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Foreword

Programming games is so fun! The simple reason is that you get to code so many different types
of subsystems in a game, regardless of whether it's a simple Pac Man clone or a complex triple-A
tactical shooter. Coding experience is very enriching, whether you’re writing a renderer, sound
system, AI system, or the game code itself; all of these types of programming contain challenges
that you get to solve. The best way to code in any of these areas is with the most knowledge you
can absorb beforehand. This is why you should have a ton of programming books close at hand.

One area of game coding that hasn't gotten much exposure is scripting. Some games don't need
scripting—whether or not a game does is often dependant on your development environment
and team—but in a lot of cases, using scripting is an ideal way of isolating game code from the
main engine, or even handling in-game cinematics. Most programmers, when faced with solving
a particular coding problem (let's say handling NPC interaction, for instance), will usually decide
to write their own elaborate custom language that integrates with their game code. With the
scripting tools available today this isn't strictly necessary, but boy is it fun!

Many coders aren’t aware of the range of scripting solutions available today; that’s where this fine
book comes in. Game Scripting Mastery is the best way to dive into the mysterious world of game
scripting languages. You’ll learn what a scripting language is and how one is written; you’ll get to
learn about Lua, Python, and Tcl and how to make them work with your game (I’m a hardcore
proponent for Lua, by the way); and, of course, you’ll learn about compiler theory. You’ll even
get to examine how a full scripting language is developed! There's lots of knowledge contain
herein, and if you love coding games, I'm confident that you'll enjoy finding out more about this
aspect of game programming. Have "The Fun!”

John Romero
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Letter from the 
Series Editor

A long, long, time ago on an 8-bit computer far, far, away, you could get
away with hard coding all your game logic, artificial intelligence, and so
forth. These days, as they say on the Sopranos "forget about it.…" Games
are simply too complex to even think about coding anymore—in fact, 99
percent of all commercial games work like this: a 3D game engine is devel-
oped, then an interface to the engine is created via a scripting language sys-
tem (usually a very high-level language) based on a virtual machine. The
scripting language is used by the game programmers, and even more so the
game designers, to create the actual game logic and behaviors for the entire
game. Additionally, many of the rules of standard programming, such as
strict typing and single threaded execution, are broken with scripting lan-
guages. In essence, the load of game development falls to the game design-
ers for logic and game play, and to game programmers for the 3D engine,
physics, and core technologies of the engine.

So where does one start when learning to use scripting in games? Well,
there's a lot of stuff on the Internet of course, and you can try to interface
languages like Python, Lau, and others to your game, but I say you should
know how to do it yourself from the ground up. And that’s what Game
Scripting Mastery is all about. This book is a monster—Alex covers every
detail you can possibly imagine about game scripting.

This is hard stuff, relatively speaking—we are talking about compiler theory,
virtual machines, and multithreading here. However, Alex starts off assum-
ing you know nothing about scripting or compilers, so even if you’re a
beginner you will be able to easily follow along, provided you take your time
and work through the material. By the end of the book you’ll be able to
write a compiler and a virtual machine, as well as interface your language to
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your existing C/C++ game engine—in essence, you will have mastered
game scripting! Also, you will never want to write another parser as long as
you live.

In conclusion, if game scripting is something you’ve been interested in, and
you want to learn it in some serious detail, then this book is the book for
you. Moreover, this is the only book on the market (as we go to publication)
about this subject. As this is the flagship treatise on game scripting, we’ve
tried to give you everything we needed when figuring it out on our own—
and I think we have done much, much more. You be the judge!

Sincerely,

André LaMothe
Series Editor
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Introduction

If you've been programming games for any reasonable amount of time, you've probably
learned that at the end of the day, the really hard part of the job has nothing to do with illumi-

nation models, doppler shift, file formats, or frame rates, as the majority of game development
books on the shelves would have you believe. These days, it's more or less evident that everyone
knows everything. Gone are the days where game development gurus separated themselves from
the common folk with their in-depth understanding of VGA registers or their ability to write an 8-
bit mixer in 4K of code. Nowadays, impossibly fast hardware accelerators and monolithic APIs
that do everything short of opening your mail pretty much have the technical details covered.
No, what really make the creation of a phenomenal game difficult are the characters, the plot,
and the suspension of disbelief.

Until Microsoft releases "DirectStoryline"—which probably won't be long, considering the
amount of artificial intelligence driving DirectMusic—the true challenge will be immersing play-
ers in settings and worlds that exert a genuine sense of atmosphere and organic life. The floor
should creak and groan when players walk across aging hardwood. The bowels of a ship should
be alive with scurrying rats and the echoey drip-drop sounds of leaky pipes. Characters should
converse and interact with both the player and one another in ways that suggest a substantial set
of gears is turning inside their heads. In a nutshell, a world without compellingly animated detail
and believable responsiveness won't be suitable for the games of today and tomorrow.

The problem, as the first chapter of this book will explain, is that the only solution to this prob-
lem directly offered by languages like C and C++ is to clump the code for implementing a periph-
eral character's quirky attitude together with code you use to multiply matrices and sort vertex
lists. In other words, you're forced to write all of your game—from the low-level details to the
high-level logic—in the same place. This is an illogical grouping and one that leads to all sorts of
hazards and inconveniences.

And let's not forget the modding community. Every day it seems that players expect more flexi-
bility and expansion capabilities from their games. Few PC titles last long on the shelves if a
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community of rabid, photosensitive code junkies can't tear it open and rewire its guts. The prob-
lem is, you can't just pop up an Open File dialog box and let the player chose a DLL or other
dynamically linked solution, because doing so opens you up to all sorts of security holes. What if
a malicious mod author decides that the penalty for taking a rocket blast to the gut is a freshly
reformatted hard drive? Because of this, despite their power and speed, DLLs aren't necessarily
the ideal solution.

This is where the book you're currently reading comes into play. As you'll soon find out, a solu-
tion that allows you to both easily script and control your in-game entities and environments, as
well as give players the ability to write mods and extensions, can only really come in the form of a
custom-designed language whose programs can run within an embeddable execution environ-
ment inside the game engine. This is scripting.

If that last paragraph seemed like a mouthful, don't worry. This book is like an elevator that truly
starts from the bottom floor, containing everything you need to step out onto the roof and enjoy
the view when you're finished. But as a mentally unstable associate of mine is often heard to say,
"The devil is in the details." It's not enough to simply know what scripting is all about; in order to
really make something happen, you need to know everything. From the upper echelons of the
compiler, all the way down to the darkest corners of the virtual machine, you need to know what
goes where, and most importantly, why. That's what this book aims to do. If you start at the begin-
ning and follow along with me until the end, you should pick up everything you need to genuine-
ly understand what's going on.

How This Book is Organized
With the dramatic proclamations out of the way, let's take a quick look at how this book is set up;
then we'll be ready to get started.

This book is organized into a number of sections:

• Part One: Scripting Fundamentals. The majority of this material won't do you much
good if you don't know what scripting is or why it's important. Like I said, you can follow
this book whether or not you've even heard of scripting. The introduction provides
enough background information to get you up to speed quick.

• Part Two: Command-Based Scripting. Developing a complete, high-level scripting system
for a procedural language is a complex task. A very complex task. So, we start off by set-
ting our sights a bit lower and implementing what I like to call a "command-based lan-
guage." As you'll see, command-based languages are dead simple to implement and
capable of performing rather interesting tasks.

• Part Three: Introduction to Procedural Scripting Languages. Part 3 is where things start
to heat up, as we get our feet wet with real world, high-level scripting. Also covered in



this section are complete tutorials on using the Lua, Python and Tcl languages, as well as
integrating their associated runtime environments with a host application.

• Part Four: Designing and Implementing a Low-Level Langauge. At the bottom of our
scripting system will lie an assembly language and corresponding machine code (or byte-
code). The design and implementation of this low-level environment will provide a vital
foundation for the later chapters.

• Part Five: Designing and Implementing a Virtual Machine. Scripts—even compiled
ones—don't matter much if you don't have a way to run them. This section of the book
covers the design and implementation of a feature-packed virtual machine that's ready to
be dropped into a game engine.

• Part Six: Compiling High-Level Code. The belly of the beast itself. Executing compiled
bytecode is one thing, but being able to compile and ultimately run a high-level, proce-
dural language of your own design is what real scripting is all about.

• Part Seven: Completing Your Training. Once you've earned your stripes, it's time to
direct that knowledge somewhere. This final section aims to clear up any questions you
may have in regards to furthering your study. You'll also see how the scripting system
designed throughout the course of the book was applied to a complete game.

So that's it! You've got a roadmap firmly planted in your brain, and an interest in scripting that's
hopefully piqued by now. It's time to roll our sleeves up and turn this mutha out.
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An
Introduction
to Scripting

“We’ll bring you the thrill of victory, the agony of
defeat, and because we’ve got soccer highlights, the

sheer pointlessness of a zero-zero tie.”
——Dan Rydel, Sports Night

CHAPTER 1
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It goes without saying that modern game development is a multi-faceted task. As so many
books on the subject love to ask, what other field involves such a perfect synthesis of art,

music and sound, choreography and direction, and hardcore programming? Where else can you
find each of these subjects sharing such equal levels of necessity, while at the same time working
in complete unison to create a single, cohesive experience? For all intents and purposes, the
answer is nowhere. A game development studio is just about the only place you’re going to find
so many different forms of talent working together in the pursuit of a common goal. It’s the only
place that requires as much art as it does science; that thrives on a truly equal blend of creativity
and bleeding-edge technology. It’s that technical side that we’re going to be discussing for the
next few hundred pages or so. Specifically, as the cover implies, you’re going to learn about 
scripting.

