and you’re going to learn NOTE

that fact first hand. But it's not that This chapter.explores a third component in

hard. In fact, as long as a compiler proj- the high-level'world as well, but it is mostly

ect is approached with a great deal of lumped together with general compiler.theory.
planning, meticulously structured code, It’s the preprocessor, an incredibly. useful utility
and a little patience, anyone can do it. introduced in the last chapter, and.one you no
So, to get your feet wet and shed the doubt have extensive experience with as a C
first rays of light on this shadowy and programmer.You’ll most likely be taking advan-

tage of a few of the more common preproces-
sor directives, such as #include for combing
separate source files at compile time, and
jtdefine for creating constants and macros.

mysterious topic, let’s look at the basic
breakdown of a compiler. You know the
compiler accepts a text file containing
source code, and spits out a new file
containing either assembly language or
machine code (which is almost the same
thing), but what’s going on between those two ends of the pipeline? Figure 5.5 shows an excerpt
of Figure 5.4, this time focusing on the steps the compiler takes.

5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

XtremeScript Compiler
Front End Back End

MyScript.xasm

WySeript.xss

|

Figure 5.5

1 The basic steps taken by a compiler in order to translate high-level code into assembly language or
machine code.

Lexical Analysis

The first and most basic operation the compiler performs is breaking the source file into mean-
ingful chunks called tokens. Tokens are the fine-grained components that languages are based on.
Examples include reserved words like C’s if, while, else, and void. Tokens also include arithmetic
and logic operators, structure symbols like commas and parentheses, as well as identifiers like
PlayerAmmo and immediate values like 63 or "Hello, world!". Lexical analysis, not surprisingly, is
performed by a component of the compiler called the lexical analyzer, or lexer for short. In addi-
tion to recognizing and extracting tokens, the lexer strips away any unnecessary or extraneous
content like comments and whitespace. The final output of the lexer is a more structured version
of the original source code.

Parsing/Syntactic Analysis

With the source code now reduced to a collection of tokens, the compiler invokes the parsing
phase, which analyzes the syntax of token strings. Token strings are sequences of tokens that form
meaningful language constructs, like statements and expressions. For example, consider the fol-
lowing line of code:

if = (void +) ;-5 96 X

This would pass through the parser without a problem because it’s composed entirely of valid
tokens. However, as is clearly visible just by looking at it, it’s not even close to following the
rules of syntax. Parsing is one of the most complex parts of compiler construction, and can be
approached in a number of ways. The parser often outputs what is known as an AST, or Abstract

A | DeePER Look AT XTREMESCRIPT E

Syntax Tree. The AST is a convenient way to internally represent source code, and allows for more
structured analysis later.

Semantic Analysis

Although the syntax of a language tells you what valid source code looks like, the semantics of a
language is focused on what that code means. Let’s look at another example line of code:

int Q = "Hello" + 3.14159;

The syntax here is correct, and thus the parser won’t have a problem with it. According to pure
syntax, all you’re doing is adding two values and assigning them to a newly declared identifier.
The semantics behind this line of code, however, are invalid; you're trying to “add” a string value
to a floating-point value and assign the “result” to an integer. Obviously, this doesn’t make any
sense and the source file needs to be rejected. After the semantic analysis phase, the internal rep-
resentation of the source code is guaranteed to be correct, so you're ready to get started with the
actual translation. Be assured that at this point, a lot of the really hard stuff is over with.

Intermediate Code Generation

Now that you have a fully validated internal representation of the source code, you can take the
first step towards reducing it to a lower-level language. Instead of directly converting it to a specif-
ic assembly language, however, you're going to translate it to what’s known as intermediate code, or
I-code. I-code is something of a conversion halfway between the source language (XtremeScript in
this case) and the target language (XVM assembly). I-code lets you work with a version of the
source code that is very similar to assembly, and might be almost identical in this case, but is still
not necessarily tied to any target machine, like the XVM. You can instead save all of your
machine-specific alterations to the code for later steps.

Optimization

One of the final phases of compilation is an optional but extremely important one. Hand-written
assembly from an experienced low-level coder usually yields the highest performance and
requires the least amount of space. Common algorithms and operations, especially when part of
a loop, usually end up being somewhat redundant because of their high-level, abstract nature.
When the low-level code that performs these tasks is written directly by the programmer, these
patterns are easily noticed, and can be truncated or rewritten to achieve the same result with less
code. Compilers, however, have a much harder time recognizing these patterns and usually pro-
duce code that isn’t quite as efficient as their hand-written equivalent. As a result, compilers are
expected to optimize the code they produce whenever possible. The study of compiler-driven
optimization has been expanding for decades, and today’s compilers can often produce code that

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

performs at virtually the same level as the code written by a human (or better). In this case, opti-
mization is far less important, however. The speed overhead associated with scripts is so great
(relative to native machine code like 80X86, that is) that the difference between optimized and
unoptimzed script code is usually unnoticeable. Regardless, it’s still a topic worth exploring.

Assembly Language Generation

The final step, of course, is converting optimized I-code to assembly language. In the case of
scripts running on a virtual machine, this is really a rather simple step. I-code instructions usually
i have a nearly one-to-one mapping with the compiler’s target code, so this phase is pretty simple.

:I Once this is done, compilation is finished and a high-level script has been reduced to a low-level
one.

The Symbol Table

:I Throughout the process of compilation, a data structure called the symbol tableis used extensively.
The symbol table stores information about the script’s identifiers; function names, variable
names, and so on. In addition to the identifier’s name, its value, data type, and scope are also
recorded (among many other things). The symbol table is an extremely important part of the
compiler, which should be evident by its widespread use among the compiler’s various phases.

The Front End versus the Back End

The phases of compilation can be separated into two extremely important groups. These are the
front end and the back end, and are separated by the generation of intermediate code. The pur-
pose of the front end is to translate a high-level source language to I-code, whereas the purpose
of the back end is to reduce that I-code to a low-level target language. The beauty of this
approach is that the source and target languages can be changed simply by swapping their
respective ends. For example, if you wanted your compiler to accept Pascal source rather than
XtremeScript, you’d simply rewrite the front end to lex and parse Pascal. If you wanted to gener-
ate code for the Intel 80X86 rather than the XVM, you’d rewrite the back end. This is why I-code
is designed to have such a generic structure.

This wraps up the look at the high-level world of XtremeScript. To reiterate, the compiler and its
associated language are the two most complex aspects of virtually any scripting system, but are also
the most useful. Although the remaining elements are by no means trivial, few would disagree that
they pale in comparison to the difficulty involved in implementing the high-level entities.

At this stage, you can compile XtremeScript code, but the output is an ASCII assembly language
file. This will once again have to be translated to a lower-level language in order to create the exe-
cutable scripts you're after, so let’s move on to the next step in the process.

A|DeePER Look AT XTREMESCRIPT Bi=w4

Low-Level Code/Assembly

Turning an ASCII-formatted assembly language source file into a binary, machine-code version is
far simpler than compiling high-level code, but it’s still a reasonably involved process. This
process is called assembly, and is naturally handled by a program called an assembler.

The Assembler

Assembly language is significantly simpler than higherlevel code for obvious reasons. One of the
major differences is that low-level code doesn’t perform iteration through abstract structures like
while and for loops. Rather, basic comparisons are made involving two operands and the results
determine whether a jump is made to a given line label. Jumps in assembly language are analo-
gous to the frowned-upon goto keyword in C. goto might be considered poor programming prac-
tice in higherlevel contexts, but it’s the very foundation of low-level branching and iteration.

Jumps also provide the only real complexity in the assembly process. Assemblers spend most of
their time simply reading each instruction and converting them to their numeric equivalent
(called an opcode). The size of opcodes varies, however, depending primarily on the number and
types of parameters they accept. Because of this, the size of a given block of instructions can be
hard to determine until after the assembly process. In order to translate a jump, however, the dis-
tance from the jump instruction to its target instruction must be known. As a result, many assem-
blers employ a two-pass approach. The first pass reduces every instruction to an opcode, whereas
the second pass finalizes jumps by calculating the distance to their target instructions.

The Disassembler

Disassemblers are nifty little utilities that can reverse the process of an assembler. By mapping
numeric opcodes to their instruction mnemonics, rather than the other way around, an assem-
bled binary script can be converted back to its human-readable, assembly language, equivalent.
Disassemblers are commonly used for reverse engineering, hacking compiled programs, and
other less-than-mainstream activities. It might not come as a surprise, but they’ll be of very little
use in this scenario. There’s really no need to reverse engineer a system you’ve built yourself
(unless a sharp blow to the head leaves you with a bad case of amnesia), and it’s unlikely that
you’ll ever have to “hack” into your own scripts. Because of this, you're left to implement a
disassembler on your own if you're interested (which you’ll be more than capable of doing after
chapter 9).

The Debugger

Bugs are often considered the crux of a programmer’s existence (especially mine). Due primarily
to our error-prone nature as humans, as well as the complexity of computer systems, bugs play a

E 5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

pivotal and recurring role in the development of software. Although programmers still usually
spend far more time debugging a program than they do writing it, many tools have been invent-
ed to help ease and accelerate the process of hunting bugs down and squashing them. These
tools are called debuggers.

In the low-level world, debuggers usually work by loading an assembly language program into
memory and letting the user step through it, instruction by instruction. As each instruction is exe-
cuted, its operands are listed and the state of the virtual machine is presented in an organized
manner. For example, memory maps can be displayed to let the users monitor how and where
memory is being manipulated, or the contents of the stack can be illustrated in a literal stack for-
:I mat to allow the users to watch the stack grow and shrink and take note of incoming and outgo-
ing values.

1 Debuggers are similar to virtual machines in the sense that they provide a runtime environment
for scripts. The main differences are of course that debuggers are meant to be used for develop-
ment purposes only; they generally don’t provide the intended output of the script, but rather

:I present a visual representation of its existence in memory at runtime. They’re also far less per-

formance-critical, because debugging is usually a slow process that’s meant to be taken one step

at a time (no horrific pun intended).

Lastly, there exist a number of popular variations on the simple debugger discussed here. For
example, many compilers can optionally output a debug version of the executable containing extra
information that can be specifically utilized by debugging programs. This can include line num-
bers from the original source code, identifier names, comments, or anything else that the compil-
er normally discards somewhere along the way but that might prove useful while analyzing the
code within the confines of a debugger. Many development packages take this a step further by
displaying the original high-level code in between blocks of assembly to provide the most accu-
rate depiction of how source code behaves at runtime.

With both the compiler and assembler in place, you can produce binary, executable scripts from
text-based source files. This is the brunt of the work involved in building a scripting system, but
you still need something to actually execute those scripts with.

The Virtual Machine

The final piece of the puzzle is, as always, the virtual machine. The VM, like the command-based
script module from the last two chapters, is a fully embeddable software component that can be
easily dropped into a game project with little to no modification. It’s implemented in this book as
a static library, but a dynamically linked library would certainly have its benefits.

THE XTREMESCRIPT SYSTEM E

Although you'’ve already learned about the XVM for the most part, there are a few things that
could use some elaboration. For instance, w haven’t really decided on how exactly a script will
communicate with the host application. You know that one of the primary features of a VM is its
interface with the game engine, but how this will actually work is still something of a mystery.

In almost any software system, an interface between two entities is usually embodied by a collection
of exposed functions. By calling one of these functions, you're in essence “sending a message” to
the entity that exposes it. For instance, if the script wants to know how much ammo the player
has, it requests that information by calling a function exposed by the game engine called
GetPlayerAmmo (). It’s equally likely that the game will need to call one of the script’s functions as
well. This is very important in the case of eventbased scripting, in which case the script might
provide a function pointer to the game engine that would then be used to tell the script when a
given event has taken place. As an example, the script for an enemy character might give the
game engine a pointer to a function called HandleDamage () that would then be called every time
the enemy is shot or otherwise damaged. This is called a callback, because the runtime environ-
ment is calling one of the script’s functions “back” after previously having a pointer to it. The col-
lection of functions the game engine exposes is called it’s API, or Application Programming Interface.

Another serious issue in the case of virtual machines is security. As was mentioned briefly in the
first chapter, scripts can wreak some pretty serious havoc when left unchecked. Buggy code can
just flip out and lock the game up by overwriting the wrong memory areas or losing itself in an
endless loop, whereas malicious code can intentionally cause problems in the same manner. If a
script crashes and the virtual machine isn’t there to handle the situation, the game engine can
often go down with it. This is an undesirable situation, so a number of measures should be taken
to prevent it whenever possible. This can include “loop timeouts” that attempt to provide a timely
end to otherwise infinite loops by imposing a limit on the number of iterations they can cycle
through, and of course memory protection such as monitoring the reading and writing of a given
script to make sure it stays within its allocated address space.

Recursion can also quickly spiral out of control, so stack space should be carefully monitored. In
the event that something does go wrong, the virtual machine will at least have a good idea of
what it was and where it happened, allowing a graceful cleanup or exit.

THE XTREMESCRIPT SYSTEM

You now have a good idea of how this script system is going to work. You've looked at the high-
level and low-level languages and utilities, the virtual machine, and the details regarding the
interface between scripts and the game engine. The following summary outlines the major fea-
tures and primary details of the XtremeScript system. This will be the starting point in the
process of implementing it.

5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS

High-Level
The high-level aspect of XtremeScript can be summarized with the following points:

B Based around XtremeScript, a C-subset language our scripts will be written in. The lan-
guage will be designed to resemble C and C++ as much as possible, in order to keep the
environment familiar to the programmer.

B High-level code will be compiled with the XtremeScript compiler and translated to an
ASClIIHormatted assembly source file ready to be assembled.

B A preprocessor will be included to deliver many of the popular directives C program-

:I mers are accustomed to.

B High-level code will provide the human interface to the underlying script system.

Low-Level

:I Below the high-level components of the system lies the lower-level:

B Based around a simple assembly language with Intel 80X86-style syntax. Once again, a
similar syntax is intended to keep things uniform and consistent.

B Assembly language is assembled into binary, executable scripts composed of bytecode
with the XtremeScript assembler.

B Additional utilities include a disassembler that converts executable scripts back to ASCII-
formatted assembly source files, and a simple debugger that provides a controlled and
interactive runtime environment for compiled scripts.

Runtime

Lastly, the system is rounded out by its run-time presence:

W Scripts are executed at runtime inside the XtremeScript Virtual Machine, or XVM.

B The XVM is an embeddable component, packaged in a static library that can be easily
linked to a game project.

B The XVM provides an interface between running scripts and the game engine through
an API consisting of game engine functions that scripts can call. Scripts can expose func-
tions of their own, allowing the game engine to perform callbacks. This is primarily use-
ful for trapping events.

B Multiple scripts can be loaded and run simultaneously.

B Scripts can communicate with one another via a message system. This can be useful in
the case of multiple enemy scripts that need to coordinate themselves with one another,
for instance.

171

B Each running script is given a protected environment with its own block of memory,
code, stack space, and message queue. Scripts cannot read or write outside of their own
address space, ensuring a higher-level of stability.

B Other general security schemes can be put in place, such as loop timeout limits.

That pretty much wraps things up. This list, although superficial, will provide an adequate road
map for the coming chapters. These components really are significantly more complex than
what’s listed here, but this should be enough to get you started with the general order of things. —

SUMMARY §

This chapter has practically sent you through a time warp. Only a few pages ago you were apply-

ing the finishing touches to your modest, charming little command-based script module, and [
already you've taken your first major step towards designing and implementing a true scripting
system with a C-based high-level language and numerous components and utilities. I:

The remainder of this section of the book focuses on the more general topics of procedural
scripting systems. In the next chapter you’re going to be introduced to a few of the most popular
scripting systems in use today and learn how to integrate them with your own programs. You
might even pick up an idea or two for XtremeScript.

After that, you’re going to take a look at C, C++, and a number of other high-level languages. As
you look through their design and function, you'll start to nail down the features you need and
don’t need in order to script games. From this list, you’ll be able to draft up a formal language
specification for XtremeScript. You’ll also add a few of your own ideas, and the end result will be
a detailed blueprint that will come in very handy when the compiler theory section rolls around.

If nothing else, the one thing you should have picked up in this chapter is that you have a long
road ahead. Fortunately, you're going to learn so much along the way that every last step will be
more than worth it. And, as you’ve learned throughout this chapter, the end result will be a pow-
erful, versatile system that will prove useful in countless future projects.

You're encouraged to read this chapter more than once if even the slightest detail seems a bit
fuzzy. Remember, you can sweat most of the details you've covered so far; you obviously can’t be
expected to truly understand the phases of compilation or the details of the XVM architecture
justyet. Iincluded it all to give you an idea of the complexity behind what you’re doing. What
you do need to know, however, is how these general pieces fit together. That’s the most important
thing.

Aside from that, roll up your sleeves—the real fun is just getting started!

This page intentionally left blank

J—'—H_l—__ﬁ%w '

CHAPTER 6

INTEGRATIONGE
LISING EXISTING
S CRIPTING
SYSTEMS

\Hj “This will feel... a little weird.”

| L\a; ——Morpheus, The Matrix

e —mxdwu\ﬁw”w =

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

The last chapter introduced you to scripting in a more technical manner through a general
overview of how the pieces fit together, with a focus on exactly how they do so in
XtremeScript. Armed with this information, you're now ready for your first hands-on encounter
with “real” scripting, which will be the integration of some of the more popular existing scripting
:I systems with a graphical C program.

In this chapter, you’re going to:

-I B Learn about the concept of integration and the use of abstraction layers to facilitate

communication between separate entities.

:I B Take a tour of three popular scripting languages—Lua, Python, and Tcl—and learn
enough about them to write reasonably powerful scripts.

B Learn how these scripting systems are integrated with C programs and, combined with
your knowledge of their respective languages, use them to control a small, graphical host
application.

INTEGRATION

Before getting into the details of how to use these existing scripting systems, you need to master
the concept that underlies the use of all of them— integration. Integration, to put it simply, is the
process of taking two or more separate, often unrelated entities and making them communicate
and work together for some common goal. You can see examples of integration and its impor-
tance all throughout the software world—3D rendering and modeling packages often extend
their functionality through the use of plug-ins; Sun’s Java Connector Architecture allows modern,
Java-based application servers to talk to legacy enterprise information systems to make corporate
transaction records and inventory catalogs available on the Web; and of course, game engines
communicate with scripting systems to allow game designers and players to provide game content
and modifications in an external and modular fashion. See Figure 6.1.

Generally, the biggest challenge involved in integrating two things is establishing some sort of
channel through which they can easily and reliably communicate. This provides the foundation
for everything else, as virtually any facet of an integration project will ultimately rely on the capa-
bility for entity X to talk to entity Y and receive a response.

The solution to this problem lies in an age-old software-engineering concept known as the
abstraction layer. An abstraction layer, also known as an inferface, is any software component that sits

NG 175

Figure 6.1

3D Modeler/Renderer Examples of
integration.

Plug-In Integration i
Interface I:

-4

Java
Application Server

|

(mmae;gl[:uv 10338UU0Y BAB[

Game Engine

Scripting Integration
Interface

between two or more entities, interpreting and routing their input and output instead of letting
them communicate directly (which may not even be possible). To understand this concept better,
consider the analogy of a human translator. A translator for English and Japanese, for example, is
someone who is fluent in both languages and allows English-only speakers to communicate with
Japanese-only speakers by listening to what the first party has to say in one language, and repeat-
ing it to the second party in the other. The process works both ways, and the end result is that the
two parties can easily communicating despite an otherwise impenetrable language barrier. This
process is illustrated in Figure 6.2.

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

"\ 'Y

English

Figure 6.2

A conceptual diagram

/ . of two parties commu-
' _ nicating through a
/ U \ translator.

Translator

Japanese

:I It’s called a layer because, for example, the translator is “wedged” in between the English and

Japanese speaking parties, much like a layer of adhesive sits between two surfaces. It’s considered
abstract because neither entity knows all the details of the others; in this case, the Japanese speak-
ers don’t know English, and the gaijin don’t know Japanese. Regardless, thanks to the translator,
they can communicate as if this issue didn’t even exist. To either side, the process of inter-lan-
guage communication has been abstracted to something far simpler. Rather than having to spend
years upon years attaining fluency in the language of the other party, both parties can carry on in
almost the exact same manner they usually would, while still getting the job done.

Bringing this example back to the context of game scripting, the reason you need an integrating
layer of abstraction between a script and the game engine is because neither the scripting lan-
guage nor C has built-in facilities for “talking” to the other. In computer science terms, phrases
like “talking to” and “sending messages between” software entities generally mean calling func-
tions. In other words, if you have two programs in memory, each of which has a number of func-
tions for receiving input and producing output, these two programs can communicate rather eas-
ily by simply calling each other’s functions. Anyone who’s done any reasonable amount of
Windows programming should have plenty of experience with this (think callbacks). Check out
Figure 6.3 for a more visual explanation.

When Program X calls one of Program Y’s functions, it’s talking to it. When Program Y returns a
value, or calls one of Program X’s functions, it’s talking back. So, it seems that in order for a
script written in, say, Python, to communicate with the game engine written in C, all they need to
do is call each other’s functions and everything will work out. The problem is, there are no built-
in provisions for doing this. Even if you define a function in your Python script called MovePlayer

177

INTEGRATION

Figure 6.3
Entltv A Entlty B Software entities com-
() f) municate with each
I int FuncA (); l Request other by calling
Besponse functions.
P C
_ Request int FuncB (); l
 Response
. - J i
(), which accepts two numeric values for moving the player along the X- and Y-axes, the following
code certainly won’t compile in C: [
Int X = 16,
Y = 32; |:
MovePlayer (X, Y);

Why not? Because from the perspective of your C compiler, MovePlayer () doesn’t exist. More
importantly, even if the compiler knew about the function, how would the function be called?
Python and XtremeScript, like all scripting languages, are not compiled to machine code. Unlike
the C functions, there is no block of native assembly language in memory that implements the
logic behind the MovePlayer () function. Rather, this function is represented as a different, assem-
bly-like format that exists in and can be executed by Python’s runtime environment and nothing
else. Your poor C compiler wouldn’t know what to do with the function call either way. Figure 6.4
illustrates this.

Likewise, how is your Python script going to talk to C? Just as your compiled C program runs
directly on the machine and expects the functions it calls to exist in the physical “world” of, for

Figure 6.4

The problem: C and
Python (or any script-
ing language) exist in

' ¢ Application

Python
[strontunc O]

separate runtime envi-
: ronments, and there-
CFunc ()

fore have no way of
directly talking to one

another.

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

example, 80x86 machine code, Python expects just the opposite and deals only with other Python
scripts, which are far more high-level and “virtual” because they run inside the Python runtime
environment. The problem is that these two languages exist in “parallel dimensions” so to speak,
and therefore have no intrinsic methods of communication.

If you're in the mood for a fairly out-there example, consider the following. Many scientists in the
quantum mechanics and physics communities believe that the universe exists in a larger
multiverse; a “collection” of presumably infinite separate, parallel universes. This means that while
you may live on earth, a person just like you may also live on a “different” earth—one that resides
in another universe. As it stands now, there’s no way for you to talk to your alter-ego in this

:I dimension, just like C can’t communicate with Python. However, if we can find a way to reach out
of, or transcend, or own universe, we might be able to establish a means by which multiple univers-
es can communicate with each other. Although I've admittedly taken more than a little dramatic
1 license here, this is in essence the same thing you're trying to do with C and the scripting system
of choice. Of course, the integration of scripting systems is probably a lot less likely to make its

:I way into an episode of the Twilight Zone.

Coming back down to earth, this is where the handy translator comes back into the picture. It
may no longer be a problem of English vs. Japanese, but as you’ve seen, any time two or more
software components are having trouble communicating, an abstraction layer can solve the prob-
lem by providing a common ground of some sort. The problem, to put it specifically, is that you
need the scripting system to call C functions and vice versa, but have no way of doing so.

To figure this out, let’s look more carefully at exactly what the translator does. When the English
party says something to the translator, the spoken phrase is recognized and understood by the
translator’s brain, and then converted to its corresponding equivalent in Japanese. These new
Japanese words are then spoken by the translator, and are subsequently understood by the
Japanese party. The reason I've phrased this in such detail is that it’s almost an exact analogy for
the abstraction of inter-language function calls. The key to remember here is that the exact
sound waves that are produced in English are not the same waves that the Japanese party ulti-
mately understands. Likewise, the Python system will not receive the exact same function call that
was sent out by the C program when it comes time for the two to communicate. Rather, it will
receive a translated function call that was sent by the abstraction layer. The same is true conversely.

To put it simply, the abstraction layer will be assigned the job of sitting in between C and Python.
This layer is capable of understanding function calls from both C and Python, and likewise, is
capable of issuing them as well. So, when Python wants to talk to G, it instead calls the abstraction
layer’s functions for sending a message. The abstraction layer will then make a new function call
of its own, but one that conveys the same message, to the C program. This new function call will
be understandable by C, and the message will have traveled from the script to the game engine.
Naturally, the process is reversed when C wants to talk to Python. Have a look at Figure 6.5.

IMPLEMENTATION OF SCRIPTING SYSTEMS [Riv4=]

_ Figure 6.5
- C Application Python and C can
communicate thanks
to an abstraction layer
that receives and
- IR oaes fneon
unc . ythonFunc
' calls. =
Again, this is an abstraction because Python and C still haven’t learned how to talk to each other. [
Rather, they’ve simply learned how to talk to a translator, which in turn is capable of talking to
the other party for them. I:
IMPLEMENTATION OF SCRIPTING SYSTEMS

Generally, a scripting system is implemented in the form of a static library or something similar,
although a dynamic library like a Windows DLL would work just as well and in roughly the same
way. This library usually contains two crucially important components, both of which are neces-
sary to fully enable the scripting process. The first and most obvious component is the runtime
environment (also known as a virtual machine, a term you should be familiar with by now), which
is capable of loading scripts in the system’s language, such as Python or Tcl. Once loaded, the
runtime environment either automatically begins execution of the script, or waits for the host
application to give it the green light. The other component is the interface that allows it to talk to
the host application and vice versa. This is of course the abstraction layer. The host application is
then linked with this library, and the resulting executable is capable of being externally con-
trolled by scripts. When a scripting system is encapsulated in this way for easy integration with
host applications, it’s an embeddable scripting system, because it “embeds” itself into the host in the
same way a 3D graphics card is “embedded” into your computer, or a pacemaker is “embedded”
into your body.

Scripting languages vary in their details quite a bit from one to the next, but scripting systems
themselves are almost invariably written in C or C++. This means that the runtime environment
that runs the Python script, as well as the interface that allows it to talk to the game engine, are
both written in a language that the engine is directly compatible with. Because a C program can
easily talk to a C library, that’s one side of the C-Python interface taken care of already. The other
half of the puzzle is also easily solved because the Python library not only physically contains the
Python script, but has records of all of its relevant information—including data about what sort of

E B. INTEGRATION: UsSING EXISTING SCRIPTING SYSTEMS

functions the script defines as well as how to call them. This information, coupled with the fact
that it already has an intrinsic connection to the C host application, explains exactly how func-
tion calls can be translated back and forth from the script to the host.

In other words, both the C program and the Python script can now break up their function calls
into two groups. First are traditional calls that work within their respective environment; C calls to
C functions, and Python calls to Python functions. These are called intra-language function calls.
The second group consists of calls from the host that are intended for Python and calls from
Python that are intended for the host (inter-language function calls). Because neither of these
function calls go directly from Python to C or vice versa, they all really just boil down to calling

:I the Python library and requesting it to translate the message. Check out Figure 6.6 to see this

in action.

1 The API provided by the typical scripting system library are pretty much what you would expect;
functions for loading and unloading scripts, functions that tell a given script to start or stop

:I Figure 6.6
Intra-Language Calls

There are now two

C Application < types of function calls

to consider; those that

exist within a given

w runtime environment,
— and those that are

w meant to cross the

boundaries between
Python and C.

Inter-Language Calls

C Application

Python
CFunc () PythonFunc ()

CFunc () o PythonFunc ()

Tmnn-Ffzf“

THE Bouncing HEAD DEmMo E

running, perhaps a few general functions for initializing and shutting down the runtime environ-
ment itself, and of course, functions for calling other functions defined by the script. If you write
a script called my_script.scr, for example, that consists of three functions, DoThing0 (), DoThingl
(), and DoThing2 (), the pseudocode for a small C program that loads and interacts with the
script through the scripting system library might look like this:

InitRuntime (); // Initialize the runtime environment
LoadScript ("my_script.scr™); // Load the script

CallFunction ("DoThing0"); // Call DoThing0 ()

CallFunction ("DoThingl"); // Call DoThingl ()

CallFunction ("DoThing2"); // Call DoThing2 ()

FreeScript (); // Free the script

ShutDownRuntime (); // Shut the environment down again

Pretty straightforward, huh? The one detail I haven’t really covered is how you pass parameters to
these functions, but this still illustrates the overall process pretty well. I also haven’t talked about
how the scripting system library knows which C functions correspond to incoming function calls
from the script, so let’s just scrap the theoretical talk and get your hands dirty with some real
scripting action and answer these questions in practice.

THE Bouncine HEAD DEMO

In order to try out these scripting systems, the first thing you’ll need is a host application to
script. Obviously it would be a bit ridiculous for me to wheel out a full game just for use in this
chapter, so instead you're going to start small and script a simple bouncing sprite demo.

The demo is decidedly basic; it displays a background image, loads a few frames of a rotating
alien head, and bounces them around the screen while looping through the alien’s animation.
The background image is a little composition of some of my hi-res texture art and some random
junk strewn over it, all of which is given a dark, hazy purplish tint. It has the kind of look to it that
reflects the amount of Crystal Method and BT I listen to while doing this sort of thing. You can
see the demo running in Figure 6.7, or run the included Demo 6.1 on the CD and see it for your-
self.

The goal here is to get familiar with the scripting systems this chapter covers by recoding the
logic behind the demo with scripts, so your first step is to walk through everything the demo does
in a reasonable level of detail. After doing this, you should be able to pick and choose the ele-
ments that should be offloaded to scripts, and which should remain hardcoded in C.

B. INTEGRATION: UsINng EXISTING SCRIPTING SYSTEMS

Figure 6.7

A screenshot of the
bouncing head demo.
It’s trip-hoptastic!

In a nutshell, the demo is composed of three phases: initialization, the main loop, and shutdown.
Let’s first look at the steps taken by the initialization phase:

The Wrappuh API is initialized, which provides the program with simple access to
DirectX for graphics, sound, and input.

The video mode is set. In this case, 640x480 is used with 16-bit color.

The random number generator is seeded.

Each of the separate on-screen alien head sprites is initialized with random locations,
velocities, and directions.

The background image is loaded.

Each frame in the spinning alien head animation is loaded, one by one.

The current frame of the animation is set to 0.

Two timers are initialized—one that will tell you when to advance the animation to the
next frame, and one that will tell you when to move the sprites along their path.

The while loop that will be the main loop of the program is started and runs until the
Escape key is pressed.

Initializing such a simple demo may have seemed trivial at first, but when you actually analyze
things like this, they usually turn out to be just a bit more complex than you originally anticipat-
ed. The lesson here is that when scripting, don’t overestimate or underestimate your require-
ments. Depending on the situation, your scripting language of choice might not even be capable

THE Bouncing HEAD DEmMo E

of handling a small detail you've overlooked, and as a result, you’ll end up finding out that your
language of choice was inappropriate halfway into the process of writing the actual scripts. This
certainly isn’t a fun revelation, so plan ahead.

Now that you’ve nailed down exactly what the initialization phase can do (and what the other two
phases will do in a moment), you can tell for sure whether a given language will be capable of
handling the job. Moving on, let’s look at the guts of the main loop. At each frame of the demo,
you’ll have to:

B Blit the full screen background image, mainly to display the image itself, but also to over-
write the previous frame.

B Loop through each unique on-screen sprite and draw it at its current location, with the

current frame of the spinning head animation. Each head has the ability to spin in the

opposite direction, so you may need to invert the current frame number to simulate the

other direction.

Blit the newly finished frame to the screen.

Check the status of the Escape key, and exit the program if it’s been pressed.

Check the animation timer and update the animation if necessary.

Check the movement timer and, if necessary, loop through each on-screen sprite and

move along its current path at its current velocity. Once the sprite has been moved, you
must check its location against each of the four boundaries of the screen and adjust its
direction in the event of a collision to simulate a bounce.

Lastly, let’s look at what’s required to shut the demo down after the main loop has been terminat-
ed by pressing Escape:

B Free the background image.
B Free each frame of the animation, one by one.
B Shut down the Wrappuh APL

As is usually the case, the shutdown phase is the simplest. So, now that you know exactly what the
demo needs to do, you can decide which parts will remain in C, and which parts will be removed
to be re-implemented with scripts. Naturally, you aren’t going to redo the entire demo in a script-
ing language, because that would pretty much defeat the whole purpose of scripting in the first
place. So, let’s get the list of things that should remain in C out of the way:

B The first and last steps of the initialization phase should stay in C simply because they’re
so basic. The first step is the initialization of Wrappuh— it happens only once and
involves nothing more than calling a function, so there’s no need to script that. The last
step is starting the while loop, which is a bit more serious. If you actually move the loop
itself into the scripts, your C program will do virtually nothing in the next version of the
demo— it passes control to the script, which will run until the user exits, and the C side

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

of things will be inactive. A better design is to keep the actual main program loop run-
ning in C and give the script only a small portion of each loop iteration to keep the
sprites bouncing around. Also, the random number generator can be seeded in C. This
is another operation that’s done only once and is so basic and obscure that there’s no
need for the script to worry about it.