You might be wondering what scripting is. In fact, it’s quite possible that you’ve never even heard
the term before. And that’s okay! It’s not every day that you can pick up a book with absolutely
no knowledge of the subject it teaches and expect to learn from it, but Game Scripting Mastery is
most certainly an exception. Starting now, you’re going to set out on a slow-paced and almost
painfully in-depth stroll through the complex and esoteric world of feature-rich, professional
grade game scripting. We’re going to start from the very beginning, and we aren’t even going to
slow down until we’ve run circles around everything.

This book is going to explain everything you’ll need to know, but don’t relax too much. If you
genuinely want to be the master that this book can turn you into, you’re going to have to keep
your eyes open and your mind sharp. I won’t lie to you, reader. Every single man or woman who
has stood their ground; everyone who has fought an agent has died. The other thing I’m not going
to lie to you about is that the type of scripting we’re going to learn—the seat-of-your-pants, pedal-
to-the-asphalt techniques that pro development studios use for commercial products—is hard
stuff.

So before going any further, take a nice deep breath and understand that, if anything, you’re
going to finish this book having learned more than you expected. Yes, this stuff can be difficult,
but I’m going to explain it with that in mind. Everything becomes simple if it’s taught properly,
completely, and from the very beginning.

1. AN INTRODUCTION TO SCRIPTING
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But enough with the drama! It’s time to roll up your sleeves, take one last look at the real world,
and dive headlong into the almost entirely uncharted territory that programmers call “game
scripting.” In this chapter you will find

■ An overview of what scripting is and how it works.
■ Discussion on the fundamental types of scripting systems.
■ Brief coverage of existing scripting systems.

WHAT IS SCRIPTING?
Not surprisingly, your first step towards attaining scripting mastery is to understand precisely what
it is. Actually, my usual first step is breaking open a crate of 20 oz. Coke bottles and binge-drink-
ing myself into a caffeine-induced frenzy that blurs the line between a motivated work ethic and
cardiac arrest…but maybe that’s just me.

To be honest, this is the tricky part. I spent a lot of time going over the various ways I could
explain this, and in the end, I felt that I’d explain scripting to you in the same order that I origi-
nally stumbled upon it. It worked for me, which means it’ll probably work for you. So, put on
your thinking cap, because it’s time to use your imagination.

Here’s a hypothetical situation. You and some friends have decided to create a role-playing game,
or RPG. So, being the smart little programmers you are, you sit down and draft up a design docu-
ment—a fully-detailed game plan that lets you get all of your ideas down on paper before
attempting to code, draw, or compose anything. At this point I could go off on a three-hour lec-
ture about the necessity of design documents, and why programs written without them are
doomed to fail and how the programmers involved will all end up in horrible snowmobile acci-
dents, but that’s not why I’m here. Instead, I am going to quickly introduce this hypothetical RPG
and cover the basic tasks involved in its production. Rather than explain what scripting is directly,
I’ll actually run into the problems that scripting solves so well, and thus learn the hard way. The
hypothetical hard way, that is.

So anyway, let’s say the design document is complete and you’re ready to plow through this proj-
ect from start to finish. The first thing you need is the game engine; something that allows play-
ers to walk around and explore the game world, interact with characters, and do battle with ene-
mies. Sounds like a job for the programmer, right? Next up you’re going to need graphics. Lots
of ‘em. So tell the artist to give the Playstation a rest and get to work. Now on to music and
sound. Any good RPG needs to be dripping with atmosphere, and music and sound are a big
part of that. Your musician should have this covered.

But something’s missing. Sure, these three people can pump out a great demo of the engine,
with all the graphics and sound you want, but what makes it a game? What makes it memorable

WHAT IS SCRIPTING?
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and fun to play? The answer is the content—the quest and the storyline, the dialogue, the descrip-
tions of each weapon, spell, enemy, and all those other details that separate a demo from the
next platinum seller.

STRUCTURED GAME CONTENT—
A SIMPLE APPROACH
So how exactly do you create a complete game? The programmer uses a compiler to code the
design document specifications into a functional program, the artist uses image processing and
creation software like Photoshop and 3D Studio MAX to turn concept art and sketches into
graphics, and musicians use a MIDI composer or other tracking software to transform the schizo-
phrenic voices in their heads into game music. The problem is, there really isn’t any tool or utility
for “inputting” stories and character descriptions. You can’t just open up Microsoft
VisualStoryline, type in the plot to your game, press F5 and suddenly have a game full of charac-
ters and dialogue.

There doesn’t seem to be a clear solution here, but the game needs these things—it really can’t be
a “game” without them. And somehow, every other RPG on the market has done it.

The first and perhaps most obvious approach is to have the programmer manually code all this
data into the engine itself. Sounds like a reasonable way to handle the situation, doesn’t it? Take
the items, for instance. Each item in your game needs a unique description that tells the engine
how it should look and function whenever the player uses it. In order to store this information,
you might create a struct that will describe an item, and then create an array of these structures
to hold all of them. Here’s an idea of what that structure might look like:

typedef struct _Item
{

char * pstrName;   // What is the item called?
int iType;      // What general type of item is it?
int iPrice;      // How much should it cost in shops?
int iPower;      // How powerful is it?

} Item;

Let’s go over this a bit. pstrName is of course what the item is called, which might be “Healing
Potion” or “Armor Elixir.” iType is the general type of the item, which the engine needs in order
to know how it should function when used. It’s an integer, so a list of constants that describe its
functionality should be defined:

const HEAL          = 0;
const MAGIC_RESTORE    = 1;

1. AN INTRODUCTION TO SCRIPTING
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const ARMOR_REPAIR      = 2;
const TELEPORT      = 3;

This provides a modest but useful selection of item types. If an item is of type HEAL, it restores the
player’s health points (or HP as they’re often called). Items of type MAGIC_RESTORE are similar;
they restore a player’s magic points (MP). ARMOR_REPAIR repairs armor (not surprisingly), and
TELEPORT lets the player immediately jump to another part of the game world under certain condi-
tions (or something to that effect, I just threw that in there to mix things up a bit).

Up next is iPrice, which lets the merchants in your game’s item shops know how much they
should charge the player in order to buy it. Sounds simple enough, right? Last is iPower, which
essentially means that whatever this item is trying to do, it should do it with this amount, or to
this extent. In other words, if your item is meant to restore HP (meaning its of type HEAL), and
iPower is 32, the player will get 32 HP back upon using the item. If the item is of type
MAGIC_RESTORE, and iPower is 64, the player will get 64 MP back, and so on and so forth.

That pretty much wraps up the item description structure, but the real job still lies ahead. Now
that the game’s internal structure for representing items has been established, it needs to be
filled. That’s right, all those tens or even hundreds of items your game might need now must be
written out, one by one:

const MAX_ITEM_COUNT = 128;      // 128 items should be enough

Item ItemArray [ MAX_ITEM_COUNT ];

// First, let's add something to heal injuries:
ItemArray [ 0 ].pstrName = "Health Potion Lv 1";
ItemArray [ 0 ].iType = HEAL;
ItemArray [ 0 ].iPrice = 20;
ItemArray [ 0 ].iPower = 10;

// Next, wizards and mages and all those guys are gonna need this:
ItemArray [ 1 ].pstrName = "Magic Potion Lv 6";
ItemArray [ 1 ].iType = MAGIC_RESTORE;
ItemArray [ 1 ].iPrice = 250;
ItemArray [ 1 ].iPower = 60;

// Big burly warriors may want some of this:
ItemArray [ 2 ].pstrName = "Armor Elixir Lv 2";
ItemArray [ 2 ].iType = ARMOR_REPAIR;
ItemArray [ 2 ].iPrice = 30;
ItemArray [ 2 ].iPower = 20;

STRUCTURED GAME CONTENT—A SIMPLE APPROACH



8

// To be honest, I have no idea what on earth this thing is:
ItemArray [ 3 ].pstrName = "Orb of Sayjack";
ItemArray [ 3 ].iType = TELEPORT;
ItemArray [ 3 ].iPrice = 3000;
ItemArray [ 3 ].iPower = NULL;

Upon recompiling the game, four unique items will be available for use. With them in place, let’s
imagine you take them out for a field test, to make sure they’re balanced and well suited for
gameplay. To make this hypothetical situation a bit easier to follow, you can pretend that the rest
of the engine and game content is finished; that you already have a working combat engine with
a variety of enemies and weapons, you can navigate a 3D world, and so on. This way, you can
focus solely on the items.