B The C host will load the images.

B The C host will set the video mode.

B Just about everything the main loop needs to do will be scripted, so you can forget about
C here. The C program will check for the user pressing Escape, however (although this

i :I could be done in either language).

W Just like the initialization phase, there’s no need to make the script worry about shutting

down the Wrappuh API, so you can leave that where it is.

1 As you can see, the C version will barely do anything; aside from the most basic initialization and
shut down tasks, the only thing C is really responsible for is providing the main loop itself. In this
:I regard, the C program can now be considered a “shell” or “skeleton” that just sets the stage for
the scripts to do the real work. So, let’s think about what you’ll need to recode with scripts:

B The scripts will handle setting all of the initial sprite information, like their location and
direction.

B Once in the loop, the scripts will be in charge of almost everything. They’ll move the
sprites around, they’ll check for collisions, and they’ll even make the calls to the blitter
in order to physically get the graphics on the screen.

B The script won’t really have any hand in the shut down process.

Once you have this logic re-imple-

") L1 LI
mented in scripts, you can test AUTION
their true power, which is the capa- ¢ u o .
bility to change this functionality :| There is one thing | must make absolutely clear [

before continuing, however. Whether you plan on
using Lua or not, | strongly recommend you read
the section on it in full. This is because all three
scripting systems and languages are fundamentally
_ similar in many ways, and describing these com-
program on a whim. mon concepts three separate times for each lan-
guage would be a huge waste of pages.As a result,
these concepts are introduced once in the Lua sec-
tion and then simply referred to in the other two.
Make sure you understand everything in this sec- |:
tion before attempting to read the other two.

even after the C program has been
compiled. This will enable you to
alter the bouncing effect or really
any other aspect of the scripted

You're ready to roll at this point.
The host application is written,
your goals for the scripts are clear, :|
so all that’s left is to jump in and
learn about your first scripting
language. 1 1

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

LuA (AnD BAsIc ScrRiPTING CoNCEPTS)

The first stop on your scripting language tour is the quaint little town of Lua. Lua is a simple,
easy-to-use language and scripting system designed to extend any sort of program by giving it the
capability to load and execute optionally compiled scripts (which, really, is the goal of virtually
any scripting system). Lua the language is paradoxically characterized by both its basic and
straightforward syntax, as well its understated but powerful capability to be expanded significantly
by the only non-primitive data structure it supports, the table. Don’t let its mild-mannered appear-
ance fool you, however; Lua’s been put to good use in such commercial games as MDK2 and
Balder’s Gate. It can definitely pull its weight when it has to. Lua the scripting system is equally
clean and easy to use; it comes as a single static library coded in pure C and ready to be dropped
into any host application for some hot, steamy scripting action.

Before getting into the details of how to write scripts in the Lua language, have a look at the com-
ponents that the Lua system provides.

The Lua System at a Glance

I think the real beauty of the Lua scripting system is its simplicity. When you initially download
the package, you won't find billions of scattered files and executables. Instead, you'll find the
include files and libraries needed to link Lua into your host application, as well as a small handful
of utilities. That’s all you need, and that’s all you get. Of course, you can find Lua on the includ-
ed CD under the Scripting Systems/Lua/ directory.

The Lua Library

The Lua library is composed mainly of two files: Tua.1ib and Tua.h. The library in most respects
follows the archetypical outline in that it provides a clean API for initializing itself and shutting
down, as well as functions for loading scripts, executing them, and building the function call
interface that will let them talk back and forth with your host application. I'll get back to the
details of how to use this library later.

The Tuac Compiler

Lua comes with an easy-to-use command-line driven compiler called Tuac. Typing Tuac at the com-
mand prompt will display the program’s usage info. To compile a script, simply type:

luac <Filename>

EEER 6. INntERATION: Using EXISTING SCRIPTING SYSTEMS

where filename is the name of the script. The script will be compiled into a file called Tuac.out by
default, but this can be changed with the -o switch. For example, if you have a script called
test.lua that you want compiled to a file with the same name, you type this:

lTuac -0 test.out test.lua

What may surprise you about all this, however, is that you don’t ever actually need to use the Tuac
compiler in order to use the scripting system. Scripts written in Lua can be loaded directly by the
Lua library and will be compiled on-the-ly, at the time they’re loaded. This is a nice feature
because it allows you to immediately see the results of your script code; you don’t have to waste
| any time on an intermediate compiling step, and you don’t have to manage two filenames. The
:I downsides, however, include the fact that you won’t get particularly meaningful compile-time
errors when your compiling is done at runtime. Because your game (or whatever the host appli-
1 cation may be) will be in control of the screen at the time, Lua won’t be able to print out a list of
syntax errors, for example. The other problem is that loading scripts will now be somewhat slow-
:I er, as Lua will have to spend the extra time compiling it then and there.

So, Tuac is generally a good program to have around. Not only does it let you compile your scripts
ahead of time for much faster loading at runtime, but it also provides you with the same level of
compile-time error information that you’d expect from any other compiler. Another advantage is
that you won’t have to distribute the source to your scripts with your game; instead, you can just
release the compiled binaries, which aren’t particularly easy for malicious gamers to hack, and
also take up less space. In other words, you don’t have to use the compiler, but you will most likely
want to (and definitely should anyway).

The lua Interactive Interpreter

Another utility that comes with Lua is the interactive interpreter. This useful little program, also
accessible from the command prompt, simply displays the following upon invocation:

>

Although the interface is about as friendly as the infamous DEBUG utility that ships with MS-DOS,
the program lets you immediately test out blocks of Lua code by typing them directly into the
interpreter and seeing the results in real time (hence the “interactivity”). I haven’t discussed the
syntax of Lua yet, but the following should be pretty self-explanatory. For example, if you were to

type the following:
> X =32
> Y =64

> print (X +Y)

LuAa [AND BAsic ScrRIPTING CONCEPTS)

You’d see the following output: — o AN

o TIP

:| You'll notice that the interpreter seems to |:
evaluate your statements as soon as you
press Enter, even if they’re supposed to be

The last piece of information regarding
the Tua interactive interpreter worth

mentioning is that it can also be used part of a larger construct such as an if block.
to immediately run simple scripts with- To enter a full block of code without immedi-
out the need to embed the Tua.1ib run- ately executing it as it’s typed, simply follow
time environment into a C program. each line in the block with a backslash (\),
Simply call Tua with a filename as the much like a multi-line #define macro in C.All
single command-line parameter, like so: of the code will be executed at once after the

. first non-backslash-terminated line is entered.
Tua my_script.lua

1 [1

and it will attempt to execute and print
the output of the script. In addition, Tua will provide the same level of detail in compile-time
errors as Tuac will, which can be useful. Lastly, scripts running inside the Tua interpreter are auto-
matically given a special print () function, which can be used to print values to the screen, much
like printf () in C. Even though I haven’t discussed Lua syntax yet, the following should be pret-
ty self-explanatory:

print ("Hello, world!");
Running this in Tua, strangely enough, produces the following output:
Hello, world!

Keep this function in mind as you read through the following sections.

The Lua Language

Lua as a language is simple and straightforward. It won’t take long to learn the syntax and seman-
tics behind it, and once you have them down, you’ll find it elegant and easy to use. The syntax
somewhat resembles a mixture of C, BASIC, and Pascal, resulting in a no-frills look and feel that,
although not a perfect C clone, should still be an easy transition to make when switching from
game engine code to script code. This chapter refers to Lua 4.0, the latest official release at the
time of this writing.

The interactive interpreter I mentioned in the last section will be extremely useful during the
next few pages; if you really want to follow along, start it up and play with some of the language
examples that are discussed. It’s the best and fastest way to get really familiar with how Lua works.
I highly recommend it.

[

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

Comments

I like to introduce comment syntax first when describing a language, because it generally shows
up in the code examples anyway. Lua’s single comment type is denoted with a double-dash:

-- This is a comment.

Just like the // comment in C++, Lua’s comments cause everything from the double-dashes to the
end of the line to be ignored by the compiler. Lua has no provisions for block comments, so
multi-line comments must be broken into single lines manually:

-- which is continued down here,
-- and finished here.

:I -- This is the first Tine of a comment,

1 It’s a bit of a hassle, but oh well. :)

Variables

Like most scripting languages, Lua is fypeless. This means that any variable can hold any value of
any type at any time, as opposed to languages like C, which force you to declare a variable of a
given type and stick to that type throughout the variable’s lifespan. Also unlike C, Lua variables
need not be officially declared. Rather, a variable is brought into existence at the time of its first
assignment. However, as you’ll see, this initial

assignment is restricted to some extent in many LT -,

cases and is often considered a somewhat CAUTION

“implicit” declaration. More on this later.

Avoid creating identifiers that consist

Identifiers in Lua follow the same rules that of an underscore followed by an all-
exist in C—valid identifiers are sequences of caps string, such as _IDENTIFIER.This
letters, numbers, and underscores that begin convention is used internally by Lua for
with a non-numeric character (meaning a let- its own use, and the possibility of a

ter or underscore). Identifiers are also case-sen- future version of the language defining
sitive, so myvar, myVar, MyVar, and MYVAR are all the same identifier you've used in your

scripts may potentially break your
code. Besides, they’re ugly anyway.

considered different variable names.

Because variables need only be assigned to be
declared, the following block of code would
declare and initialize two variables, X and Y:

X = 4096 -- Declare X and set its value to 4096
Y = "Hello, world!" -- Declare Y as a string containing "Hello, world!"

1 1

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

This little example also illustrates another quirk of Lua’s syntax: that semicolons aren’t required
to terminate lines. However, the semicolon can still be used and is still required in the case of
statements that span multiple lines. Consider the following:

MyVar0 = 128 -- Valid statement; semicolons are optional.
MyVarl = 256; -- Also valid; semicolons can be used if preferred.
print (O
"This is a long line!"
) -- Valid, multi-line statements are allowed as long

-- as the semicolon is present. |:
print (
"So is this!"
) -- Invalid, multi-line statements must end with ';". [
Even though variables only L1 L1 [
need to be assigned to be TIP

declared, they still can’t actually
be used as arithmetic expres-
sions without being given some
sort of initial value. This is

:| Even though it’s optional in most cases, | suggest |:
using semicolons to terminate all statements in Lua
anyway. Not only does it make the language seem
that much more C/C++ like, but it also makes your

because all variables are code clearer and more robust. If you find that a given
assigned nil before their first statement is getting too long and want to break it
assignment, which doesn’t make into multiple lines, having a semicolon already in

sense in the case of math opera- place will make sure you don’t forget to add it after-
tions. For example: wards and wind up with a compile-time error. It’s just

U = 1004:] agood rule of thumb to stick with.As a C and/or [
v = 2048: C++ programmer, it will be a reflex anyway.

print (U+ V); 1 1

print (U+ V +W);

This would produce the following:

3072
error: attempt to perform arithmetic on global 'W' (a nil value)
stack traceback:

1: main of string "print (U+ V); ..." at Tine 4

The first line of the output is the sum 3072, just like you would expect, but the following lines are
an error message letting you know that W cannot be used to perform arithmetic. I'll discuss nil in
more detail in the following section.

EEER 6. INntEGRATION: Using EXISTING SCRIPTING SYSTEMS

The last issue of variables to cover now is the concept of multiple assignment, which Lua supports.
Multiple assignment allows you to put more than one variable on the left side of the assignment
operator, like so:

X, Y, Z=2,4, 8;

After this line executes, X will equal 2, Y will equal 4, and 7 will equal 8. This left-to-right order
allows you to tell which identifier will receive which value. Multiple assignment works for any sort
of assignment, so you can use it to move the value of one set of variables into another as well:

u, v, W=1X,Y, Z;

:I Print (U, V, W);

Which will produce the following (assuming you’re using the same X, Y, and 7 you initialized in
1 the last example):

2 4 8

:I If you're anything like me, the first thought you had when you saw this form of assignment nota-
tion was “what happens if you don’t provide an equal number of variables and values on both
sides of the assignment operator?” Fortunately, in another example of Lua’s robust nature, this is
handled automatically. In the first case, if you don’t provide enough values on the right side to
assign to all of the variables left side, the extra variables will be assigned ni1:

X, Y, Z =16, 32;

This will assign X 16 and Y 32, but Z will be set to ni1. This even works in cases when the extra vari-
able has already been initialized. For example:

U, Vv, W= 256, 512, 1024;
print (U, V, W);
U, V, W= 2048, 4096;

print C U, V, W);
Even though W was assigned a value in the first assignment, which will be visible in the output of
the first print () call, the second assignment will replace it with ni1:

256 512 1024
2048 4096 nil

In the second case, where there aren’t enough variables on the right side to receive all of the val-
ues on the left, the unused values will simply be ignored, so a line like this:

X, Y = 8192, 16384, 32768, 65536;

is perfectly legal and will only assign X and Y the first two values. The last two variables will simply
vanish without a trace, much like Paulie Shore’s career.

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

Overall, multiple assignment is a convenient shorthand but definitely has potential to make your
code less-than-readable. Only use it in cases when you'’re sure that the code is clearly understand-
able, and try not to do it for too many variables at once. Don’t try to get cute and impress your
friends with huge tangles of multiple assignment; it will only result in error-prone code. One
good use of the technique; however, is swapping two values in one line easily:

X =16; -- Declare some variables

Y = 32;

print ("Unswapped:", X, Y); -- Print them out

X, Y=Y, X; -- Swap them with multiple assignment
print ("Swapped:", X, Y); -- Print the swapped values

This will produce the following:

Unswapped: 16 32
Swapped: 32 16
Data Types

Now that you can declare and use variables, you're probably interested in knowing what you can
stuff into them. Lua supports six data types:

B Numeric. Integer and floating-point values. Unlike C, these two types of numeric values
are considered the same data type.

W String. A string of characters.

B Function. A reference to a formally declared function, much like a function pointer in C
(but simpler to use and more discreet).

W Table. Lua’s most complex and powerful data type; tables can be as simple as associative
arrays and as complex as the basis for more advanced data structures like linked lists and
classes.

B Userdata. A slightly more obscure data type that allows C pointers to be stored in Lua
variables for a more tight integration into the host application. Userdata pointers corre-
spond to the void * pointer type in C. I won’t be covering this data type.

B nil. The simplest data type by far, ni1’s only job is to be different from every other value
the language supports. This means it makes a good flag value, especially when you want
to mark something as uninitialized or invalid. In fact, any reference to a variable that
hasn’t been directly assigned a value will equal nil. nil is also the only concept of “false-
hood” the language supports. In other words, ni1 is like a more robust version of C’s
NULL. This is consistent with what you saw in the last section when you tried adding a ni1
value to two integers, which is illegal in Lua. This is an important lesson: nil is false, but
it is not equal to zero in a numeric or arithmetic sense. This is why arithmetic expressions
involving ni1 variables don’t make sense and result in a runtime error.

E B. INTEGRATION: USING EXISTING SCRIPTING SYSTEMS

If you happen to have the Lua interpreter open at the time, try using the type () function to
examine various identifiers. The type () function returns a string describing the data type of
whatever identifier is passed to it, so consider the following:

print (type (256)); \

print (type (3.14159)); \
print (type ("It's a trap!")); NOTE
Although I’m sure you’ve picked up on

this already, I'd just like‘to. make sure that
you’re clear on the'print () function.
print () will print any value passed to it,

Upon pressing Enter, you should see the
following output:

:I number as well as the contents of any identifier.
number This is a special function built in to the
string version of Lua running in the interpreter

1 to allow immediate feedback while cod-
Right off the bat, the numeric and string ing interactively. The function also allows

:I types should be a snap, and even the func- P D [it_ com‘ma-delimited Iists, the
tion type is pretty simple when you think output of ,whlch will be allg-ned with tab
about it. nil is easy to grasp as well, and the stops.You'll see more of this Jater.
Userdata type is beyond the scope of this
book so I won’t be discussing it any further.
That leaves you with tables, which is good because they deserve the most explanation.

Before moving on, however, I'd just like to quickly mention one last aspect of Lua’s data types:
coercion. Coercion is when one data type is cast, or coerced into another for the sake of executing
an expression. For example, numeric values and strings can be used interchangeably in a number
of expressions, like so:

print (16 + 32);
print ("16" + 32);
print (16 + "32");
print ("16" + "32");

Each of these print () calls will output the numeric value 48. This is because whenever a string
was encountered in the arithmetic expression, it was coerced into its numeric form. Lua recog-
nizes strings that can be converted meaningfully to numbers, like the previous ones. However, the
following statement would cause an error:

print (16 + "32" + "Alex");

The first two values, 16 and "32", are valid. 16 is already an integer value and "32" can be coerced
into one and still make sense. When the last string value ("Alex") is reached, however, Lua will

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

attempt to convert it to a number and find that it has no numeric equivalent, thus stopping exe-
cution to report the error of attempting to use a string in an arithmetic expression:

error: attempt to perform arithmetic on a string value

Tables

Tables in Lua are, first and foremost, associative arrays not unlike the ones found in other script-
ing languages like Perl and PHP. Associative arrays are also comparable to the hash table struc-
ture provided in the standard libraries for languages like Java and C++.

Tables are indexed with the same syntax as a C array, and are initialized in much the same way.
For example, consider the following table declarations that mimic C string and integer arrays:

IntArray = { 16, 32, 64, 128 };
StringArray = { "Aho", "Sethi", "Ullman" };

Although you didn’t have to specify a data type for the table, or even its size, you do use the tradi-
tional Cstyle { .. } notation for initialization. Once the tables have their values, they can be
accessed much like you’d expect, but with one major difference: the initialized values start at
index 1, not zero:

print (IntArray [1 1);
print (StringArray [2 1);

This code will produce the following output:

16
Sethi

Of course, even though an initialization set is automatically indexed from 1, it doesn’t mean
index zero can’t be used:

IntArray [0 1 = 8;
print (IntArray [0 J, IntArray [1 1, IntArray [2]);

will produce the following output:
8 16 32

Although it’s important to note that index zero is perfectly valid as long as you manually give it a
value, the real lesson in the preceding example is your ability to add new elements to a table
whenever you need to. Notice that the set of values that initialized the table included only

[

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

indexes 1 through 4, but you can still expand the array to cover 0 through 4 by simply assigning a
value to the desired index. Lua will automatically expand the array to accommodate the new val-

ues. In fact, virtually any index you can imagine will already be accessible the moment you create

a new table. For example:

print (IntArray [0 1);
print (IntArray [2]);
print (IntArray [24 1);
print (IntArray [512 1);

':I Even though indexes 24 and 512 are far from the initialization set, check out the output:
8

32
1 nil

nil

Neat, huh? Lua automatically created and initialized indexes 24 and 512, allowing you to access
them without any sort of out-of-bounds or access-violation errors. In this regard, table indexes are
much like typical Lua variables in that they are created only when they are first assigned (or when
you initialize them with the { .. } notation), but will contain ni1 until then.

The next important aspect of Lua tables is that they are heterogeneous, which means that not all
indexes must contain the same type of value. For example:

MyTable [0 1 = 256; -- Assign an integer to index 0
MyTable [1 1 = 3.14159; -- Assign a float to index 1
MyTable [2 1 = "Yahtzee!"; -- Assign a string to index 2

The three indexes of this table contain three different data types, further illustrating a table’s
flexibility. In addition to being able to hold any sort of primitive value, table indexes can also
hold references to other tables, which opens the door to endless possibilities. Most obviously, this
lets you simulate multi-dimensional arrays, like so:

MultiTable = {}
MultiTable [0
1

] { "ABC", "DEF", "GHI" };

MultiTable [1 1 = { "JKL", "MNO", "PQR" };

MultiTable [2 1] { "STU", "VWX", "YZ" };

print (MultiTable [0 1L 1 1);

print (MultiTable [1 1[2 1);
)

print (MultiTable [2 1[3]

>

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

Which will output the following:

. NOTE
MNO Even though |l indexed Mut1iTable []
Yz from.0 to 2, each of the other three-index

tables that were directly initialized-at

It’s important to know exactly how things are MultiTable [0], MultiTaple £ J4nd

working under the hood when working with
tables that contain tables, however. When automatically use zero-indexing out of

working with Lua, don’t think of tables as habit, but it’s definitely important to keep

values, but rather as references. Any time you Lua’s style in mind. Forgetting this detail
access a table index or assign a table to can lead to some nasty logic errors.

another table index, you're actually dealing
with the references Lua maintains for these
tables, not the values themselves. For example, the output of the following code snippet could
represent some serious logic errors if you aren’t aware of what’s happening:

so on, are indexed automatically I to 3
because of Lua’s one-index convention. |

X =1{}; -- Declare a table

X[01-=16; -- Give it three indexes

X[11=32;

X[21=64;

print ("X: ", X[11); -- Print out index 1

Y = {}; -- Declare a new table

YLO0]=X; -- Give it one index, containing X
YLOIL11="String"; -- Set the index 1 of index 0 to a string
print ("Y: ", Y[01l 11); ~-- Print out index 1 of index 0 of Y
print ("X: ", X[11); -- Print out index 1 of X

As you can see, the assigning of X to Y [0] didn’t copy the X table and all of its values. Rather, Y
[0 1was simply given a reference to X, which means that any subsequent changes made to the
table located at Y [0] will also affect X, as can be seen in the output. This is a lot like pointers in
C, but I'll keep the pointer analogies to a minium because this topic can be confusing enough as
it is. Refer to Figure 6.8 for an illustration

Moving on, the next major aspect of Lua tables to discuss is their associative nature. In other
words, instead of being forced to use integer indexes to index your array, you can use values of
any type. In this regard, tables work on the principal of key : value pairs, which let you associate
values with other values, called keys, for more intuitive indexing. Consider the following example:

Enemy = {};
Enemy ["Name"] = "Security Droid";
Enemy ["HP" 1 = 200;

EEER 6. INnteRrATION: Using EXISTING SCRIPTING SYSTEMS

Figure 6.8
X [0] Y Both X and Y are refer-

ring to the same physi-
// cal data; as a result,
any changes to either

reference will appear

]. 6 I 3 2 64 to affect the other.
J 0 1 2

1 Enemy ["Weapon" 1 = "Pulse Cannon";
Enemy ["Sprite" 1 = "../gfx/enemies/security_droid.bmp";
:I print ("Enemy Profile:");
print ("\n Type:", Enemy ["Name" 1,
"\n HP:", Enemy ["HP" 1,
"\nWeapon:", Enemy ["Weapon"]);

Which will print out the following:

Enemy Profile:

Type: Security Droid
HP: 200
Weapon: Pulse Cannon

As you can see, each of table’s elements was indexed with strings as opposed to numbers. To use
the previous terminology, "Name", "HP", "Weapon", and "Sprite" were the table’s keys. The keys were
associated with values, which appeared on the right side of the assignment operator. For instance,
"Name" was the key to the value "Security Droid". This example also introduced you to the \n
escape code for newlines, which functions just as it does in C. You'll see the rest of Lua’s escape
codes later.

Any literal data type can be used as a key, so integers, floating-point values, and of course strings,
are all valid. Lua also provides an extra notational convenience for instances where the string key
is also a valid identifier. For example, consider the following rewrite of the previous example:

Enemy = {};
Enemy.Name = "Security Droid";
Enemy.HP = 200;

LuAa [AND BAsic ScrRIPTING CONCEPTS)

Enemy.Weapon = "Pulse Cannon";
Enemy.Sprite = "../gfx/enemies/security_droid.bmp";
print ("Enemy Profile:");

print ("\n Type:", Enemy.Name,

"\n HP:", Enemy.HP,

"\nWeapon:", Enemy.Weapon);
As you can see, the string keys are now being used as if they were fields of a struct-like structure. =
In this case, that’s exactly what they are. Lua automatically adds these identifiers to the table,
allowing them to be accessed in this way. This technique is completely interchangeable with I
string keys, so the following code: |:
Table = {};
Table.X = 16; |
Table ["Y" 1 = 32;
print (Table ["X" 1, Table.Y); I:
will output:
16 32

as if everything was declared using the same method. Internally, Lua doesn’t care, so Table ["Key"]
is always equivalent to Table.Key, provided that "Key" is a string containing a valid identifier.

Advanced String Features

You've seen how basic string syntax works in Lua, but there are a few slightly more advanced top-
ics worth covering before moving on. The first is escape sequences, which are special character
codes preceded by a backslash (\) and direct the compiler to replace certain parts of the string
before compilation instead of taking them literally. As an example of when escape sequences are
necessary, imagine wanting to use a double quote in a string, such as in the following example:

Quote = ""Welcome to the real world", she said to me, condescendingly.";

The problem is that the compiler will think the string ends immediately after the second double
quote (which is really just supposed to denote the beginning of the quotation), which is in reality
the first character in the string. Everything following this will be considered erroneous. Escape
sequences help you alleviate this problem by giving the compiler a heads-up that certain quotes
are not meant to begin or end the string, but are just characters within a larger string. The escape
sequence \" (backslash-double quote) is used to do just this. With escape sequences, you can
rewrite the previous line and compile it without problems:

Quote = "\"Welcome to the real world\", she said to me, condescendingly.";

EEER 6. InteRrATION: Using EXISTING SCRIPTING SYSTEMS

There are a number of escape sequences supported by Lua in addition to the previous one, but
most are related to text formatting and are therefore not particularly useful when scripting
games. However, I personally find the following useful: \\ (Backslash), \"' (Single Quote), and
\XXX, where XXX is a three-digit decimal value that corresponds to the ASCII code of the character
that should replace the escape sequence.

Using the \" escape sequence can be a pain, however, when dealing with strings that contain a lot
of double quotes. Because this is a possibility when scripting games (because many scripts will
contain heavy amounts of dialog that possibly require double quotes), you may want to avoid the
problem altogether by using single-quotes to enclose your strings, which Lua also supports. For
:I example, consider the following:

PrintQuote ('You run into the room. "No!" you scream, as you notice your gun is
1 missing.');

The previous string is equivalent to the following line, but easier to write (and more readable):

:I PrintQuote ("You run into the room. \"No!\" you scream, as you notice your gun is
missing.");

Of course, if for some reason you need to use a large number of single quotes, you can just stick
to the double-quoted string.

Lastly, Lua supports a third method of enclosing strings that is by far the most powerful.
Enclosing your string with double brackets, such as the following line, allows you to insert physi-
cal line breaks directly into the string value without causing a compile-time error:

MyString = [[This is a
multi-Tine

string.]1];

print (MyString);

This will produce the following output:

This is a
multi-Tine
string.

Expressions

Expressions in Lua are a bit more like Pascal than they are like C, in that they offer a more limit-
ed set of operators and use text mnemonics for certain operators instead of symbols. Lua’s many
operators are organized in Tables 6.1 through 6.3.

LuA [AND BAsICc ScrIPTING CONCEPTS) E

Table 6.1 Lua Arithmetic Operators

Operator Function

+ Add
Subtract

* Multiply

/ Divide

R Exponent

Unary negation

Concatenate (strings)

Table 6.2 Lua Relational Operators

Operator Function

= Equal

~= Not equal

< Less than

> Greater than

(= Less than or equal

>= Greater than or equal

Table 6.3 Lua Logical Operators

Operator Function
and And
or Or

not Not

El=El2} 6. INTEGRATION: Using EXISTING SCRIPTING SYSTEMS

Major differences from C worth noting are as follows: the != (Not Equal) operator is replaced
with the equivalent ~= operator, and the logical operators are now mnemonics instead of symbols
(and instead of 4&). These are important to remember, as it’s easy to forget details like this and
have a “C lapse”. :)

Conditional Lagic

Now that you have a handle on statements, expressions, and values, you can start structuring that
code with conditional logic. Like C and indeed most high-level languages, Lua uses the tried-and-
i :I true 1f statement, although its syntax is most similar to BASIC:

if <Expression> then
Block;
1 elseif <Expression> then

Block;
:I end

Unlike C, the expression does not have to be enclosed in parentheses, but you can certainly add
them if you want. Expressions can contain parentheses even when they aren’t necessary. Here’s
an example of using if:

X =16;
Y = 32;
if X > Y then

print ("X is greater.");
else

print ("Y is greater.");
end

Lua does not support an analog to C’s switch construct, so you can instead use a series of elseif
clauses to simulate this (and indeed, this is done in C at times as well). For example, imagine you
have a variable called Item that keeps track of an item the player is carrying and implements its
behavior when used. Normally one might use a switch to handle each possible value, but you
have to use an if-elseif-else chain instead.

if Item == "Sword" then
-- Handle sword behavior

elseif Item == "Morning Star" then
-- Handle morning star behavior
elseif Item == "Nunchaku" then

-- Handle nunchaku behavior

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

else
-- Unknown item
end
As you can see, the final else clause mimics C’s default case for switch blocks. As a gentle
reminder, remember that the logical operators in Lua follow a different syntax from C:
X =1; L
Y =nil;
if X ==Y then
print ("X does not equal Y."); I:
end
if X and Y then
print ("Both X and Y are true."); [
end
if X or Y then I:
print ("Either X or Y is true.");
end

if not (X or Y) then
print ("Neither X nor Y is true.");
end

Iteration

The last control structures to consider when discussing Lua are its iterative structures (in other
words, its loops). Lua supports a number of familiar loop types: while, for, and repeat. while and
for should make C programmers feel at home, and Pascal users will appreciate the inclusion of
repeat. All of the structures have a fairly predictable syntax, so take a look at all of them:

while <Expression> do
-- Block
end

for <Index> = <Start>, <Stop>, <Step> do
-- Block
end

repeat
-- Block
until <expression>

EEE} 6. INntesrATION: UsiNg EXISTING SCRIPTING SYSTEMS

That should all look pretty reasonable, although the exact syntax of the for loop might be a bit
confusing. Unlike C, which allows you to use entire statements (or even multiple statements) to
define the loop’s starting condition, stopping condition, and iterator, Lua allows only simple
numeric values (in this regard, it’s a lot like BASIC). The step value is also optional, and omitting
it will cause the loop to default to a step of 1. Take a look at some examples:

for X =0, 3 do
print ("Iteration:", X);
end

:I This code will produce:

Iteration: 0
1 Iteration: 1

Iteration: 2
Iteration: 3

As you can see, the step value was left out and the loop counting from 0 to 3 in steps of 1. Here’s
an example with the step included:

for X =0, 7, 2 do
print ("Iteration:", X);
end

It produces:

Iteration:
Iteration:
Iteration:
Iteration:

S B~ NN O

Before moving on, I should mention an alternative form of the for loop that you might find use-
ful. This version is specifically designed for traversing tables, and looks like this:

for <Key>, <Value> in <Table> do
-- Block
end

This form of the loop traverses through each key : value pair of Table, and sets Key and Value
appropriately at each iteration. Key and Value can then be accessed within the loop. For example:

MyTable = {};
MyTable ["Key0" 1 = "Value0";

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

MyTable ["Keyl" 1 = "Valuel";

MyTable ["Key2" 1 = "Value2"; NOTE

for MyKeyt MyValue in MyTable do Notice that in the first example for the table-
print (MyKey, MyValue); traversing form of the for loop, the values

end seem to have been printed out of order.The

key : value pair "Key2",Value2".came before
produces the following output: "Keyl",“Valuel".This is because associative
Key0 Valueo arrays don’t have the same numeric order
Key2 Value? that integer-indexed tables do, so the order
Keyl Valuel at which elements are added is not necessari-
ly the element in which they are stored.

Functions

Functions in Lua follow a pattern similar to that of most languages, in that they’re defined with
an initial declaration line, containing an identifier and a parameter list, followed by a code block
that implements the function. Here’s an example of a simple function that adds two numbers
and returns the sum:

function Add (X, Y)
return X + Y;

end

print (Add (16, 32));

The output, of course, is 48. The only real nuance regarding functions is that unlike most lan-
guages, all variables referenced or created in a function are in the global scope by default. So, for
example, imagine changing the previous code so that it looks like this:

function Add (X, Y)
return X + Y;

end

Add (16, 32);

print (GlobalVar);

Now, instead of printing the return value of the Add () function, you print the uninitialized
GlobalVar. Not surprisingly, the output is simply ni1. However, when you add another line:

function Add (X, Y)
GlobalVar = X + Y;

end

Add (16, 32);

print (GlobalVar);

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

You once again get the proper output of 48. This is because GlobalVar is automatically created in
the global scope, and therefore is visible even after Add () returns. To suppress this and create
local variables, the Tocal keyword is used. So, if you simply add one instance of Tocal to the previ-
ous example:

function Add (X, Y)
local GlobalVar = X + Y;
end
Add (16, 32);
print (GlobalVar);

The output of the script is once again nil, as it would be in most other languages. This is because
GlobalVar is created only within the Add () function’s scope (so you should probably consider
1 renaming it “LocalVar”), and is therefore invisible once it returns.