The first field test doesn’t go so well. It’s discovered in battle that “Health Potion Lv 1” isn’t
strong enough to provide a useful HP boost, and that it ultimately does little to help the player
tip the scales back in their favor after taking significant damage. The obvious solution is to
increase the power of the potion. So, you go back to the compiler and make your change:

ItemArray [ 0 ].iPower = 50;      // More healing power.

The engine will have to be recompiled in order for adjustment to take effect, of course. A second
field test will follow.

The second test is equally disheartening; more items are clearly unbalanced. As it turns out,
“Armor Elixir Lv 2” restores a lot less of the armor’s vitality than is taken away during battle with
various enemies, so it’ll need to be turned up a notch. On the other hand, the modification to
“Health Potion Lv 1” was too drastic; it now restores too much health and makes the game too
easy. Once again, these items’ properties must be tweaked.

// First let's fix the Health Potion issue
ItemArray [ 0 ].iPower = 40;      // Sounds more fair.

// Now the Armor Elixir
ItemArray [ 2 ].iPower = 50;      // Should be more helpful now.

…and once again, you sit on your hands while everything is recompiled. Due to the complexity
of the game engine, the compilation of its source code takes a quite while. As a result, the con-
stant retuning demanded by the game itself is putting a huge burden on the programmer and
wasting a considerable amount of time. It’s necessary, however, so you head out into your third
field test, hoping that things work out better this time.

And they don’t. The new problem? “Magic Potion Lv 6” is a bit too expensive. It’s easy for the
player to reach a point where he desperately needs to restore his magic points, but hasn’t been

1. AN INTRODUCTION TO SCRIPTING
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given enough opportunities to collect gold, and thus gets stuck. This is very important and must
be fixed immediately.

ItemArray [ 1 ].iPrice = 80;      // This tweaking is getting old.

Once again, (say it with me now) you recompile the engine to reflect the changes. The balancing
of items in an RPG is not a trivial task, and requires a great deal of field testing and constant
adjusting of properties. Unfortunately, the length of this process is extended considerably by the
amount of time spent recompiling the engine. To make matters worse, 99.9% of the code being
recompiled hasn’t even changed—two out of three of these examples only changed a single line!

Can you imagine how many times you’re going to have to recompile for a full set of 100+ items
before they’ve all been perfected? And that’s just one aspect of an RPG. You’re still going to need
a wide variety of weapons, armor, spells, characters, enemies, all of the dialogue, interactions, plot
twists, and so on. That’s a massive amount of information. For a full game’s worth of content,
you’re going recompile everything thousands upon thousands of times. And that’s an optimistic
estimation. Hope you’ve got a fast machine.

Now let’s really think about this. Every time you make even the slightest change to your items, you
have to recompile the entire game along with it. That seems a bit wasteful, if flat out illogical,
doesn’t it? If all you want to do is make a healing potion more effective, why should you have to
recompile the 3D engine and sound routines too? They’re totally unrelated.

The answer is that you shouldn’t. The content of your game is media, just like art, sound, and
music. If an artist wants to modify some graphics, the programmer doesn’t have to recompile,
right? The artist just makes the changes and the next time you run the game these changes are
reflected. Same goes for music and sound. The sound technician can rewrite “Battle Anthem in
C Minor” as often as desired, and the programmer never has to know about it. Once again, you
just restart the game and the new music plays fine.

So what gives? Why is the game content singled out like this? Why is it the only type of media that
can’t be easily changed? The first problem with this method is that when you write your item
descriptions directly in your game code, you have to recompile everything with it. Which sucks.
But that’s by no means the only problem. Figure 1.1 demonstrates this.

The problem with all of this constant recompilation is mostly a physical issue; it wastes a lot of
time, repeats a lot of processing unnecessarily, and so on. Another major problem with this
method is one of organization. An RPG’s engine is complicated enough as it is; managing graph-
ics, sound, and player input is a huge task and requires a great deal of code. But consider how
much more hectic and convoluted that code is going to become when another 5,000 lines or so of
item descriptions, enemy profiles, and character dialogue are added. It’s a terrible way to organ-
ize things. Imagine if your programmer (which will most likely be you) had to deal with all the
other game media while coding at the same time—imagine if the IDE was further cluttered by end-
less piles of graphics, music, and sound. A nervous breakdown would be the only likely outcome.

STRUCTURED GAME CONTENT—A SIMPLE APPROACH
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Think about it this way—coding game content directly into your engine is a little like wearing a
tuxedo every day of your life. Not only does it take a lot longer to put on a tux in the morning
than it does to throw on a v-neck and some khakis, but it’s inappropriate except for a few rare
occasions. You’re only going to go to a handful of weddings in your lifetime, so spending the
time and effort involved in preparing for one on a daily basis will be a waste 98% of the time.

All bizarre analogies aside, however, it should now be clear why this is such a terrible way to
organize things.

IMPROVING THE METHOD WITH LOGICAL
AND PHYSICAL SEPARATION
The situation in a nutshell is that you need an intelligent, highly structured way of separating your
code from your game content. When you are working on the engine code, you shouldn’t have to
wade through endless item descriptions. Likewise, when you’re working on item descriptions, the
engine code should be miles away (metaphorically speaking, of course). You should also be able
to change items drastically and as frequently as necessary, even after the game has been com-
piled, just like you can do with art, music, and sound. Imagine being able to get that slow, time-
wasting compilation out of the way up front, mess with the items all you want, and have the
changes show up immediately in the same executable! Sounds like quite an improvement, huh?

What’s even better is how easy this is to accomplish. To determine how this is done, you need not
look any further than that other game media—like the art and sound—that’s been the subject of
so much envy throughout this example. As you’ve learned rather painfully, they don’t require a
separate compile like the game content does; it’s simply a matter of making changes and maybe
restarting the game at worst. Why is this the case? Because they’re stored in separate files. The

1. AN INTRODUCTION TO SCRIPTING
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game’s only connection with this data is the code that reads it from the disk. They’re loaded at
runtime. At compile-time, they don’t even have to be on the same hard drive, because they’re
unrelated to the source code. The game engine doesn’t care what the data actually is, it just reads
it and tosses it out there. So somehow, you need to offload your game content to external files as
well. Then you can just write a single, compact block of code for loading in all of these items
from the hard drive in one fell swoop. How slick is that? Check out Figure 1.2.

IMPROVING THE METHOD WITH LOGICAL AND PHYSICAL SEPARATION

Figure 1.2
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The first step in doing this is determining how you are going to store something like the follow-
ing in a file:

ItemArray [ 1 ].pstrName = "Magic Potion Lv 6";
ItemArray [ 1 ].iType = MAGIC_RESTORE;
ItemArray [ 1 ].iPrice = 250;
ItemArray [ 1 ].iPower = 60;

In this example, the transition is going to be pretty simple. All you really need to do is take every-
thing on the right side of the = sign and plop it into an ASCII file. After all, those are all of the
actual values, whereas the assignment will be handled by the code responsible for loading it
(called the loader). So here’s what the Magic Potion looks like in its new, flexible, file-based form:

Magic Potion Lv 6
MAGIC_RESTORE
250
60

It’s almost exactly the same! The only difference is that all the C/C++ code that it was wrapped
up in has been separated and will be dealt with later. As you can see, the format of this item file is
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pretty simple; each attribute of the item gets its own line. Let’s take a look at the steps you might
take to load this into the game:

1. Open the file and determine which index of the item array to store its contents in. You’ll
probably be loading these in a loop, so it should just be a matter of referring to the loop
counter.

2. Read the first string and store it in pstrName.
3. Read the next line. If the line is “HEAL”, assign HEAL to iType. If it’s “MAGIC_RESTORE” then

assign MAGIC_RESTORE, and so on.
4. Read in the next line, convert it from a string to an integer, and store it in iPrice.
5. Read in the next line, convert it from a string to an integer, and store it in iPower.
6. Repeat steps 1-5 until all items have been loaded.

You’ll notice that you can’t just directly assign the item type to iType after reading it from the file.
This is of course because the type is stored in the file as a string, but is represented in C/C++ as
an integer constant. Also, note that steps 4 and 5 require you to convert the string to an integer
before assigning it. This all stems from the fact that ASCII deals only with string data.

Well my friend, you’ve done it. You’ve saved yourself from the miserable fate that would’ve await-
ed you if you’d actually tried to code each item directly into the game. And as a result, you can
now tweak and fine-tune your items without wasting any more time than you have to. You’ve also
taken your first major step towards truly understanding the concepts of game scripting. Although
this example was very specific and only a prelude to the real focus of the book (discussed short-
ly), it did teach the fundamental concept behind all forms of scripting: How to avoid hardcoding.

THE PERILS OF HARDCODING
What is hardcoding? To put it simply, it’s what you were doing when you tried coding your items
directly into the engine. It’s the practice of writing code or data in a rigid, fixed or hard-to-edit
sort of way. Whether you decide to become a scripting guru or not, hardcoding is almost always
something to avoid. It makes your code difficult to write, read, and edit. Take the following code
block, for example:

const MAX_ARRAY_SIZE = 32;

int iArray [ MAX_ARRAY_SIZE ];
int iChecksum;

for ( int iIndex = 1; iIndex < MAX_ARRAY_SIZE; ++ iIndex )
{

int iElement = iArray [ iIndex ];

1. AN INTRODUCTION TO SCRIPTING
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iArray [ iIndex - 1 ] = iElement;
iChecksum += iElement; 

}

iArray [ MAX_ARRAY_SIZE - 1 ] = iChecksum;

Regardless of what it’s actually supposed to be doing the important thing to notice is that the size
of the array, which is referred to a number of times, is stored in a handy constant beforehand.
Why is this important? Well imagine if you suddenly wanted the array to contain 64 elements
rather than 32. All you’d have to do is change the value of MAX_ARRAY_SIZE, and the rest of the pro-
gram would immediately reflect the change. You wouldn’t be so lucky if you happened to write
the code like this:

int iArray [ 32 ];
int iChecksum;

for ( int iIndex = 1; iIndex < 32; ++ iIndex )
{

int iElement = iArray [ iIndex ];
iArray [ iIndex - 1 ] = iElement;
iChecksum += iElement; 

}
iArray [ 31 ] = iChecksum;

This is essentially the “hardcoded” version of the first code block, and it’s obvious why it’s so
much less flexible. If you want to change the size of the array, you’re going to have to do it in
three separate places. Just like the items in the RPG, the const used in this small example is analo-
gous to the external file—it allows you to make all of your changes in one, separate place, and
watch the rest of the program automatically reflect them.

You aren’t exactly scripting yet, but you’re close! The item description files used in the RPG
example are almost like very tiny scripts, so you’re in good shape if you’ve understood everything
so far. I just want to take you through one more chapter in the history of this hypothetical RPG
project, which will bring you to the real heart of this introduction. After that, you should pretty
much have the concept nailed.

So let’s get back to these item description files. They’re great; they take all the work of creating
and fine-tuning game items off the programmer’s shoulders while he or she is working on other
things like the engine. But now it’s time to consider some expansion issues. The item structure
works pretty well for describing items, and it was certainly able to handle the basics like your typi-
cal health and magic potions, an armor elixir, and the mysterious Orb of Sayjack. But they’re not
going to cut it for long. Let’s find out why.

THE PERILS OF HARDCODING
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STORING FUNCTIONALITY IN
EXTERNAL FILES
Sooner or later, you’re going to want more unique and complex items. The common thread
between all of the items described so far is that they basically just increase or decrease various
stats. It’s something that’s very easy to do, because each item only needs to tell the engine which
stats it wants to change, and by how much. The problem is, it gets boring after a while because
you can only do so much with a system like that.

So what happens when you want to create an item that does something very specific? Something
that doesn’t fit a mold as simple as “Tell me what stat to change and how much to change it by”?
Something like an item that say, causes all ogres below a certain level to run away from battles?
Or maybe an item that restores the MP of every wizard in the party that has a red cloak? What
about one that gives the player the capability to see invisible treasure chests? These are all very
specific tasks. So what can you do? Just add some item types to your list?

const HEAL          = 0;
const MAGIC_RESTORE    = 1;
const ARMOR_REPAIR      = 2;
const TELEPORT      = 3;
const MAKE_ALL_OGRES_BELOW_LEVEL_6_RUN_AWAY = 4;
const MAGIC_RESTORE_FOR_EVERY_WIZARD_WITH_RED_CLOAK = 5;
const MAKE_INVISIBLE_TREASURE_CHESTS_VISIBLE = 6;

No way that’s gonna cut it. With a reasonably complex RPG, you might have as many item types as
you do actual items! Observant readers might have also noticed that once again, this is danger-
ously close to a hardcoded solution. You are back in the game engine source code, adding code
for specific items—additions that will once again require recompiles every time something needs
to be changed. Isn’t that the problem you were trying to solve in the first place?

The trouble though, is that the specific items like the ones mentioned previously simply can’t be
solved by any number of fields in an Item structure. They’re too complex, too specific, and they
even involve conditional logic (determining the level of the ogres, the color of the wizards’
cloaks, and the visibility of the chests). The only way to actually implement these items is to pro-
gram them—just like you’d program any other part of your game. I mean you pretty much have
to; how are you going to test conditions without an if statement? But in order to write actual
code, you have to go back to programming each item directly into the engine, right? Is there
some magical way to actually store code in the item description files rather than just a list of val-
ues? And even if there is, how on earth would you execute it?

1. AN INTRODUCTION TO SCRIPTING
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The answer is scripting. Scripting actually lets you write code outside of your engine, load that
code into the engine, and execute it. Generally, scripts are written in their own language, which is
often very similar to C/C++ (but usually simpler). These two types of code are separate—scripts
use their own compiler and have no effect on your engine (unless you want them to). In essence,
you can replace your item files, which currently just fill structure fields with values, with a block of
code capable of doing anything your imagination can come up with. Want to create an item that
only works if it’s used at 8 PM on Thursdays if you’re standing next to a certain castle holding a
certain weapon? No problem!

Scripts are like little mini-programs that run inside your game. They work on all the same princi-
pals as a normal program; you write them in a text editor, pass them through a compiler, and are
given a compiled file as a result. The difference, however, is that these executables don’t run on
your CPU like normal ones do. Because they run inside your game engine, they can do anything
that normal game code can. But at the same time, they’re separate. You load scripts just like you
load images or sounds, or even like the item description files from earlier. But instead of display-
ing them on the screen or playing them through your speakers, you execute them. They can also
talk to your game, and your game can talk back.

How cool is this? Can you feel yourself getting lost in the possibilities? You should be, because
they’re endless. Imagine the freedom and flexibility you’ll suddenly be afforded with the ability to
write separate mini-programs that all run inside your game! Suddenly your items can be written
with as much control and detail as any other part of your game, but they still remain external and
self-contained.

Anyway, this concludes the hypothetical RPG scenario. Now that you basically know what scripting
is, you’re ready to get a better feel for how it actually works. Sound good?

HOW SCRIPTING ACTUALLY WORKS
If you’re anything like I was back when I was first trying to piece together this whole scripting
concept, you’re probably wondering how you could possibly load code from a file and run it. I
remember it sounding too complicated to be feasible for anyone other than Dennis Ritchie or
Ken Thompson, (those are the guys who invented C, in case I lost you there) but trust me—
although it is indeed a complex task, it’s certainly not impossible. And with the proper reference
material (which this book will graciously provide), it’ll be fun, too! :)

Before going any further, however, let’s refine the overall objective. What you basically want to be
able do is write code in a high-level language similar to C/C++ that can be compiled independ-
ently of your game engine but loaded and executed by that engine whenever you want. The rea-
son you want to do this is so you can separate game content, the artistic, creative, and design-orient-
ed aspects of game development, from the game engine, the technological, generic side of things.

HOW SCRIPTING ACTUALLY WORKS
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One of the most popular solutions to this problem literally involves designing and implementing
a new language from the ground up. This language is called a scripting language, and as I’ve men-
tioned a number of times, is compiled with its own special compiler (so don’t expect Microsoft
VisualStudio to do this for you). Once this language is designed and implemented, you can write
scripts and compile them to a special kind of executable that can be run inside your program. It’s
a lot more complicated than that, though, so you can start by getting acquainted with some of the
details.

The first thing I want you to understand is that scripting is analogous to the traditional program-
ming you’re already familiar with. Actually, writing a script is pretty much identical to writing a
program, the only real difference between the two is in how they’re loaded and executed at run-
time. Due to this fact, there exist a number of very strong parallels between scripting and pro-
gramming. This means that the first step in explaining how scripting works is to make sure you
understand how programming works, from start to finish.

An Overview of Computer
Programming
Writing code that will execute on a computer is a complicated process, but it can be broken
down into some rather simple steps. The overall goal behind computer programming is to be
able to write code in a high-level, English-like language that humans can easily understand and
follow, but ultimately translate that code into a low-level, machine-readable format. The reason
for this is that code that looks like this:

int Y = 0;
int Z = 0;
for ( int X = 0; X < 32; ++ X )
{

Y = X * 2;
Z += Y;

}

which is quite simple and elementary to you and me, is pretty much impossible for your Intel or
AMD processor to understand. Even if someone did build a processor capable of interpreting
C/C++ like the previous code block, it’d be orders of magnitude slower than anything on the
market now. Computers are designed to deal with things in their smallest, most fundamental
form, and thus perform at optimal levels when the data in question is presented in such a fash-
ion. As a result, you need a way to turn that fluffy, humanesque language you call C/C++ into a
bare-bones, byte-for-byte stream of pure code.