The last thing to mention about functions is that they too can be assigned to variables and even
:I table elements. Imagine two variables called Add () and Sub (), which each perform their respec-
tive arithmetic operation:

function Add (X, Y)
return X + Y;

end

function Sub (X, Y)
return X - Y;
end

You could assign either of these functions to a variable called MathOp, like this:
MathOp = Add;

And could then call the Add () function indirectly by “calling” MathOp instead:
print (MathOp (16, 32));

The output will be 48. The interesting thing, however, is what happens when all you change is the
function that you assign to Math0Op:

MathOp = Sub;
print (MathOp (16, 32));

Because MathOp now refers to the Sub () function, your output will be -16. As mentioned previous-
ly, this capability to “assign” functions to variables is like a somewhat simplified version of C’s
function pointers. Use it wisely, my friend.

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

One last detail; because functions can be assigned to table elements, you can take advantage of
the same notational shorthands. For example:

function PrintHello ()
print ("Hello, World!"™);
end
MyTable = {};
MyTable ["Greeting" 1 = PrintHello;

At this point, the "Greeting" element of
MyTable contains a reference to PrintHello
(), which can now be called in two ways:

MyTable ["Greeting" 1 ();
MyTable.Greeting ();

Both are valid and considered equivalent as
far as Lua is concerned, but I personally
prefer the latter version because it looks
more natural.

NOTE _
Again, if you’re anything like me, a gear or
two may have started to turn when you
saw the last example. “Functions? Stored
in tables and accessible just like.methods

in a class? Hmmmm...” Yes, my friends,
this is a small part of the puzzle of how
Lua can emulate object-orientation. |
won’t be covering that in this book, but it’s
certainly an interesting topic to investi-
gate. See if you can figure out the rest!

Integrating Lua with C

Now that you understand the Lua language enough to get around, it’s time for the real fun to

begin. In a moment, you'll return to the bouncing alien head demo and recode the majority of

its core logic with Lua as an example of true script integration. But before you go that far, you
need to first get your feet wet by getting Lua to run inside and interact with a simple console
application to make sure you understand the basics.

The first goal is decidedly simple; write one or two basic scripts, load them in a simple console
application, and print some basic output to the screen that illustrates the interactions between

the C program and Lua.

Specifically, this program illustrates the following techniques:

B Loading Lua script files and executing them.

B Exporting a C function so that it can be called from Lua scripts.

B Importing Lua functions from scripts so that they can be called from C.

B Passing parameters and returning values in a number of data types to and from both C

and Lua.

Reading and writing global variables in Lua scripts.

EIZEIE} 6. INTEGRATION: Using EXISTING SCRIPTING SYSTEMS

Compiling a Lua Project

Understanding how to compile a Lua project is the first and most important thing to understand
for obvious reasons. Not surprisingly, the first step is to include Tua.h in your main source file and
make sure the compiler knows where to find the Tua.11b library.

In the case of Microsoft Visual C++ users, this is a simple matter of selecting Options under the

Tools menu and activating the Directories tab. Once there, set the Show Directories For pop-up

menu to Include Files. Click the new directory button (the document icon with the sparkle in the

upper-left corner) and enter the path to your Lua installation folder (which should contain

:I Tua.h). Next, set the Show Directories For pop-up to Library Files and repeat what you did for the
include files (as long as that same directory also includes Tua.11b). Figure 6.9 shows the Options

dialog box.
Options PIx Figure 6.9
:I Editar | Tabs | Diebug | Compatibility | Build Directories | { EI The Visual C++
Platfarm: Show directeries far: OPthnS dIGIOg box.
fwinaz =l [include files =l
Drirectories: M * 4
CADMSDESTNMNCLUDE

C:A\Pragram Files\Microsoft Yisual Studic'WCISMNCLLDE
C:5Pragram Files\Microsoft Yisual Studie'WCIS\MFCWNCLUDE
C:APragram Files'Microzoft Visual Studio'WCISWATLMNCLUDE

Ok I Cancel l

Once these settings are complete, make sure to physically include Tua.1ib in your project. I like
to put mine under a Libraries folder within the project.

Including the header file is simple enough, but there is one snag. Lua is a pure-Clibrary. That
may not mean much these days, when popular compilers pretty much blur the difference
between C and C++ programs, but unless you're using a pure C programming environment, your
linker will have some issues with it if you don’t explicitly mention this fact. So, make sure to
include Tua.h like this:

extern "C"

{
#include <lua.h>

LuAa [AND BAsic ScrRIPTING CONCEPTS)

Remember, this will work only if you properly set your path as described previously.

NOTE

In case you’re not familiar with it, extern is a directive that informs the
linker that the identifiers (namely functions).defined within‘its braces
follow the conventions of another language and'should-be treated as

such. In this case, because most people are using the C++ linker that

ships with Microsoft Visual C++,you need to make sure it’s prepared

for a C library that uses slightly different.conventions when declaring
functions and the like.

Initializing Lua

Lua works on the concept of states. A Lua state is essentially a structure that contains information
regarding a specific instance of the runtime environment. Each state can contain one script at
any time, which is loaded into memory for use. To load and execute multiple scripts concurrent-
ly, one needs only to initialize multiple states.

Think about states in the same way you’d think about two instances of the same program in
memory. Imagine starting Photoshop (if you don’t own Photoshop, imagine owning it as well).
Now imagine loading Photoshop again, thus creating two instances of the program at once. Each
instance exists in its own “space,” and is unrelated to and unaffected by the other. You can open a
photo of your dog in one instance, and while doing post-production work on a 3D rendering in
the other. Both instances of Photoshop, although essentially the same program with the same
functionality, are doing different things at the same time without any knowledge of each other.

From the perspective of the host application, a Lua state is simply a pointer to Tua_State struc-
ture. Once you've declared such a pointer, you can call Tua_open () to intialize the state. The only
parameter required by Tua_open () is the stack size that this particu-
lar state will require. Don’t worry too much about this; stack size
will really only affect the state’s ability to handle excessive nesting NOTE
of function calls, so unless you're going to be hip deep in recursive
algorithms, just set it to something like 1024 and forget about it
(even this is overkill, but memory is cheap these days so go nuts!).
In the relatively unlikely event that you run into stack-overflow
errors, just increase it. Here’s an example:

Tua_State * plLuaState = Tua_open (1024);

You can also pass
zero to Tua_open (),

which will cause the
stack size to default
to 1024 elements.

EIZE} 6. INtEGRATION: Using EXISTING SCRIPTING SYSTEMS

This example creates a new state called pLuaState that refers to an instance of the runtime envi-
ronment with a stack of 1024 elements. This state is now valid, and is capable of loading and exe-
cuting scripts.

Of course, no initialization function is complete without its corresponding shut down function.
Once you're done with your Lua state, be sure to close it with Tua_close:

Tua_close (Tua_State * plLuaState);

Loading Scripts

:I Loading scripts is just as easy as initializing the Lua state. All that’s necessary is calling Tua_dofile
() and passing it the appropriate filename of the script, as well as the state pointer you just initial-
-I ized. Tua_dofile () has the following signature:

int Tua_dofile (Tua_state * pLuaState, const char * pstrFilename);

:I To execute a script stored in the file "my_script.lua", you enter the following:

iErrorCode = Tua_dofile (pLuaState, "my_script.lua");

The pLuaState instance of the runtime environment will now load, verify, and immediately exe-
cute the file. Keep in mind that Tua_dofile () will load both compiled and uncompiled scripts
transparently; you can pass it either type of file and it will automatically detect and handle it
properly. However, because uncompiled scripts will need to be compiled before they can be
executed, they will take slightly longer to load. Also, uncompiled scripts are not necessarily valid
and may contain syntactic or semantic errors that a compiler would normally not allow. In this
case, the call to Tua_dofile () will not succeed, so let’s discuss its potential error codes. Refer to
Table 6.4 for a complete listing.

Once the script is loaded, it is immediately execut-
ed. This isn’t always what you want; many times,

you’ll want to load a script ahead of time and exe- NOTE

cute it later, or even better, execute different parts As you can see, the only shred of

of it at different times. I’ll cover this in a moment. compile-time ‘error information

For now, let’s just focus on simply loading and run- Tua_dofile () will'give you is

ning scripts. LUA_ERRSYNTAX, which is pretty
much one step above nothing at

You can load scripts, but how will you actually all. Let this be another example of

know if they’re doing anything? You don’t have how useful the Tuac compiler is,

any way to print text from the Lua script to your which gives you a rundown of com-

console application, so even if the script works, pile-time errors in detail before-
you have no way to observe it. This means that hand. Don’t be lazy! Use it!
even before you write and execute a Lua script,

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

Table 6.4 Tua_dofile () Error Codes

Code Description
0 Success.
LUA_ERRRUN An error occurred while running the script. .
LUA_ERRSYNTAX A syntax error was encountered while pre-compiling the script.
LUA_ERRMEM The required memory could not be allocated. |:
LUA_ERRERR An error occurred with the error alert mechanism. Kind of

embarrassing, huh?. :) [
LUA_ERRFILE An error occurred while attempting to open or read from the file. I:

you have to learn how to call C functions from Lua. Once you can do this, you just wrap a func-
tion that wraps printf () or something along those lines, and you can print the output of your
scripts to the console and actually watch it run.

As such, pretty much everything following this point deals with how Lua and C are integrated,
starting with the allimportant Lua stack.

The Lua Stack

Lua communicates with C primarily through a stack structure that can be used to pass everything
from the values of global variables to function references to parameters to return values. Lua uses
this stack internally for a number of tasks, but all you care about is how you can use it to talk to
Lua scripts and interpret their responses.

Let’s first take a look at some of the generic stack-manipulation functions and macros that Lua
provides. It might not make total sense just yet as to how these are used or why, but rest assured it
will all make sense soon. You should come to understand the basics of these functions before
learning how to apply them.

Much like tables, Lua stacks are indexed starting from 1. This is important to know because the
stack does not have to be accessed in a typical stack fashion at all times. The traditional “push-
and-pop” stack interface is always available, but you can refer to specific elements of the stack
much like you do an array when necessary.

EX=} 6. INntesRrATION: UsiNg EXISTING SCRIPTING SYSTEMS

At any time, the index of the stack’s top element will be equal to stack’s overall size. This is
because Lua indexes the stack starting from 1; therefore, a stack of one element can be indexed
from 1-1, a stack of 16 elements can be indexed from 1-16, and so on. This is a stark contrast
from C and most other languages, in which arrays and other aggregate structures begin indexing
from 0. In these cases, the “top” or “last” element in the structure is always equal to the size minus
one. Figure 6.10 shows you the Lua stack visually.

Figure 6.10

9 The Lua stack.

4
3
2
Bottom element
always resides at w1
index 1

A program’s stack is a turbulent data structure; as functions are called and expressions are evalu-
ated, it grows and shrinks in an erratic pattern. Because of this, stacks are usually accessed in rela-
tive terms. For example, when a given function is active, it usually works with its own local portion
of the stack, the offset of which is usually passed by the runtime environment.

In the case of Lua, you'll generally be accessing the stack to do one of two things: to write a C
function that your scripts can call, or to access your script’s global variables. In both cases, the
Lua stack will be presented to your program such that the indexes begin at 1. In essence, Lua
“protects” the rest of the stack that your program isn’t accessing, much like memory-protected
operating systems like Windows and Linux protect the memory of your computer from a pro-
gram if it lies outside of its address space. This makes your job a lot easier, because you can always
pretend your chunk of the stack begins at 1. Take a look at Figure 6.11, which illustrates this.

LuAa [AND BAsic ScrRIPTING CONCEPTS) m

Figure 6.11

g 1 Regardless of the size
of the stack, Lua will
8 3 Abstracted always present what
Stack appears to be an
1 2 Segment empty stack starting

from | when it is
6 1 accessed from C.

So to sum things up, Lua will virtually always appear to portray an empty stack starting from 1
when you attempt to access it from C. That being said, let’s look at the functions that actually pro-
vide the stack interface. Lua features a rich collection of stack-related functions, but the majority
of them won’t be particularly useful for your purpose and as such, I'll be focusing only on the
major ones.

First off, there’s Tua_gettop (), which gives you the index of the top of the stack:
int Tua_gettop (Tua_State * pluaState);

As you learned when you took a look at Tua_open (), each Lua state has its own stack size, and
thus, its own stack. This means all stack functions (as well as the rest of Lua’s functions for that
matter) require a pointer to a specific state. Getting back to the topic at hand, this function will
return the index of the top element int. As you learned, this is also equal to the size of the stack.

Up next is Tua_stackspace (), which returns the number of stack elements still available in the
stack. So, if the stack size is 1024, and 24 bytes have been used at the time this function is called,
1000 will be returned. This function is especially important because the host application, not Lua,
is responsible for preventing stack overflow. In other words, if your program is rampantly pushing
value after value onto the stack, you run the risk of an overflow error because Lua won’t stop or

EEE2 6. InterATION: Using EXISTING SCRIPTING SYSTEMS

even alert you until it’s too late. Tua_stackspace () should be used in any case where large num-
bers of values will be pushed onto the stack, especially when the pushing will be done inside
loops, which are especially prone to overflow errors.

The next set of functions you will read about is one of the most important. It provides the classic
push/pop interface that stacks are usually associated with. Despite the fact that Lua is typeless, C
and G++ certainly aren’t, and as such you’ll need a number of functions for pushing different
data types:

void Tua_pushnumber (Tua_State * pLuaState, double dValue);
| void Tua_pushstring (Tua_State * pLuaState, char * pstrValue);
:I void Tua_pushnil (Tua_State * pLuaState);

These are three of Lua’s Tua_push* () functions, but they’re the only ones you really have a need
1 for (the rest deal with more obscure, Lua-oriented data types). lua_pushnumber () accepts a dou-
ble-precision float value, which is a superset of all numeric data types Lua supports (integers, sin-
:I gle- and double-precision floating-point). This means that both ints and floats need to be passed
with this function as well. Next is Tua_pushstring (), which predictably accepts a single char * that
points to a typical null-terminated string. The last function worth mentioning is Tua_pushnil (),
which doesn’t require any value, as it simply pushes Lua’s ni1 value onto the stack (which, if you
remember, is conceptually similar to C’s NULL, except that it’s not equal to zero).

Popping values off the stack is a somewhat different story. Rather than provide a collection of
Tua_pop* () functions to match the push functions, Lua simply provides a single macro called
Tua_pop (), which looks like this:

Tua_pop (lua_State * plLuaState, int iElementCount);

This macro does nothing more than pops iElementCount elements off the stack. They don’t actual-
ly go anywhere when you pop them, so this function can only be used to remove the values, not
extract them. To actually receive the values and store them in C variables, you must use one of
the following functions before calling Tua_pop ():

double Tua_tonumber (Tua_State * pLuaState, int ilIndex);
const char * lua_tostring (Tua_State * pLuaState, int iIndex);

Again, the functions should be pretty easy to understand just by looking at them. Give either
function an index into the stack, and it will return its value (but will not pop or remove that
value). In the case of numeric values, you’ll always receive a double (whether you want an integer
or not), and in the case of strings, you’ll of course be returned a char pointer. Because neither of
these functions actually removes the value after returning them, I'll just reiterate that you need to
use Tua_pop () afterwards if you actually want the value taken off the stack afterwards. Otherwise,
these functions can be used to read from anywhere in Lua’s stack. To reliably read from the top
of the stack every time with these functions, remember to use Tua_gettop () to provide the index.

LuAa [AND BAsic ScrRIPTING CONCEPTS) m

Actually, because Lua doesn’t provide a particularly convenient way to directly pop a value off the
stack in the traditional context of the stack interface, let’s write some macros to do it now. Using
the existing Lua functions, you have to do three things in order to simulate a stack pop:

W Get the index of the stack’s top element using Tua_gettop ().

B Use one of the Tua_to* () functions to convert the element at the index returned in the
first step to a C variable.

B Use Tua_pop () to pop a single element off the top of the stack. C

Because this would be a fairly bulky chunk of code to slap into your program every time you want
to do this, a nice little macro that wraps this all up into a single call would be great. Here’s one i
that will pop integers off the stack in one fell swoop: |:

fidefine PopLualInt(pLuaState, iDest) \

{ \ [

iDest = (int) lua_tonumber (pLuaState, Tua_gettop

(pLuaState)); \ I:
Tua_pop (plLuaState, 1); \

}

Just pass the macro a valid Lua state and an integer and it will be filled with the proper value.
Here’s a small code example (assume that pLuaState has already been created with Tua_open ()):

int X, Y;
X=20;
Y = 32;

Tua_pushnumber (pLuaState, Y);
printf ("X: %d, Y: Zd\n", X, Y);
PopLualnt (pLuaState, X);
printf ("X: %d, Y: %d\n", X, Y);

The output will be:
X: 0, Y: 32
X: 32, Y: 32

Try writing similar versions of the macro for floating-point numerics and strings. Be the first kid
on your block to collect all three!

So at this point, you can do some basic querying of stack information, and you can push and pop
stack values of any data type, as well as perform random access to arbitrary stack indexes (thereby
treating it like an array). That’s pretty much everything you’ll need, but there are a few remain-
ing stack issues to discuss.

First of all, because you now have the ability to read from anywhere in the stack, you should read
a bit more about what a valid stack index is. Remember that the Lua stack always starts from 1.

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

Because of this, 0 is never a valid index (unlike tables) and should not be used. Past that, valid
indexes run from 1 to the size of the stack. So, if you have a stack of four elements, 1, 2, 3, and 4
are all valid indexes.

One interesting facet of Lua stack access, however, is using a negative number. At first this may
seem strange, but using a negative has the effect of accessing the stack “in reverse,” so to speak.
Index 1 always points to the bottom of the stack, whereas -1 always points to the top. Going back
to the example of a four-element stack, consider the following. If index 1 points to the bottom, so
does index 4. If index 4 points to the top, so does -1. The same goes for the other elements: ele-
ment 2 can be indexed with either 2 or -3, whereas element 3 can be accessed with either 3 or -2.
:I Basically, you can always access the stack either relative to the top or relative to the bottom,
depending on which is most convenient. Figure 6.12 helps illustrate this concept.

1 Lastly, let’s take a look at a few extra functions Lua provides for determining the type of a given
stack element without removing or copying it into a variable first.

:I void Tua_type (Tua_State * plLuaState, int ilIndex);
void Tua_isnil (lua_State * pLuaState, int ilIndex);

void Tua_isnumber (Tua_State * pLuaState, int ilIndex);

void lua_isstring (lua_State * pLuaState, int ilIndex);

Figure 6.12

g 1 Stacks can be
accessed relative to

8 g either the top or bot-

tom element, depend-
7 -3 ing on the sign of the

index. Positive indexes
6 4 work from the bottom

up, whereas negatives

. B work from the top
down.
4]
3 7
2 -8
Bottom element
always resides at w1 -9

index 1

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

The first function, Tua_type (), returns one of a number of constants referring to the type of the
element at the given index. These constants are shown with a description of their meanings in

Table 6.5.
Table 6.5 Tua_type () Return Constants 1
Constant Description
LUA_TNIL nil [
LUA_TNUMBER Numeric: int, Tong, float, or double.
LUA_TSTRING String [
LUA_TNONE Returned when the specified index is invalid. Nice job, slick! I:

The other Tua_is* () functions work in the same way, but simply return 1 (true) or 0 (false) if
the specified index is compatible with the given type. So for example, calling Tua_isnumber (
pLuaState, 8), will return 1 if the element at index 8 is numeric, and 0 otherwise. As you’ll learn
later in this section, Lua passes parameters to C functions on the stack; when writing a C function
that Lua can call, these functions can be useful when attempting to determine whether the
parameters passed are of the proper types.

Exporting C Functions to Lua

The process of making a function of the host application callable from Lua (or any scripting sys-
tem, for that matter) is called exporting. To export a function from C to Lua, you simply need to
pass a function pointer to the Lua runtime environment, as well as a string containing a name
the function should be known by inside the scripts. Lua provides a simple function for this (actu-
ally, it’s a macro), as follows:

lua_register (Tua_State * pLuaState, const char *
pstrFuncName, Tua_CFunction pFunc);

Given a function name string, the actual function pointer (I'll cover the Tua_CFunction structure
in a second) and the specific Lua state to which this function should be exported, Tua_register
(), will register the function, which allows scripts to refer to it just like any other function. For
example, the following script is considered valid if a C function called CFunc () is exported to the
state in which it runs:

EXZR 6. IntesrATION: Using EXISTING SCRIPTING SYSTEMS

function MyFuncO (X, Y)
end
function MyFuncl (Z)

end

MyFuncO (16, 32);

MyFuncl ("String Parameter");
CFunc (2, 4.8, "String Parameter");

:I Of course, if CFunc () is not exported, this will produce a runtime error. Notice, however, that the

syntax for calling the C function is identical to any other Lua function, including parameter pass-

1 ing. Speaking of parameters, one detail to remember is that exported C functions do not have
well-defined signatures. You can pass any number of parameters of any primitive data type and

:I Lua won’t complain. It’s the C function’s responsibility to sort out the incoming parameters.

To get a feel for how this actually works in practice, let’s create that text-printing function dis-
cussed earlier, so your subsequent scripts can communicate with you through the console.

The first step, of course, is to write the function. The first attempt at a printf () wrapper might
look like this:

void PrintString (char * pstrString)
{

printf (pstrString);

printf ("\n");

This simple wrapper does nothing more than pass pstrString to printf () and follow it up with a
newline. This is fine as a general-purpose printf () wrapper, but it’s not going to work with Lua.

Lua requires any C-defined functions to follow a specific function signature, so it can easily main-
tain a list of function pointers. The prototype of a Lua-compatible C function must look like this:

int FuncName (Tua_State * plLuaState);

Not only is this signature quite a bit different than the PrintString () wrapper, it looks like it
would work only for a function that doesn’t require any parameters (aside from the Lua state)
and always returns an integer, doesn’t it? The reason all functions can follow this same format is
because parameters from Lua and return values to Lua are not handled in the same way as they
are in C. Both incoming parameters and outgoing results are pushed onto the Lua stack.

Because all incoming parameters are on the stack, you can use Lua’s stack interface functions to
read them. Remember, at the time your function is called, Lua will make it seem as if the stack is

LuAa [AND BAsic ScrRIPTING CONCEPTS)

currently empty (whether it is or not), so all of your stack accessing will be relative to element
index 1. At the beginning of your C function, the stack will be entirely empty except for any
parameters that the Lua caller may have passed. Because of this, the size of the stack is always syn-
onymous with the number of parameters the caller passed, and thus, you can use Tua_gettop ().

Once you know how many parameters have been passed, you can read them using Lua’s Tua_to*
() functions, although you’ll need to know what data type you're looking for ahead of time. So, if
you wrote a function whose parameter list looked like this:

(integer X, float Y, string Z)
You could read these three parameters like this:

int X = (int) Tua_tonumber (plLuaState, 1);
float Y = Tua_tonumber (plLuaState, 2);
char * Z = Tua_tostring (pLuaState, 3);

Notice that parameter X was at index 1, Y was at index 2, and 7 was at index 3. Lua always pushes
its parameters onto the stack in the order they’re passed.

Values can be returned in the opposite manner, by

|- L
pushing them onto the stack before the C function TIP
returns. Like passed parameters, return values are
pushed onto the stack in the order in which they Remember, you can always use the

Tua_is* () functions to validate the
data type of the passed parameters.
This is especially important because
Lua won’t force the caller of a host
API function to follow a specific
prototype, and you have no other

should be received. Remember, Lua supports mul-
tiple assignment and thus multiple return values
from functions. If this hypothetical function were
to return three more numeric values, the code
would look something like this:

Tua_pushnumber (pLuaState, 16); way of knowing for sure that the
Tua_pushnumber (plLuaState, 32); passed parameters are valid.
Tua_pushnumber (pLuaState, 64); 1 1
return 3;

Notice that the function returns an integer value corresponding to the number of result values
the function should return to Lua (3 in this case). This is very important, as it helps Lua clean up
the stack properly afterwards, and can lead to stack corruption errors if this number is not cor-
rect. Let’s imagine this C function is exported under the name CFunc (). Ifit’s called from Lua in
order to return three values, the variables in the following code:

U, V, W= CFunc (X, Y, Z);

would be filled in the same order you pushed the values. So, U would be set to 16, V to 32, and W
to 64.

EXEZR 6. InterATION: Using EXISTING SCRIPTING SYSTEMS

So you’re now capable of registering a C function with Lua, as well as receiving parameters and
returning results. That’s pretty much everything you need, so let’s have a go at implementing that
printf () wrapper mentioned earlier. I'll just show you the code up front and I'll dissect it after-
wards:

int PrintStringlist (lua_State * pLuaState)
{
// Get the number of strings
int iStringCount = Tua_gettop (pLuaState);
// Loop through each string and print it, followed by a newline
-] for (int iCurrStringindex = 1; iCurrStringIndex <=
iStringCount; ++ iCurrStringIndex)

1 // First make sure that the current parameter on the
// stack is a string

:I if (! Tua_isstring (pLuaState, 1))
{

// 1f not, print an error
Tua_error (pLuaState, "Invalid string.");
}
else
{
// Otherwise, print a tab, the string, and finally a newline
printf ("\t");
printf (Tua_tostring (pLuaState, iCurrStringIndex));
printf ("\n");
}
1
// Return zero, as this function does not return any results
return 0;

As you can see the function is now called PrintStringList () and accepts a variable number of
string parameters, which are then printed, indented by one tab, and followed by a newline. The
function starts with a call to Tua_gettop (), which, as you remember, can be used to get the num-
ber of parameters when writing host API functions. This value is put in iStringCount, and a for
loop begins in which each string is read from the stack and then printed to the screen.
Tua_isstring () is used to validate each string. If the parameter is of a non-string type,

Tua_error () is called. You haven’t seen this function before, so I'll take a moment to explain it.
Designed for use in console applications, Tua_error () accepts a Lua state and a string parameter

LuAa [AND BAsic ScrRIPTING CONCEPTS) m

and halts the current script just before printing the supplied message. Here’s the prototype, just
for reference:

void Tua_error (lua_State * plLuaState, char * pstrMssg);

Getting back on track, the rest of the
loop deals with reading the string

from the stack using Tua_tostring NOTE

() and printing it to the screen (in When writing host API functions, it helps to be
between the tab and newline char- aware that Lua will always ensure that there is at
acters). The function is finished least a minimum number of stack elements-avail-
when the loop ends, and it returns able.This number is stored in the Tua<h constant

LUA_MINSTACK (which is set to. |6, by default). This
means that no matter what, your function will
always have at least LUA_MINSTACK stack elements
to work with, although it’s always good practice to
make sure of this with Tua_stackspace. ().

0 because there were no results to
be returned to the Lua caller.
Notice also that the parameters
passed on the stack are not
popped off by the function; this is
handled automatically by the Lua
runtime environment.

Executing Lua Scripts

Now that you have your PrintStringlList () written and exported, you're ready to write your first
Lua script and watch it execute from within your C host. This first script will be decidedly simple;
all you need to do right now is print out a few strings to make sure everything is working right.
Once you know you have set everything up correctly, you can accomplish more complex tasks.

This first script will pretty much just do some variable assignment and pass some strings to
PrintStringlist () to display the results. Let’s check it out:

-- Create a full name string
FirstName = "Alex";

LastName = "Varanese";

FulTName = "Name: " .. FirstName ..

. LastName;

-- Now put the floating point value of pi into a string

Pi = 3.14159;

PiString = "Pi: " .. Pi; -- Numeric values can be automatically coerced to
strings

-- Test some Togic
X =20; -- Try setting this to nil instead of zero

EEL=] 6. INtEGRATION: UsiNg EXISTING SCRIPTING SYSTEMS

if X then

Logic = "X is true."; -- Remember, only nil is considered false in Lua
else

Logic = "X is false.";
end

-- Now call your exported C function for printing the strings
PrintStringlList ("Random Strings:", ""); -- The extra empty
-- string is just to
-- create a blank line
:I PrintStringlList (FullName, PiString, Logic);

1 The first part of the script, called test_0.1ua, creates two string variables, FirstName and LastName,
and uses the .. string concatenation operator to combine them into FullName. The next part uses
a floating-point value to create a string containing the first few digits of pi. Notice that Lua auto-
:I matically casts, or coerces, the floating-point value into a valid string. Next, you create the last
string, Logic, by setting it to one of two different values depending on whether the variable X eval-
uates to true. This illustrates Lua’s definition of truth as any non-ni1 value.

Lastly, with all three strings ready (FullName, PiString, and Logic), you make two calls to
PrintStringlist () to display them on the console provided by the host C program. Once again,
note that the syntax for calling the exported C function was typical Lua syntax, which allows your
C functions to blend seamlessly into your Lua-defined functions (even though this script didn’t
have any).

Returning to the C side of things, your host application’s main () function starts with this:

// Initialize a Lua state and set the stack size to 1024
Tua_State * pLuaState = Tua_open (1024);

// Register your simple function with the Lua state for
// printing text strings
lua_register (pLuaState, "PrintStringlList", PrintStringlList);

// Print the title
printf ("Lua Integration Example\n\n");

// Execute your first test script, which just prints
// random strings

printf ("Executing Script test_0.Tua:\n\n");
Tua_dofile (pLuaState, "test_0.lua");

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

All that’s necessary to run this script is to initialize Lua with a call to Tua_open (), register the
PrintStringlist () function with Tua_register (), and finally load and execute the script in one
fell swoop with Tua_dofile (). The output of this program will look like this:

Lua Integration Example
Executing Script test_0.lua:
Random Strings:

Name: Alex Varanese
Pi: 3.14159
X is true.

Thanks to PrintStringlist (), you can be sure that everything went smoothly because the results
are right there on the console. Now that you have a simple framework built up for executing Lua,
you can try your hand at a more sophisticated example.

Importing Lua Functions

You're probably not too surprised to learn that the opposite of exporting a function from C is
importing one from Lua. Naturally, importing a function is the process of making that function
callable from C, which means that Lua can not only take advantage of C functions you’ve already
written, but your host application can capitalize on any useful functions you may have written in
your scripts.

The next script will be primarily focused on demonstrating this concept. To begin, you're going
to write a new script, one that defines two functions. The first function will be called Exponent (),
and, given two parameters X and Y, will return X * Y. The second function, MultiplyString (), will
multiply a string, which basically just means repeating a string a specified number of times. In
other words, "Hel10" multiplied by four produces the following:

HelloHelToHelloHello

Although these two functions are indeed simple, they prove educational; between the two of
them, they will demonstrate:

B How a Lua function is called from C.
B How both numeric and string parameters are passed to a Lua function from a C host.
B How both numeric and string results can be returned to the C host from Lua functions.

Which is just about everything you need to know about function importing.

EEE] 6. INnterATION: Using EXISTING SCRIPTING SYSTEMS

Let’s get this new script started, which is called test_1.1ua, with the Exponent () function:

-- Manually computes exponents in the form of X ~ Y
function Exponent (X, Y)
-- First, Tet's just print out the parameters

PrintStringList ("Calculating " .. X ..
" to the power of " .. Y);
-- Now manually compute the result
Exponent = 1;
if Y < 0 then
-] Exponent = -1; -- Just return -1
-- for all negative exponents

elseif Y ~= 0 then
1 for Power = 1, Y do
Exponent = Exponent * X;
:I end
end

-- Return the final value to C
return Exponent;

end

To make the function more substantial, I've chosen to implement the exponent function with a
manual loop that multiplies 1 value by itself Y times. Of course, Lua provides a builtin exponent
operator with *, so there’ll be no need for you to do this in practice. Regardless, it works by first
setting Exponent to 1 and immediately checking for some alternative cases. The first case is a nega-
tive power; which isn’t supported by the function. Instead, -1 is returned in all such cases. Next,
you check to make sure you aren’t raising X to the power of zero. If so, you only need to return
Exponent as is, because raising anything to zero yields 1. Lastly, you handle a valid exponent with
the loop described previously. The function concludes with the return keyword, which returns the
final exponent value to C.

You'll notice I start the function with a call to PrintStringList () that prints a brief message. I do
this just to keep some variety going in the C/Lua interaction. Without a simple call to this func-
tion, the script would consist entirely of Lua calls, which doesn’t illustrate real-world scripting
quite as well.

The other function test_1.Tua will provide is MultiplyString ():

-- "Multiplies" a string; in other words, repeats a string
-- a number of times
function MultiplyString (String, Factor)
-- As with the above function, print out the parameters

LuAa [AND BAsIC

PrintStringlist ("Multiplying string \""

. String .. "\" by " ..
-- Multiply the string
NewString = "";

for X = 1, Factor do

NewString = NewString ..

end

Factor);

String;

-- Return the multiplied string to C

return NewString;
end

This function is even simpler than Exponent. All it does is create a variable called NewString and
assign it the empty string. NewString will contain the multipled string and is what you’ll return to
C. You then enter a simple for loop which repeatedly appends String to NewString, once again

using the .. operator.

With these two functions saved in
test_1.lua, you can return to your C
host program and add the new code
necessary to test it.