1. AN INTRODUCTION TO SCRIPTING
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That’s where compilers come in. A compiler’s job is to turn the C/C++, Java, or Pascal code that
your brain can easily interpret and understand into machine code; a set of numeric codes (called
opcodes, short for operation code) that tell the processor to perform extremely fine-grained tasks
like moving individual bytes of memory from one place to another or jumping to another
instruction for iteration and branching. Designed to be blasted through your CPU at lightning
speeds, machine code operates at the absolute lowest level of your computer. Because pure
machine code is rather difficult to read by humans (because it’s nothing more than a string of
numbers), it is often written in a more understandable form called assembly language, which gives
each numeric opcode a special tag called an instruction mnemonic. Here’s the previous block of
code from, after a compiler has translated it to assembly language:

mov   dword ptr [ebp-4],0
mov   dword ptr [ebp-8],0
mov   dword ptr [ebp-0Ch],0
jmp   00401048h
mov   eax,dword ptr [ebp-0Ch]
add   eax,1
mov   dword ptr [ebp-0Ch],eax
cmp   dword ptr [ebp-0Ch],20h
jge   00401061h
mov   ecx,dword ptr [ebp-0Ch]
shl   ecx,1
mov   dword ptr [ebp-4],ecx
mov    edx,dword ptr [ebp-8]
add   edx,dword ptr [ebp-4]
mov   dword ptr [ebp-8],edx
jmp   0040103fh

If you don’t understand assembly language,
that probably just looks like a big mess of
ASCII characters. Either way, this is what the
processor wants to see. All of those variable
assignments, expressions, and even the for
loop have been collapsed to just a handful of
very quick instructions that the CPU can
blast through without thinking twice. And
the really useless stuff, like the actual names of
those variables, is gone entirely. In addition to illustrating how simple and to-the-point machine
code is, this example might also give you an idea of how complex a compiler’s job is.

HOW SCRIPTING ACTUALLY WORKS

NOTE
For the remainder of this section, and
in many places in this book, I’m going
to use the terms machine code and
assembly language interchangeably.
Remember, the only difference
between the two is what they look like.
Although machine code is the numeric
version and assembly is the human-
readable form, they both represent the
exact same data.
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Anyway, once the code is compiled, it’s ready to fly. The compiler hands all the compiled code to
a program called a linker, which takes that massive volume of instructions, packages them all into
a nice, tidy executable file along with a considerable amount of header information and slaps an
.EXE on the end (or whatever extension your OS uses). When you run that executable, the oper-
ating system invokes the program loader (more commonly referred to simply as the loader), which is
in charge of extracting the code from the .EXE file and loading it into memory. The loader then
tells the CPU the address in memory of the first instruction to be processed, called the program
entry point, (the main () function in a typical C/C++ program), and the program begins execut-
ing. It might be displaying 3D graphics, playing a Chemical Brothers MP3, or accepting user
input, but no matter what it’s doing, the CPU is always processing instructions. This general
process is illustrated in Figure 1.3.

1. AN INTRODUCTION TO SCRIPTING
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This is basically the philosophy behind computer science in a nutshell: Turning problems and
algorithms into high-level code, turning that high-level code into low-level code, executing that
low-level code by feeding it through a processor, and (hopefully) solving the problem. Now that
you’ve got that out of the way, you’re ready to learn how this all applies to scripting.

An Overview of Scripting
You might be wondering why I spent the last section going over the processes behind general
computer programming. For one thing, a lot of you probably already know this stuff like the back
of your hand, and for another, this book is supposed to be about scripting, right? Well don’t sweat
it, because this is where you apply that knowledge. I just wanted to make sure that the program-
ming process was fresh in your mind, because this next section will be quite similar and it’s always
good to make connections. As I mentioned earlier, there exist a great number of parallels
between programming and scripting; the two subjects are based on almost identical concepts.
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When you write a script, you write it just like you write a normal program. You open up a text edi-
tor of some sort (or maybe even an actual VisualStudio-style IDE if you go so far as to make one),
and input your code in a high-level language, just like you do now with C/C++. When you’re
done, you hand that source file to a compiler, which reduces it to machine code. Until this point,
nothing seems much different from the programming process discussed in the last section.

The changes, however, occur when the compiler is translating the high-level script code.
Remember, the whole concept behind a script is that it’s like a program that runs inside another
program. As such, a script compiler can’t translate it into 80X86 machine code like it would if it
were compiling for an Intel CPU. In fact, it can’t translate it to any CPU’s machine code, because
this code won’t be running on a CPU.

So how’s this code going to be executed, if not by a CPU? The answer is what’s called a virtual
machine, or VM. Aside from just being a cool-sounding term, a virtual machine is very similar to
the CPU in your computer, except that it’s implemented in software rather than silicon. A real
CPU’s job is basically to retrieve the next instruction to be executed, determine what that instruc-
tion is telling it to do, and do it. Seems pretty simple, huh? Well it’s the same thing a virtual
machine does. The only difference is that the VM understands its own special dialect of assembly
language (often called bytecode, but you’ll get to that later).

Another important attribute of a virtual machine is that, at least in the context of game scripting,
it’s not usually a standalone program. Rather, it’s a special “module” that is built into (or “inte-
grated with”) other programs. This is also similar to your CPU, which is integrated with a mother-
board, RAM, a hard drive, and a number of input and output devices. A CPU on its own is pretty
much useless. Whatever program you integrate the VM with is called the host application, and it is
this program that you are ultimately “scripting”. So for example, if you integrated a VM into the
hypothetical RPG discussed earlier, scripts would be running inside the VM, but they would be
scripting the RPG. The VM is just a vehicle for getting the script’s functionality to the host.

So a scripting system not only defines a high-level, C/C++-style language of its own, but also creates
a new low-level assembly language, or virtual machine code. Script compilers translate scripts into this
code, and the result is then run inside the host application’s virtual machine. The virtual machine
and the host application can talk to one another as well, and through this interface, the script can
be given specific control the host. Figure 1.4 should help you visualize these interactions.

Notice that there are now two more layers above the program—the VM and the script(s) inside it.

So let’s take a break from all this theory for a second and think about how this could be applied
to your hypothetical RPG. Rather than define items by a simple set of values that the program
blindly plugs into the item array, you could write a block of code that the program tells the VM to
execute every time the item is used. Through the VM, this block of code could talk to the game,
and the game could talk back. The script might ask the game how many hit points the player has,
and what sort of armor is currently being worn. The game would pass this information to the

HOW SCRIPTING ACTUALLY WORKS
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script and allow it process it, and ultimately the script would perform whatever functionality was
associated with the item.

Host applications provide running scripts with a group of functions, called an API (which stands
for Application Programming Interface), which they can call to affect the game. This API for an
RPG might allow the script to move the player around in the game world, get items, change the
background music, or whatever. With a system like this, anything is possible.

That was quite a bit of information to swallow, huh? Well, I’ve got some good and bad news. The
bad news is that this still isn’t everything; there are actually a number of ways to implement a
game scripting system, and this was only one of them. The good news, though, is that this
method is by far the most complex, and everything else will be a breeze if you’ve understood
what’s been covered so far.

So, without further ado…

THE FUNDAMENTAL TYPES OF
SCRIPTING SYSTEMS
Like most complex subjects, scripting comes in a variety of forms. Some implementations involve
highly structured, feature-rich compilers that understand full, procedural languages like C or
even object oriented languages like C++, whereas others are based around simple command sets
that look more like a LOGO program. The choices aren’t always about design, however. There
exists a huge selection of scripting systems these days, most of which have supportive and dedicat-
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ed user communities, and almost all of which are free to download and use. Even after attaining
scripting mastery, you still might feel that an existing package is right for you.

Regardless of the details, however, the motivation behind any choice in a scripting system should
always be to match the project appropriately. With the huge number of features that can be
either supported or left out, it’s important to realize that the best script system is the one that
offers just enough functionality to get the job done without overkill. Especially in the design
phase, it can be easy to overdo it with the feature list. You don’t need a Lamborghini to pick up
milk from the grocery store, so this chapter will help you understand your options by discussing
the fundamental types of scripting systems currently in use. Remember: Large, complicated fea-
ture lists do look cool, but they only serve to bulk up and slow down your programs when they
aren’t needed.

This section will cover:

■ Procedural/object-oriented language systems
■ Command-based language systems
■ Dynamically linked module systems
■ Compiled versus interpreted code
■ Existing scripting solutions

Procedural/Object-Oriented
Language Systems
Probably the most commonly used of the mainstream scripting systems are those built around
procedural or object-oriented scripting languages, and employ the method of scripting discussed
throughout this chapter.

In a nutshell, these systems work by writing scripts in a high-level, procedural or object oriented
language which is then compiled to virtual machine code capable of running inside a virtual
machine, or left uncompiled in order to be executed by an interpreter (more on the differences
between compiled and interpreted code later). The VM or interpreter employed by these systems
is integrated with a host application, giving that application the capability to invoke and commu-
nicate with scripts.

The languages designed for these systems are usually similar in syntax and design to C/C++, and
thus are flexible, free-form languages suitable for virtually any major computing task. Although
many scripting systems in this category are designed with a single type of program in mind, most
can be (and are) effectively applied to any number of uses, ranging from games to Web servers to
3D modelers.

THE FUNDAMENTAL TYPES OF SCRIPTING SYSTEMS



22

Unreal is a high-profile example of a game that’s really put this method of scripting to good use.
Its proprietary scripting language, UnrealScript, was designed specifically for use in Unreal, and
provides a highly object oriented language similar to C/C++. Check out Figure 1.5.