The C side of things will get a little
more complicated than it’s been so far,
but it’s still nothing you can’t handle.
The first thing to understand is that
Tua_dofile () will no longer immediate-
ly execute anything when test_1.lua is
loaded. This is because, unlike your pre-
vious script, there isn’t any code in the
global scope. It’s like writing a C pro-
gram without main (). Because all code
resides in functions, the Lua runtime

TIP

Remember, you can always optionally com-
pile your scripts. Generally, it’s easier to skip
the compilation step while you’re initially
coding and debugging them, but once they’re
finished, don’t forget to run them through
Tuac. lua_dofile () is capable of loading both
compiled and uncompiled scripts, so you
won’t have to change your C host (except to
change the filename to refer to the compiled
version, if it’s different). Recall that compiled
scripts load faster, are less error-prone, and I:

are much less vulnerable to hacking.
1 1

environment won’t run anything until those functions are called. Because the script never calls
any of these functions, in the global scope, nothing ever executes. Tua_dofile () has now effec-
tively become a pure script loader, at least conceptually (it will still attempt to run the script, even

though nothing will happen).

Once the script is in memory, you can freely call any of its functions at will. Lua doesn’t have a
particularly high-level mechanism for calling functions, so you’ll have to do things fairly manually
using the stack. Fortunately, it’s still a pretty straightforward process. Have a look.

ScrIPTING CONCEPTS) E

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

In Lua, functions can be thought of as globals, just as much as global variables can be thought of
as globals. This doesn’t mean they’re any more like variables than C functions are, but they can
be referred to this way. The first thing you need to do when calling a function is push a reference
to the function onto the stack. Because functions are simply another global, you can use Tua_get-
global () to do the job:

Tua_getglobal (pLuaState, "FuncName");

Where FuncName is a string value that corresponds to the name of the function within the script.
Once the function reference is on the stack, you need to push its parameters on as well.
Parameters are pushed onto the stack in left-to-right order. If FuncName looks like this:

:I function FuncName (IntParam, StringParam)

1 And we want to essentially call it like this:
FuncName (256, "Hello!");
:I The parameters would be pushed onto the stack like this:

Tua_pushnumber (plLuaState, 256);
Tua_pushstring (pLuaState, "Hello!");

Simple, eh? Now that the function call is represented on the stack in its entirety, you deliver the
coup-de-grace by calling Tua_call (), which looks like this:

Tua_call (Tua_State * pLuaState, int ParamCount, int ResultCount);

This function will call whatever function was most recently pushed onto the stack, passing
ParamCount parameters and expecting ResultCount results. Remember, due to the multiple assign-
ment capabilities of Lua, functions can return multiple values. If FuncName () accepts the two
parameters listed previously and returns one result, the call to Tua_call () would look like this:

Tua_call (pLuaState, 2, 1);

Lastly, you need to know how to retrieve the result. The result (or results, depending on how
many the function returns) will be left on the stack. In your case, assuming FuncName () returned
a single integer result, you can use the following code to read it:

int iResult = (int) Tua_tonumber (pLuaState, 1);
Tua_pop (plLuaState, 1);

You use Tua_tonumber () to convert the element at index 1 of the stack to a double-precision float-
ing-point value, and then cast it to an integer to store in the receiving variable. You know the
return value is at index 1 because the function only returns one value. The stack is then cleaned
up using Tua_pop () to remove the return value and bring balance to the force.

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

That’s everything there is to know about basic Lua function calls from the host application. Now
that you know what you’re doing, let’s go back to test_1.Tua and try calling your Exponent () and
MultiplyString () functions.

printf ("\nlLoading Script test_1.lua:\n\n");
Tua_dofile (pLuaState, "test_l.lua");

// Call the exponent function C_
// Call lua_getglobal () to push the Exponent ()
// function onto the stack

lTua_getglobal (pLuaState, "Exponent"); I:
// Push two numeric parameters
Tua_pushnumber (pLuaState, 2);

Tua_pushnumber (pLuaState, 13); [
// Call the function with 2 parameters and 1 result
lTua_call (pLuaState, 2, 1); |:

// Pop the numeric result from the stack and print it
int iResult = (int) Tua_tonumber (pLuaState, 1);
Tua_pop (plLuaState, 1);

printf ("\tResult: %d\n\n", iResult);

// Call the string multiplication function

// Push the MultiplyString () function onto the stack
lTua_getglobal (pLuaState, "MultiplyString");

// Push a string parameter and the numeric factor
Tua_pushstring (pLuaState, "Location");
Tua_pushnumber (pLuaState, 3);

// Call the function with 2 parameters and 1 result
Tua_call (pLuaState, 2, 1);

// Get the multiplied string and print it

const char * pstrResult;

pstrResult = lua_tostring (pLuaState, 1);

Tua_pop (pLuaState, 1);

printf ("\tResult: \"%s\"", pstrResult);

Everything should pretty much speak for itself; all I've done here is directly applied the tech-
nique for calling Lua functions described previously.

At this point, you've learned quite a bit; once you have the ability to call functions from both the
host application and the running script, along with parameters and return values, you're pretty

EELE] 6. INntesrATION: Using EXISTING SCRIPTING SYSTEMS

much prepared for anything. Most of the interaction between these two entities will lie in func-
tion calls. Because you've learned the language as well, you should be familiar enough with Lua
in general to get started with your own experiments and exploration. Of course, you still need to
get back to the bouncing alien head demo, but before that, there’s one last detail of interaction
I'd like to show you.

Manipulating Global Lua Variables from C

The last real piece of the C/Lua integration puzzle I'm going to cover is the manipulation of a
I script’s global variables from C. Because globals are often used to control the program on a high
:I level, there are times when you can direct and manipulate the general behavior of your scripts
with nothing more than the reading and writing of globals. I personally prefer to keep everything
'I function-based. Rather than directly editing a global variable, I like to assign that global a pair of
“setter and getter” functions, which allow me to alter the global’s value indirectly and subsequent-
ly more safely. However, you're ultimately the one who has to decide how your game’s scripts will
:I work, so here’s an extra technique for your arsenal in case you personally consider it a better way
to go.

As you've seen to some extent, the Tua_getglobal () and Tua_setglobal () functions can be used
to read and write globals indirectly through the stack. Calling Tua_getglobal () causes the value
of the specified global variable to be pushed onto the stack, whereas Tua_setglobal () will pop
the value off the top of the stack into the specified global. So, for example, if you wanted to set
the value of an integer global called X, you simply do the following:

Tua_pushnumber (pLuaState, 256); -- Push 256 onto the stack
Tua_setglobal (pLuaState, "X"); -- Move the top stack value into X
It’s simply a matter of pushing the desired value onto the stack and using lua_setglobal () to

move it into place. Likewise, the integer value of X could be read with the following code:

Tua_getglobal (pLuaState, X); -- Push X's value onto the stack
int X = (int) lua_tonumber (pLuaState, 1); -- Grab the top stack value

All you need to do is push the given global’s value onto the stack and then convert the value at
that index to an integer to store in a C variable. Once again, you're assuming that the stack is
empty at the time of the call to Tua_getglobal (), which means the value will be placed at index 1.
Because this may not always be the case, be sure to use Tua_gettop () in practice to get the prop-
er index of the stack’s top value. Also, remember to clear the stack off when you’re done; calls to
Tua_getglobal () should generally be followed by a call to Tua_pop ().

Let’s finish test_1.Tua by adding some global variables to manipulate. Before the definition of
your two functions, let’s add the following:

LuAa [AND BAsic ScrRIPTING CONCEPTS)

Globallnt = 256;
GlobalFloat = 2.71828;
GlobalString = "I'm an obtuse man...";

This gives you three globals to work with, all of differing types. To get things started, let’s just try
reading their values and printing them from C:

// Read some global variables C_
printf ("\n\tReading global variables...\n\n");

// Read an integer global by pushing it onto the stack [-
Tua_getglobal (pLuaState, "GlobalInt");
printf ("\t\tGloballnt: %d\n", (int)
Tua_tonumber (pLuaState, 1)); [
Tua_pop (plLuaState, 1);

// Read a float global I:
Tua_getglobal (pLuaState, "GlobalFloat");

printf ("\t\tGlobalFloat: %f\n", Tua_tonumber (pLuaState, 1));
Tua_pop (plLuaState, 1);

// Read a string global

lTua_getglobal (pLuaState, "GlobalString");

printf ("\t\tGlobalString: \"%Zs\"\n", Tua_tostring
(pLuaState, 1));

Tua_pop (plLuaState, 1);

Let’s expand the example just a bit to write new values to the globals. Of course, you'll re-read
them as well to make sure the writes worked:

// Write the global variables and re-read them
printf ("\n\tWriting and re-reading the global variables...\n\n");

// Write and read the integer global

Tua_pushnumber (plLuaState, 512);

Tua_setglobal (pLuaState, "Globallnt");

Tua_getglobal (pLuaState, "Globallnt");

printf ("\t\tGloballnt: %Zd\n", (int) Tua_tonumber
(pLuaState, 1));

Tua_pop (plLuaState, 1);

EEL] 6. INnterATION: UsiNg EXISTING SCRIPTING SYSTEMS

// Write and read the float global

Tua_pushnumber (pLuaState, 3.14159);

Tua_setglobal (pLuaState, "GlobalFloat");

Tua_getglobal (pLuaState, "GlobalFloat");

printf ("\t\tGlobalFloat: %f\n", Tua_tonumber (pLuaState, 1));
Tua_pop (plLuaState, 1);

// Write and read the string global

Tua_pushstring (pLuaState, "...so I'11 try to be oblique.");
Tua_setglobal (pLuaState, "GlobalString");

:I Tua_getglobal (pLuaState, "GlobalString");

printf ("\t\tGlobalString: \"%s\"\n", Tua_tostring (pLuaState, 1));
1 Tua_pop (pLuaState, 1);

:I Done and done. The last thing to add to your C host is a call to Tua_close () to clean everything
up:

Tua_close (plLuaState);

Re-coding the Alien Demo in Lua

Aside from Vader, one last challenge remains. As I mentioned earlier, one of your exercises as
you learn each language will be to recode the bouncing alien head demo I showed you at the
beginning of the chapter.

Initial Evaluations

As I mentioned earlier, all you really want to do with Lua is set the initial location, velocity, and
spin direction of each sprite with the script, as well as produce each frame of the demo by mov-
ing the sprites around the screen and handling collisions.

The first thing you need to do is decide exactly what the script will be in charge of. Once you
know this, you can establish an appropriate host API— a set of functions that will give the script
the capabilities it needs to carry out its tasks.

Because your script will first be responsible for initializing the sprites, let’s break down exactly
what this entails:

B Set the initial X, Y coordinates to a random on-screen location.

B Set the initial X, Y velocity to random values.

B Set the initial spin direction to a random value (0 or 1).

B Store these values in a script-defined table, just as the original C version stored them in
an array.

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

In short, you need to create a table within the script that will hold all of your bouncing alien
heads; each element of the array needs to describe its corresponding alien head in the same way
that the Alien struct did in the hardcoded version. Obviously, table manipulation is built in to
Lua, so you don’t need to provide any functionality for that from the host app. What you do need
to provide, however, is a function that can generate random numbers.

Once initialization is complete, your script won’t be called again until the main loop of the appli-
cation has begun. Once this takes place, the script will be called once per frame. At each frame,
the script will be in charge of the following tasks:

W Blit the background image.

B Loop through each alien in the table and draw it at its current location.

B Blit the completed frame to the screen.

B Update the current frame of animation when the animation timer is active.

B Loop through each alien in the table once again to move it along its current path, and
handle collisions as they occur when the movement timer is active.

As you can see, the per-frame part of the script will be required to do a lot more things that Lua
isn’t directly capable of, so the bulk of your host API will be geared towards these needs. Now
that you know what you need, let’s lay these functions out.

The Host API

As you’ve seen, your primary requirements will be generating random numbers, blitting various
bitmapped images, and checking the status of timers. With these needs in mind, your host API
will look like this:

int HAPI_GetRandomNumber (lua_State * plLuaState);
int HAPI_B1itBG (lua_State * plLuaState);

int HAPI_B1itSprite (Tua_State * pLuaState);

int HAPI_Bl1itFrame (Tua_State * plLuaState);

int HAPI_GetTimerState (Tua_State * plLuaState);

Notice that I've preceded each of the function names with HAPI_ (which of course stands for
“Host APT”). This ensures that your host API functions and C-only functions are kept separate.
This is just good practice in general when scripting with any language.

As for the functions, they should be fairly self-explanatory, but I'll go over them just in case
there’s any ambiguity:

W HAPI_GetRandomNumber () accepts two numeric parameters; minimum and maximum val-
ues that define a range from which a random number should be chosen and returned to
the caller.

EEL=] 6. INntEGRATION: Using EXISTING SCRIPTING SYSTEMS

W HAPI_B1itBG () is a simple function that causes the background image to be blitted to
the framebuffer. No parameters are necessary.

W HAPI_BlitSprite () accepts parameters referring to an X, Ylocation and an index into
the array of frames of the spinning alien head animation.

W HAPI_BlitFrame () is another simple function that blits the framebuffer to the screen.
Like HAPI_B1itBG (), no parameters are needed.

B HAPI_GetTimerState () this function accepts a single numeric parameter containing an
index that refers to a specific timer. The state of that timer (1 for active, 0 for inactive) is
returned to the caller.

:I With the host API laid out, let’s take a look at the new structure of the host application.

1 The New Host Application

The landscape of the C side of things is quite a bit different now that you're offloading a good
:I portion of the demo’s functionality to Lua. Gone is much of the original code, and in its place

you find the host API and a number of calls to the Lua system. Speaking of the host API, its one
of the biggest changes (or additions, I should say). Have a look at the definitions for a few of the
host API functions:

int HAPI_GetRandomNumber (Tua_State * plLuaState)
{

// Read in parameters

int iMin = GetIntParam (1);

int iMax = GetIntParam (2);

// Return a random number between iMin and iMax
ReturnNumber ((rand () % (iMax + 1 - iMin)) + iMin);
return 1;

HAPI_GetRandomNumber () does its job in two phases; first the parameters are read in, and then the
result is sent out. You start by declaring two integer variables, iMin and iMax, and initialize them
with the values returned from GetIntParam (). Wait a second, “GetIntParam ()”? What was that?

Throughout the process of rewriting the alien head demo with Lua, there appeared a number of
places where macros that wrapped the calls to the actual Lua functions made things a lot cleaner.
For example, when a host API function wants to read in an integer parameter, it has to do some-

thing like this:

int iParam = (int) Tua_tonumber (pLuaState, ilndex);

First of all, the function Tua_tonumber () itself isn’t the most intuitive name, at least in this con-
text. What the function is really doing is reading the stack element at iIndex and returning it as a

LuAa [AND BAsic ScrRIPTING CONCEPTS) @

numeric value. At least, that’s how things are working internally. All you need to worry about,
however, is that the function is returning a parameter. So right off the bat, wrapping it in a macro
that provides a more descriptive name will result in improved code readability. Second, you have
to cast the value the function returns to an int because Lua works only with floating-point
numerics. Having this cast clog up your code everywhere is just going to make things messier, so
the following macro:

jtdefine GetIntParam(Index) \
(int) Tua_tonumber (g_plLuaState, Index);

just makes everything cleaner, more descriptive, and more concise. This is a trend that you’ll find
continues throughout this section, so be prepared for a few more macros along these lines.

Where were we? Oh right, HAPI_GetRandomNumber (). Anyway, once you read in the iMin and iMax
parameters, you use another macro, ReturnNumer (), to return the result of a call to the standard
Crand () function. ReturnNumer () is very similar to GetIntParam (), except that it of course auto-
mates the process of returning a numeric. Let’s look at the code:

jtdefine ReturnNumer(Num) \
Tua_pushnumber (g_plLuaState, Num);

Much nicer, eh? Another plus to these macros is that they save you from having to manually pass
that Lua state every time you make a Lua call as well. Of course, if you find yourself writing pro-
grams that maintain multiple states (which you most likely will, because that’s how you imple-
ment multiple scripts running at once), you’ll lose this luxury.

Overall, HAPI_GetRandomNumber () illustrates an important point when discussing host APIs,
because all it really boiled down to was a simple wrapper for rand (). You may find that a large
portion of your host API functions don’t provide any unique functionality of their own. Rather,
they’ll usually just wrap existing functions to make the same functions your C program uses acces-
sible to your scripts. Don’t worry if you find yourself doing a lot of this. At first it may seem like a
lot of extra coding for nothing, but it’s the only way to provide your scripts with the functions
they’re ultimately going to need to be useful.

Let’s check out one more host API function, and then I’'ll move on:

int HAPI_BTitSprite (Tua_State * plLuaState)
{

// Read in parameters

int iIndex = GetIntParam (1);

int iX = GetIntParam (2);

int iY = GetIntParam (3);

EEE} 6. INnterATION: Using EXISTING SCRIPTING SYSTEMS

// Blit sprite

W_BT1itImage (g_AlienAnim [ilIndex 1, iX, iY);
// Return nothing

return 0;

Again, you see a similar process. First you read in three integer parameters with your handy
GetIntParam () macro. You then pass those parameters directly to the Wrappuh function
W_BlitImage (), which performs the blit. Unlike HAPI_GetRandomNumber (), this function does not
I :I return anything to Lua, hence the return 0.