1. AN INTRODUCTION TO SCRIPTING
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Command-Based Language Systems
Command-based languages are generally built around extremely specialized LOGO-like lan-
guages that consist entirely of program-specific commands that accept zero or more parameters.
For example, a command-based scripting system for the hypothetical RPG would allow scripts to
call a number of game-specific functions for performing common tasks, such as moving the play-
er around in the game world, getting items, talking to characters, and so on. For an example of
what a script might look like, consider the following:

MovePlayer      10, 20
PlayerTalk      "Something is hidden in these bushes..."
PlayAnim      SEARCH_BUSHES
PlayerTalk      "It's the red sword!"
GetItem      RED_SWORD

As you can see, the commands that make up this hypothetical language are extremely specific to
an RPG like the one in this chapter. As a result, it wouldn’t be particularly practical to use this
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language to script another type of program, like a word processor. In that case, you’d want to
revise the command set to be more appropriate. For example:

MoveCursor      2, 2
SetFont      "Times New Roman", 24, BLACK
PrintText      "Newsletter"
LineBreak
SetFontSize      12
PrintDate
LineBreak

Once again, the key characteristic behind these languages is how specialized they are. As you can
see, both languages are written directly for their host application, with little to no flexibility.
Although their lack of common language constructs such as variables and expressions, branch-
ing, iteration, and so on limit their use considerably, they’re still handy for automating linear
tasks into what are often called “macros”. Programs like Photoshop and Microsoft Word allow the
users to record their movements into macros, which can then be replayed later. Internally, these
programs store macros in a similar fashion; recording each step of the actions in a program-spe-
cific, command-based language. In a lot of ways, you can think of HTML as command-based
scripting, albeit in a more sophisticated fashion.

Dynamically Linked Module Systems
Something not yet discussed regarding the procedural scripting languages discussed so far are
their inherent performance issues. You see, when a compiled script is run in a virtual machine, it
executes at a significantly slower rate than native machine code running directly on your CPU.
I’ll discuss the specific reasons for this later, but for now, simply understand that they’re definitely
not to be used for speed-critical applications, because they’re just too slow.

In order to avoid this, many games utilize dynamically linked script modules. In English, that basically
means blocks of C/C++ code that are compiled to native machine code just like the game itself,
and are linked and loaded at runtime. Because these are written in normal C/C++ and compiled
by a native compiler like Microsoft Visual C++, they’re extremely fast and very powerful. If you’re
a Windows user, you actually deal with these every day; but you probably know them by their
more Windows-oriented name, DLLs. In fact, most (if not all) Windows games that implement
this sort of scripting system actually use Win32 DLLs specifically. Examples of games that have
used this method include id Software’s Quake II and Valve’s Half-Life.

Dynamically linked modules communicate with the game through an API that the game exposes
to them. By using this API, the modules can retrieve and modify game state information, and
thus control the game externally. Often times, this API is made public and distributed in what is

THE FUNDAMENTAL TYPES OF SCRIPTING SYSTEMS
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called an SDK (Software Development Kit), so that other programmers can add to the game by
writing their own modules. These add-ons are often called mods (an abbreviation for “modifica-
tion”) and are very popular with the previously mentioned games (Quake and Half-Life).

At first, dynamically linked modules seem like the ultimate scripting solution; they’re separate
and modularized from the host program they’re associated with, but they’ve got all the speed and
power of natively compiled C/C++. That unrestricted power, however, doubles as their most sig-
nificant weakness. Because most commercial (and even many non-commercial) games are played
by thousands and sometimes tens of thousands of gamers, often over the Internet, scripts and
add-ons must be safe. Malicious and defective code is a serious issue in large-scale products—
when that many people are playing your game, you’d better be sure that the external modules
those games are running won’t attempt to crash the server during multiplayer games, scan play-
ers’ hard drives for personal information, or delete sensitive files. Furthermore, even non-mali-
cious code can cause problems by freezing, causing memory leaks, or getting lost in endless
loops.

If these modules are running inside a VM controlled directly by the host program, they can be
dealt with safely and securely and the game can sometimes even continue uninterrupted simply
by resetting an out-of-control script. Furthermore, VM security features can ensure that scripts
won’t have access to places they shouldn’t be sticking their noses.

Dynamically linked script modules, however, don’t run inside their host applications, but rather
along side them. In these cases, hosts can assert very little control over these scripts’ actions, often
leaving both themselves and the system as a whole susceptible to whatever havoc they may inten-
tionally or unintentionally wreak.

This pretty much wraps up the major types of scripting systems out there, so let’s switch the focus
a bit to a more subtle detail of this subject. A screenshot of Half-Life appears in Figure 1.6.

Compiled versus Interpreted Code
Earlier I mentioned compiled and interpreted code during the description of procedural lan-
guage scripting systems. The difference between these two forms of code is simple: compiled
code is reduced from its human-readable form to a series of machine-readable instructions called
machine code, whereas interpreted code isn’t.

So how does interpreted code run? It’s a valid question, especially because I said earlier that no
one’s made a CPU capable of executing uncompiled C/C++ code. The answer is that the CPU
doesn’t run this code directly. Instead, it’s run by a separate program, quite similar in nature to a
virtual machine, called an interpreter. Interpreters are similar to VMs in the sense that they execute
code in software and provide a suitable runtime environment. In many ways, however, inter-
preters are far more complex because they don’t execute simplistic, fine-grained machine code.

1. AN INTRODUCTION TO SCRIPTING
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Rather, they literally have to process and understand the exact same human-written, high-level
C/C++ code you and I deal with every day.

If you think that sounds like a tough job, you’re right. Interpreters are no picnic to implement. On
the one hand, they’re based on almost all of the complex, language parsing functionality of com-
pilers, but on the other hand, they have to do it all fast enough to provide real-time performance.

However, contrary to what many believe, an interpreter isn’t quite as black and white as it sounds.
While it’s true that an interpreter loads and executes raw source code directly without the aid of a
separate compiler, virtually all modern interpreters actually perform an internal, pre-compile step,
wherein the source code loaded from the disk is actually passed through a number of routines
that encapsulate the functionality of a stand-alone compiler and produce a temporary, in-memory
compiled version of the script or program that runs just as quickly as it would if it were an exe-
cutable read from disk.

Most interpreters allow you the best of both worlds—fast execution time and the convenience of
automatic, transparent compilation done entirely at runtime. There are still some trade-offs, how-
ever; for example, if you don’t have the option to compile your scripts beforehand, you’re forced
to distribute human-readable script code with your game that leaves you wide open to modifica-
tions and hacks. Furthermore, the process of loading an ASCII-formatted script and compiling it
at runtime means your scripts will take a longer time to load overall. Compiled scripts can be
loaded faster and don’t need any further processing once in memory.

THE FUNDAMENTAL TYPES OF SCRIPTING SYSTEMS
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As a result, this book will only casually mention interpreted code here and there, and instead
focus entirely on compiled code. Again, while interpreters do function extremely well as debug-
gers and other development tools, the work involved in creating them outweighs their long-term
usefulness (at least in the context of this book).

Existing Scripting Solutions
Creating your own scripting system might be the focus of this book, but an important step in
designing anything is first learning all you can about the existing implementations. To this end,
you can briefly check out some currently used scripting systems. All of the systems covered in this
section are free to download and use, and are supported by loyal user communities. Even after
attaining scripting mastery, using an existing scripting system is always a valid choice, and often a
practical one. This section is merely an introduction, however; an in-depth description of both
the design and use of existing scripting systems can be found in Chapter 6.

Ruby
http://www.ruby-lang.org/en/index.html

Ruby is a strongly object-oriented scripting language with an emphasis on system-management
tasks. It boasts a number of advanced features, such as garbage collection, dynamic library load-
ing, and multithreading (even on operating systems that don’t support threads, such as DOS). If
you download Ruby, however, you’ll notice that it doesn’t come with a compiler. This is because it
is a fully interpreted language; you can immediately run scripts after writing them without com-
piling them to virtual machine code.

Taken directly from the official web site, here’s a small sample of Ruby code (which defines a
class called Person):

class Person
attr_accessor :name, :age
def initialize(name, age)
@name = name
@age  = age.to_i

end
def inspect
"#@name (#@age)"

end
end

p1 = Person.new('elmo', 4)
p2 = Person.new('zoe', 7)

1. AN INTRODUCTION TO SCRIPTING
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Lua
http://www.lua.org/

As described by the official Lua web site, “Lua is a powerful, lightweight programming language
designed for extending applications.” Lua is a procedural scripting system that works well in any
number of applications, including games. One of its most distinguishing features, however, lies in
its ability to be expanded by programs written with it. As a result, the core language is rather
small; it is often up to the user to implement additional features (such as classes). Lua is a com-
pact, highly expandable and compiled language that interfaces well with C/C++, and is subse-
quently a common choice for game scripting.

Java
http://java.sun.com/

Strangely enough, Java has proven to be a viable and feature-rich scripting alternative. Although
Java’s true claim to fame is designing platform independent, standalone applications (often with
a focus on the internet), Java’s virtual machine, known as the JVM, can be easily integrated with
C/C++ programs using the Java Native Interface, or JNI. Due to its common use in professional-
grade e-commerce applications, the JVM is an optimized, multithreaded runtime environment
for compiled scripts, and the language itself is flexible and highly object oriented.

SUMMARY
Phew! Not a bad way to start things off, eh? In only one chapter, you’ve taken a whirlwind tour of
the world of game scripting, covering the basic concepts, a general overview of implementation,
common variations on the traditional scripting method, and a whole lot of details. If you’re new
to this stuff, give yourself a big pat on the back for getting this far. If you aren’t, then don’t even
think about patting your back yet. You aren’t impressing anyone! (Just kidding)

In the coming chapters, you’re going to do some really incredible things. So read on, because the
only way you’re going to understand the tough stuff is if you master the basics first! With that in
mind, you might want to consider re-reading this chapter a few times. It covers a lot of ground in
a very short time, and it’s more than likely you missed a detail here or there, or still feel a bit
fuzzy on a key concept or two. I personally find that even re-reading chapters I think I under-
stood just fine turns out to be helpful in the end.

SUMMARY
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As I mentioned in the last chapter, scripting systems should be designed to do as much as
is necessary and no more. Because of this, understanding what the various forms of

scripting systems can do, as well as their common applications, is essential in the process of attain-
ing scripting mastery.

So that’s what this chapter is all about: giving you some insight into how scripting is applied to
real-world game projects. Seeing how something is actually used is often the best way to solidify
something you’ve recently learned, so hopefully the material presented here will compliment that
of the last chapter well. This has actually been covered to some extent already; the last chapter’s
hypothetical RPG project showed you by example how scripting can ease the production of
games that require a lot of content. This chapter approaches the topic in a more detailed and
directly informative way, and focuses on more than just role-playing games. In an effort to keep
these examples of script applications as diverse as possible, the chapter also takes a look at a stark-
ly contrasting game genre, but one that gets an equal amount of attention from the scripting
community——the First-Person Shooter.

I should also briefly mention that if you’re coming into the book with the sole purpose of applying
what you learn to an existing project, you probably already know exactly why you need to build a
scripting system and feel that you can sweat the background knowledge. Regardless of your skill
level and intentions, however, I suggest you at least skim this stuff; not only is it a light and fairly
non-technical read, but it sets the stage for the later chapters. The concepts introduced in this chap-
ter will be carried on throughout the rest of the book and are definitely important to understand.

But enough with the setup, huh? Let’s get going. This chapter will cover how scripting systems
can be applied to the following problems:

■ An RPG’s story-related elements—non-player characters and plot details.
■ RPG items, weapons and enemies.
■ The objects, puzzles and switches of a first-person shooter.
■ First-person shooter enemy behavior.

THE GENERAL PURPOSE OF SCRIPTING
As was explained in the last chapter, the most basic reason to implement a scripting system is to
avoid the perils of hardcoding. When the content of your game is separated from the engine, it
allows the tweaking, testing, and general fine-tuning of a game’s mechanics and features to be
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carried out without constant recompilation of the entire project. It also allows the game to be eas-
ily expanded even after it’s been compiled, packaged, and shipped (see Figure 2.1).
Modifications and extensions can be downloaded by players and immediately recognized by the
game. With a system like this, gameplay can be extended indefinitely (so long as people produce
new scripts and content, of course).

THE GENERAL PURPOSE OF SCRIPTING

Figure 2.1
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Because the ideal separation of the game engine and its content allows the engine’s executable to
be compiled without a single line of game-specific code, the actual game the player experiences
can be composed entirely of scripts and other media, like graphics and sound. What this means is
that when players buy the game, they’re actually getting two separate parts; a compiled game
engine and a series of scripts that fleshes it out into the game itself. Because of this modular archi-
tecture, entirely new games such as sequels and spinoffs can be distributed in script-form only, run-
ning without modification on the engine that players already have.

One common application of this idea is distributing games in “episode” form; that means that
stores only sell the first 25 percent or so of the game at the time of purchase, along with the exe-
cutable engine capable of running it. After players finish the first episode, they’re allowed to
download or buy additional episodes as “patches” or “add-ons” for a smaller fee. This allows
gamers to try games before committing to a full purchase, and it also lets the developers easily
release new episodes as long as the game franchise is in demand. Rather than spend millions of
dollars developing a full-blown sequel to the game, with a newly designed and coded engine,
additional episodes can be produced for a fraction of the cost by basing them entirely on scripts
and taking advantage of the existing engine, while still keeping players happy.
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With this in mind, scripting seems applicable to all sorts of games; don’t let the example from the
first chapter imply that only RPGs need this sort of technology. Just about any type of game can
benefit from scripting; even a PacMan clone could give the different colored ghosts their own
unique AI by assigning them individual scripts to control their movement. So the first thing I
want to impress upon you is how flexible and widely applicable these concepts are. All across the
board, games of every genre and style can be reorganized and retooled for the better by intro-
ducing a scripting system in some capacity.

So to start things off on a solid footing, let’s begin this tour of scripting applications with another
look RPGs. This time I’ll of course go into more detail, but at least this gets you going with some
familiar terrain.

ROLE PLAYING GAMES (RPGS)
Although I’ve been going out of my way to assure you that RPGs are hardly the only types of
games to which one can apply a scripting system, you do hear quite a bit of scripting-related con-
versation when hanging around RPG developers; often more so than other genres in fact. The
reason for this is that RPGs lend themselves well to the concept of scripts because they require
truly massive amounts of game content. Hundreds of maps, countless weapons, enemies and
items, thousands of roaming characters, hundreds of megs worth of sound and music, and so on.
So, naturally, RPG developers need a good way to develop this content in a structured and organ-
ized manner. Not surprisingly, scripting systems are the answer to this problem more often than
not.

In order to understand why scripting can be so beneficial in the creation of RPGs, let’s examine
the typical content of these games. This section covers:

■ Complex, in-depth stories
■ Non-player characters (NPCs)
■ Items and weapons
■ Enemies

Complex, In-Depth Stories
Role playing games are in a class by themselves when it comes to their storylines. Although many
games are satisfied with two paragraphs in the instruction manual that essentially boil down to
“You’ve got 500 pounds of firepower strapped to your back. Blow up everything that moves and
you’ll save democracy!”, RPGs play more like interactive novels. This means multi-dimensional
characters with endless lines of dialogue and a heavily structured plot with numerous “plot
points” that facilitate the progression of a player through the story.

2. APPLICATIONS OF SCRIPTING SYSTEMS
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At any given point in the player’s adventure, the game is going to need to know every major thing
the player has done up until that point in order to determine the current state of the game
world, and thus, what will happen next. For example, if players can’t stop the villain from burn-
ing the bridge to the hideout early in the game, they might be forced to find an alternate way 
in later.

The Solution
Many RPGs employ an array of “flags” that represent the current status of the plot or game world.
Each flag represents an event in the game and can be either true or false (although similar sys-
tems allow flags to be more complex than simple Boolean values). At the beginning of the game,
every flag will be FALSE because the player has yet to do anything. As players progress through the
game, they’re given the opportunity to either succeed or fail in various challenges, and the flags
are updated accordingly. Therefore, at any given time, the flag array will provide a reasonably
detailed history of the player’s actions that the game can use to determine what to do next. For
example, to find out if the villain’s bridge has been burned down, it’s necessary to check its corre-
sponding flag. Check out figure 2.2.

ROLE PLAYING GAMES (RPGS)

Figure 2.2

Every event in the game is represented by an element (commonly Boolean) in the game flag

array. At any time, the array can be used to determine the general course the player has taken.

This can be used to determine future events and conditions.

Implementation of this system can be approached in a number of ways. One method is to build
the array of flags directly in the engine source code, and provide an interface to scripts that
allows them to read and write to the array (basically just “get” and “set” functions). This way, most
of the logic and functionality behind the flag system lies in external scripts; only the array itself
needs to be built into the game engine. Depending on the capabilities of your scripting system,
however, you might even be able to store the array itself in a script as well, and thus leave the
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engine entirely untouched. This is technically the ideal way to do it, because all game logic is
offloaded from the main engine, but either way is certainly acceptable.

Non-Player Characters (NPCs)
One of the most commonly identifiable aspects of any RPG is the constant conversation with the
characters that inhabit the game world. Whether it be the friendly population of the hero’s home
village or a surly guard keeping watch in front of a castle, virtually all RPGs require the player to
talk to these non-player characters, or NPCs, in order to gather the information and clues neces-
sary to solve puzzles and overcome challenges.

Generally speaking, the majority of the NPCs in an RPG will only spark trivial conversations, and
their dialogue will consist of nothing more than a linear series of statements that never branch
and always play out the same, no matter how many times you approach them. Kinda like that
loopy uncle you see on holidays that no one likes to talk about.

Things aren’t always so straightforward however. Some characters will do more than just ramble;
they might ask a question that results in the player being prompted to choose from a list of
responses, or ask the player to give them money in exchange for information or items, or any
number of other things. In these cases, things like conditional logic, iteration, and the ability to
read game flags become vital. An example of real character dialogue from Square’s Final Fantasy
9 can be found in Figure 2.3.

2. APPLICATIONS OF SCRIPTING SYSTEMS
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The Solution
First, let’s discuss some of the simpler NPC conversations that you’ll find in RPGs. In the case of
conversations that don’t require branching, a command-based language system is more than
enough. For example, imagine you’d like the following exchange in your game:

NPC: “You look like you could use some garlic.”

Player: “Excuse me?”