Moving along, I've created two helper functions for initializing and shutting down Lua in its
entirety. InitLua () allows you to open the Lua state and register all of the functions in your host
1 APl in one call:

void InitLua ()

1

// Open a new Lua state

g_pLuaState = Tua_open (LUA_STACK_SIZE);

// Register your host API with Lua

lua_register (g_plLuaState, "GetRandomNumber",
HAPI_GetRandomNumber);

Tua_register (g_pLuaState, "B1itBG", HAPI_B1itBG);

lua_register (g_plLuaState, "BlitSprite", HAPI_B1itSprite);

lua_register (g_plLuaState, "BlitFrame", HAPI_BlitFrame);

lTua_register (g_pluaState, "GetTimerState", HAPI_GetTimerState);

Notice that the host API functions are not exposed to Lua scripts with the HAPI_ prefix. I did this
because there are so few functions in the script (as you’ll soon see), that there’s no need to differ-
entiate. Of course, for large script projects you may find it useful to precede your function names
with HAPI_ on both the C and Lua sides of things.

LUA_STACK_SIZE is just a constant I've set to 1024. Nothing new.

InitLua () of course has a matching ShutDownLua (), although this function is a bit of a waste,
because it only encapsulates one line:

void ShutDownLua ()

{
// Close Lua state
lTua_close (g_pluaState);

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

What can I say? I'm a bit of a neatfreak, so InitLua () had to have a matching ShutDown () func-
tion, whether it was necessary or not. :) It would just seem lopsided without one!

After the call to InitLua (), you'll have a valid Lua state and your host API will be locked and
loaded. It’s here where the scripting really begins. After all of your C-side initialization is done,
you can initialize your alien head sprites with one call:

CallLuaFunc ¢ "Init", 0, 0);

That’s right, another macro has reared its head. This one, aptly entitled CallLuaFunc (), calls Lua
functions. (Honestly, sometimes I wish my function names were less descriptive—it makes the
explanations of what they mean seem so anticlimactic.) Normally, because a Lua function call |:
involves using Tua_getglobal () to put the function reference onto the stack, and then calling

Tua_call (), this macro helps you out a bit by reducing everything to a single line:

jtdefine CallLuaFunc(FuncName, Params, Results) \ [
{\
lTua_getglobal (g_plLuaState, FuncName); \ I:
Tua_call (g_plLuaState, Params, Results); \

Just pass it a string containing the function name, the number of parameters, and the number of
results.

Anyway, the call to the Lua script was in reference to a function called Init (), as you can see.
Because I haven’t covered the contents of the script yet, just take this on faith.

Immediately following the call to your script’s Init () function, the main loop of the demo
begins, which is now rather minimalist because its guts have been transferred to Lua:

// Start the main loop
MainLoop
{
// Start the current Toop iteration
HandlelLoop
{
// Let Lua handle the frame
CallLuaFunc ("HandleFrame", 0, 0);
// Check for the Escape key and exit if it's down
if (W_GetKeyState (W_KEY_ESC))
W_Exit ();

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

Another call to CallLuaFunc (), and another script function you haven’t yet seen. This one is
called Handleframe (), and naturally, handles the current frame by moving the sprites around.
Once again, you'll see these two functions in the next section.

That’s it! In summary, the new host application works by first defining a series of functions that
collectively form the host API, and then initializes LLua by using Tua_open () to create a Lua state
and register the host API’s functions. At this point, the Lua system is all ready to go, and the
script’s two functions are called. First Init () is called to initialize the sprites, and HandleLoop () is
called once per frame to move them around. Because you’re done with the C stuff, you can now
move on and actually see these two functions (among other things).

The Lua Script

1 The Lua script, which I've given the almost frighteningly creative filename script.lua, is the only
one you’ll need for this demo. In it, there are four main elements, as follows:

:I B An area for declaring constants.

B An area for declaring global variables.

B The first function, Init ().

B The second (and last) function, HandleFrame ().

Asyou can see, a script is structured in the same way a program is, something you’ll discover in more
and more depth as your mastery of scripting unfolds. Although scripts and programs are indeed
fundamentally and technically different things; they’re conceptually the same in most respects.

As I said, your script will consist mostly of a constant declaration section, a global variable declara-
tion section, and two functions. Notice again that there is no code in the global scope—in other
words, code that resides outside the func-

tions—because it would be automatically — —
executed by Tua_dofile () and you don’t TIP
necessarily want anything to be run at :| Even though this script example has no |:

that time. Rather, you’d like Lua to sim-
ply load the file into memory for you and
let it sit for you to reference later
through function calls when you need to.

code in the global scope, and thus no code
that automatically runs after the call to
lua_dofile (), this isn’t always something to
avoid. If your script has a block of initializa-
tion code that you know you’re only going

Remember, loading a script involves a to call once at the time the script is loaded,

decent amount of hard drive access, for-
mat validation, and possibly even an
entire compilation of the script (if your
script is still in source code form). Scripts
are no different than bitmaps or sounds

you might as well put this code in the global
scope so Tua_dofile () automatically exe-
cutes it for you.To put it in C++ terms, think I:
of it as a “constructor” for your script.

1 1

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

in this respect; their loading phase is costly and should only be done outside of speed-critical
code (i.e., outside of your main loop). Calling Tua_dofile () to execute a script on a perframe
basis would be frame rate homicide (which is only legal in Texas).

Getting back to the topic at hand, let’s look at the script’s constant declaration section:

ALTEN_COUNT =12;

MIN_VEL =2;

MAX_VEL - 8; '_—
ALTEN_WIDTH = 128;

ALTEN_HEIGHT = 128;

HALF_ALTEN_WIDTH = ALIEN_WIDTH / 2; [_
HALF_ALIEN_HEIGHT = ALIEN_HEIGHT / 2;

ALTEN_FRAME_COUNT = 32;

ALTEN_MAX_FRAME = ALIEN_FRAME_COUNT - 1; [

ANIM_TIMER_INDEX
MOVE_TIMER_INDEX

0;

1; [

The trick here is that Lua doesn’t actually support constants. The best you can do is just pretend
that it does by declaring your constant values as global variables that are written out with typical
CONSTANT_NOTATION (like that). Lua just considers them typical globals, but at least your code will
look the way you want it to. If you compare this block of code to the original hardcoded C ver-
sion, you'll find that I've pretty much just copied the constant declarations and pasted them right
into the Lua source.

Next up, let’s have a look at your global variables

Aliens = {};
CurrAnimFrame = 0;

Only two declarations needed here. First you create a table called Aliens that will keep track of all
of your bouncing heads. Next, you create a simple numeric called CurrAnimFrame, which keeps
track of the current frame of the alien head animation.

With your constants and globals out of the way, you have all the data you need. Now it’s time for
some code. Let’s have a look at the first of two functions this script will provide, Init ():

function Init ()
-- Initialize the alien sprites
-- Loop through each alien in the table and initialize it
for CurrAlienIndex = 1, ALIEN_COUNT do
-- Create a new table to hold all of the alien's fields
local CurrAlien = {};

EELE] 6. INnteRrATION: UsiNg EXISTING SCRIPTING SYSTEMS

-- Set the X, Y Tocation

CurrAlien.X = GetRandomNumber (0, 639 - ALIEN_WIDTH);
CurrAlien.Y = GetRandomNumber (0, 479 - ALIEN_HEIGHT);
-- Set the X, Y velocity

CurrAlien.XVel GetRandomNumber (MIN_VEL, MAX_VEL);
CurrAlien.YVel GetRandomNumber (MIN_VEL, MAX_VEL);
-- Set the spin direction

CurrAlien.SpinDir = GetRandomNumber (0, 2);

-- Copy the reference to the new alien into the table
Aliens [CurrAlienIndex 1 = CurrAlien;

:I end

end

1 As you should remember, this is the function that’s called by the following line back in the host
application:

:I CallLuaFunc ("Init", 0, 0);

So, as soon as this line of code is hit, the Init () function listed previously will be run.

The function really just has one job: initialize the array of bouncing alien heads. Just like in the
original pure C version, this means giving each head a random location on-screen, a random
velocity, and a random spin direction. Naturally, this is facilitated by a for loop.

To actually store the alien head demo, you need to store a smaller table at each index of the
Aliens table. This is because there are a number of pieces of information that each head has to
keep track of. To put this another way, think of it like a multidimensional array, or an array of
structs in C. Each index of the table has another table (or rather, a reference to another table) that
holds that particular element’s information, like its X, Y location and its velocity. Check out
Figure 6.13 for a visual representation of this.

All in all this is a simple concept, but there is one snag that can really trip you up if you’re not
ready for it. As I've mentioned before, it’s important to think of tables in Luas references, rather
than values. Because of this, assigning a table to an element of another table in a loop, like this:

Aliens [CurrAlienIndex] = CurrAlien;

means that Aliens [CurrAlienIndex] only receives a reference to the CurrAlien table, not the val-
ues themselves. So, at the next iteration of the loop, when you put new values into CurrAlien and
assign it to the next index of Aliens, you’ll find that both the current element as well as the previ-
ous element seem to suddenly have the same values. This is due to the fact that both elements
have been given a reference to CurrAlien, so as soon as you change the values for the second ele-
ment of the table in the next iteration of the loop, the first element will seem to inexplicably
change along with it. Figure 6.14 illustrates this relationship.

LuAa [AND BAsic ScrRIPTING CONCEPTS)

Figure 6.13

Each element of the
Aliens {] Aliens table contains
another table that
holds that element’s

specific data.

SpinDir

Vel
Yvel

183 | 20

ra
|

=

o

183 | 20 2 = 0

/S

183 | 20 2 | 0 [

Figure 6.14 |:

{48
11 - s Two elements of
1ens — — =
2 i = Aliens point to the
> - > - (]
same table, and there-
183 | 20 2 -1 0 fore reflect the

changes made to one

another.
183 20 2 -1 0

/

183 | 20 2 = 0

To solve this problem, you simply start the loop with this line:
Tocal CurrAlien = {};

Assigning {} to CurrAlien forces Lua to allocate a new table and therefore provide a fresh, unused
reference. You can then fill the values of this instance of CurrAlien and freely assign it to the next
element of Aliens, without worrying about overwriting the values you set in the last iteration. It’s a
simple problem with a simple solution, but left unchecked this little detail can cause logic errors
that truly wreak havoc. :)

EELE] 6. INnteRATION: UsiNg EXISTING SCRIPTING SYSTEMS

The rest of the alien head initialization loop is pretty much what you would expect; each element
of CurrAlien is set to a random value, using the GetRandomNumber () function that the previously
discussed host API provides. Once this loop completes, Init () is finished and the global Aliens
table contains a record of every bouncing alien head.The script is now fully prepared to enter the
main loop, which will call Hand1eFrame () at each iteration. Let’s have a look at this function:

function HandleFrame ()
-- B1it the background image
BTitBG ();
-- B1it each sprite and move it along its path
J for CurrAlienIndex = 1, ALIEN_COUNT do
-- Get the X, Y Tocation
local X = Aliens [CurrAlienIndex 1.X;
1 local Y = Aliens [CurrAlienIndex 1.Y;
-- Get the spin direction and determine
:] -- the final frame for this sprite
-- based on it.
local SpinDir = Aliens [CurrAlienIndex].SpinDir;
if SpinDir == 1 then
FinalAnimFrame

ALIEN_MAX_FRAME - CurrAnimFrame;
else
FinalAnimFrame = CurrAnimFrame;
end
-- BTit the sprite
B1itSprite (FinalAnimFrame, X, Y);
end
-- BTit the completed frame to the screen
BlitFrame ();
-- Increment the current frame in the animation
if GetTimerState (ANIM_TIMER_INDEX) == 1 then
CurrAnimFrame = CurrAnimFrame + 1;
if CurrAnimFrame >= ALIEN_FRAME_COUNT then
CurrAnimFrame = 0;
end
end
-- Move the sprites along their paths
if GetTimerState (MOVE_TIMER_INDEX) == 1 then
for CurrAlienIndex = 1, ALIEN_COUNT do
-- Get the X, Y Tocation
local X = Aliens [CurrAlienIndex 1.X;
local Y = Aliens [CurrAlienIndex].Y;

LuAa [AND BAsic ScrRIPTING CONCEPTS) E

-- Get the X, Y velocities
local XVel = Aliens [CurrAlienIndex J1.XVel;
Tocal YVel = Aliens [CurrAlienIndex].YVel;
-- Increment the paths of the aliens
X =X+ XVel;
Y =Y + YVel;
Aliens [CurrAlienIndex 1.X = X;
Aliens [CurrAlienIndex 1.Y =Y;
-- Check for wall collisions
if X > 640 - HALF_ALIEN_WIDTH or X <
-HALF_ALIEN_WIDTH then [
XVel = -XVel;
end
if Y > 480 - HALF_ALIEN_WIDTH or Y < [
-HALF_ALIEN_WIDTH then
YVel = -YvVel; [

end
Aliens [CurrAlienIndex J.XVel
Aliens [CurrAlienIndex J.YVel

XVel;
YVel;

end
end
end

Quite a bit larger than Init (), eh? As you can see, there’s a decent amount of logic to attend to
here, so let’s knock it out piece by piece.

The first step is easy; you make a single call to B11tBG (), a host API function that slaps the back-
ground image into the framebuffer. This overwrites the last frame’s contents and gives you a fresh
slate on which to draw the new frame.

You then use a for loop to iterate through each alien in the bouncing alien head array, saving
the X, Ylocation and final animation frame into local variables which are passed to host API
function B1itSprite () to putit on the screen. Notice that you don’t necessarily use the global
CurrAnimFrame as the frame passed to B1itSprite (). This is because each head has its own
spinning direction, which may be forwards or backwards. If it’s forwards, you can use
CurrAnimFrame as-is, but you must subtract CurrAnimFrame from ALIEN_MAX_FRAME if it’s backwards.
This lets certain sprites cycle through the animation in one direction, whereas others cycle
through it the other way.

At this point, you’ve drawn the background image and each alien sprite. All that’s left to com-
plete this frame is to call B1itFrame (), another host API function, which blasts the framebuffer to
the screen. The graphical aspect of the current frame has been taken care of, but now you need

B. INTEGRATION: UsING EXISTING SCRIPTING SYSTEMS

to handle the logic. This means moving the alien heads along their paths and checking for colli-
sions, among other things.

The first thing to do after blitting the new frame to the screen is update CurrAnimFrame. You do
this by incrementing the variable, and resetting it to zero if the increment pushes it past ALIEN-
_MAX_FRAME. Of course, you want to perpetuate the animation at a fixed speed; if you incremented
CurrAnimFrame every frame, the animation might move too quickly on faster systems. So, you’ve
synchronized the speed of the animation with a timer that was created in the host application.
This timer ticks at a certain speed, which means you have to use GetTimerState () at each frame
to see whether it’s time to move the animation along. This ensures a more uniform speed across
:I the board, regardless of frame rate.

This takes you to the last part of the HandleFrame () function, which is the movement of each
1 sprite and the collision check. Like the animation, the movement of the sprites is also synched to
a timer, which means you make another call to GetTimerState (). Assuming the timer has com-
pleted another tick, you start by saving the X, Y coordinates of the sprite and the X, Y velocities to
:I local variables. You then add the velocities to the X, Y coordinates to find the next position along
the path the alien should move to. You put these values back into the Aliens array and then per-
form the collision check. If the new location of the sprite is above or below the extents of the
screen, you reverse the Y velocity to simulate the bounce. The same goes for violations of the hor-
izontal extents of the screen, which cause a reversal of the X velocity. Once these two checks have
been performed, the X and Y velocities are placed back into the Aliens table as well and the
movement of the sprites is complete.

You’ve now completed the script, which means the only thing left to do is sit back and watch it
take off. Check out the demo on the accompanying CD. On the surface it looks identical to the
hard-coded version, but there are two impor-
tant differences. First, you may notice a
slight speed difference. This is a valuable
lesson—don’t forget that despite all of its
advantages, scripting is still noticably slower
than native executable code in most situa-
tions. Second, and more obviously, remem-
ber that even though you’ve compiled the

NOTE

Remember, compiling your scripts with
Tuac is always'recommended. Now that
you’ve finished working on the Lua‘demo,
you might as well compile script. Tuafor
future use.As I've said, Tua_dofile /() just

needs the filename of the compiled ver-

host application, the script itself can be
updated and changed as much as you want
without recompiling the executable.
Because this is the whole reas