NPC: “You’re the guy who’s saving the world from the vampires, right?”

Player: “Yeah, that’s me.”

NPC: “So you’re gonna need some garlic, won’t you?”

Player: “I suppose I will, now that you mention it.”

NPC: “Here ya go then!” ( Gives player garlic )

Player: “Uh…thanks, I guess.” ( Player scratches head )

If you were paying attention, you might have noticed that only about four unique commands are
necessary to implement this scene. And if you weren’t paying attention, you probably still aren’t,
so I’ll take advantage of this opportunity and plant some subliminal messages into your unknow-
ing subconscious: buy ten more copies of this book for no reason other than to inflate my royalty checks.
Anyway, here’s a rundown of the functionality the scene requires:

■ Both the player and the NPC need the ability to talk.
■ The NPC needs to be able to give the player an item (vampire-thwarting garlic, in this case).
■ There should also be a general animation-playing command to handle the head scratching.

Here’s that same conversation, in command-based script form:

NPCTalk    "You look like you could use some garlic."
PlayerTalk    "Excuse me?
NPCTalk   "You're the guy who's saving the world from the vampires, right?"
PlayerTalk   "Yeah, that's me."
NPCTalk   "So you're gonna need some garlic, won't you?"
PlayerTalk   "I suppose I will, now that you mention it."
NPCTalk   "Here ya go then!"
GetItem   GARLIC
PlayerTalk   "Uh... thanks, I guess."
PlayAnim   PLAYER_SCRATCH_HEAD

ROLE PLAYING GAMES (RPGS)
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Pretty straightforward, huh? Once written, this script would then be associated with the NPC,
telling the game to run it whenever the player talks to him (or her, or it, or whatever your NPCs
are classified as). It’s a simple but elegant solution; all you need to establish is a one-to-one map-
ping of scripts to NPCs and you’ve got an easy and reasonably flexible way to externally control
the inhabitants of your game world. To see this concept displayed in a more visual manner, check
out Figure 2.4.

2. APPLICATIONS OF SCRIPTING SYSTEMS

The honeymoon doesn’t last forever, though, and sooner or later some of the more audacious
characters roaming through your village will want to do more than just rattle off an unchanging
batch of lines every time the player talks to them. They might want to ask the player a question
that’s accompanied by an on-screen list of answers to chose from, and have the conversation take
different paths depending on the player’s response. Maybe they’ll need to be able to read the
game flags and say different things depending on the player’s history, or even write to the flags to
change the course of future events. Or perhaps one of your characters is short-tempered and
should become noticeably agitated if you attempt to talk to him repeatedly. The point is, a good
RPG engine will allow its NPCs to be as flexible and lifelike as necessary, so you’re going to need
a far more descriptive and powerful language to program their behavior.

With this in mind, let’s take a look at some of the more complex exchanges that can take place
between the player and an NPC.

Figure 2.4
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(Player talks to NPC for the first time)

NPC: “Hey, you look familiar.” (Squints at player’s face)

Player: “Do I? I don’t believe we’ve met.”

NPC: “Wait a sec— you’re the guy who’s gonna save the world from the vampires, right?”

NPC: (If player says Yes) “I knew it! Here, take this garlic!” ( Gives player garlic )

Player: “Thanks!”

(Player talks to NPC again)

NPC: “Sorry, I don’t have any more garlic. I gave you all I had last time we spoke.”

Player: “Well that sucks. (Stamps feet)”

(Player talks to NPC a third time)

NPC: “Dude I told you, I gave you all my garlic. Leave me alone!”

Player: But I ran out, and there’s still like 10 more vampires that need to be valiantly defeated!”

NPC: “Hmm…well, my brother lives in the next town over, and he owns a garlic processing plant.
I’ll tell him you’re in the area, and to have a fresh batch ready for you. Next time you’re there,
just talk to him, and he’ll give you all the garlic you need.”

Player: “Thanks, mysterious garlic-dispensing stranger!”

NPC: “My name’s Gary.”

Player: “Whatever.”

(Player talks to NPC more than three times)

NPC: “So, have you seen my brother yet?”

That’s quite a step up from the previous style of conversation, isn’t it? Don’t bother trying to fig-
ure out how many commands you’d need to script it, because command-based languages just
don’t deliver in situations like this. So instead, let’s look at the general features a language would
need to describe this scene.

■ Basic conversational capabilities are a given; both the NPC and the player need to be
able to speak (which, more or less, just means printing their dialogue in a text box).

■ There are a number of points during the conversation at which small animations would
be nice, such as the NPC squinting his eyes and the player stamping his feet, so you’ll
need to be able to tell the engine which animations to play and when.

■ Just like the previous example, the NPC gives the player garlic. Therefore, he’ll need
access to the player’s inventory.
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■ As you can see in the first exchange, the NPC needs the ability to ask the player a ques-
tion. At the very least, he needs to prompt the player for a yes or no response and
branch out through the script’s code depending on the result. It’d be nice to provide a
custom list of possible answers as well, however, because not everything is going to be a
yes or no question (unless the player is a walking magic 8 ball, but to be quite honest I
can’t see that game selling particularly well outside of Japan).

■ Obviously, because the NPC clearly says different things depending on how many times
the player has talked to him (up to four iterations, in this case), you need to keep track
of the player’s history with this character. Furthermore, because the player could theoret-
ically quit and resume the game in between these separate conversations, you need not
only the ability to preserve this information in memory during play, but also to save it to
the disk in between game sessions. Generally speaking, you need the ability to store vari-
able information associated with the NPC indefinitely.

■ Lastly, you need to alter the game flags. How else would Gary’s brother in the next town
over be aware of the player’s need for garlic cloves? To put it in more general terms,
NPCs need to be able to tell the engine what they’re up to so future events line up with
the things they say. Likewise, because Gary’s brother’s script will need to read from the
flags, this ability also lets NPCs base their dialogue on previous events. If you never talk
to Gary a third time, his brother will have no idea who you are. Figure 2.5 illustrates the
communication lines that exist between scripts, the game flags, and each other with this
concept.

Judging by this list, the most prominent features you should notice are the ability to read and
write variables and conditional logic that allows the script to behave differently depending on the
situation. Now that you’ve really dissected it, I think this is starting to sound a lot less like a
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macro-esque, command-based script and a lot more like the beginnings a C/C++ program! In
essence, it will be. Let’s take a look at some C/C++-like script code that you might write to imple-
ment this conversation.

static int iConverseCount = 0;
static bool bIsPlayerHero = FALSE;

main ()
{
string strAnswer;

if ( iConverseCount == 0 )
{
NPCTalk ( "Hey, you look familiar." );
PlayAnim ( NPC, SQUINT );
PlayerTalk ( "Do I? I don't believe we've met." );

strAnswer = NPCAsk ( "Wait a sec-- you're the guy who's gonna save the world
from the vampires, right?", "Yes", "No" );

if ( iAnswer == "Yes" )
{
NPCTalk ( "I knew it! Here, take this garlic!" );
GiveItem ( GARLIC, 4 );
PlayerTalk ( "Thanks!" );
bIsPlayerHero = TRUE;

}
else
{
NPCTalk ( "Ah. My mistake." );
bIsPlayerHero = FALSE;

}
}
else
{
if ( bIsPlayerHero )
{
if ( iConverseCount == 1 )
{
NPCTalk ( "Sorry, I don't have any more garlic. I gave you all I had last

time we spoke." );
PlayerTalk ( "Well that sucks." );
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PlayAnim ( PLAYER, STAMP_FEET );
}
elseif ( iConverseCount == 2 )
{
NPCTalk ( "Dude I told you, I gave you all my garlic. Leave me alone!" );
PlayerTalk ( "But I ran out, and there's still like 10 more vampires that

need to be valiantly defeated!" );
NPCTalk ( "Hmm... well, my brother lives in the next town over, and he owns

a garlic processing plant. I'll tell him you're in the area, and to have a fresh
batch ready for you. Next time you're there, just talk to him, and he'll give you
all the garlic you need." );

PlayerTalk ( "Thanks, mysterious garlic-dispensing stranger!" );
NPCTalk ( "My name's Gary." );
PlayerTalk ( "Whatever." );

SetGameFlag ( GET_GARLIC_FROM_GARYS_BROTHER );
}
else
{
NPCTalk ( "Seen my brother yet?" );

}
}
else
{
NPCTalk ( "Hello again." );

}
}

iConverseCount ++;
}

Pretty advanced for a script, huh? In just a short time, things have come quite a long way from
simple command-based languages. As you can see, just adding a few new features can change the
design and direction of your scripting system entirely.

You might also be wondering why, just because a few features were added, the language suddenly
looks so much like C/C++. Although it would of course be possible to add variables, iteration
constructs and conditional logic to the original language from the first example without going so
far as to implement something as sophisticated as the C/C++-variant used in the previous exam-
ple, the fact is that if you already need such advanced language features, you’ll most likely need
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even more later. Throughout the course of an RPG project, you’ll most likely find use for even
more advanced features like arrays, pointers, dynamic resource allocation, and so on. It’s a lot
easier to decide to go with a C/C++-style syntax from the beginning and just add new things as
you need them than it is to design both the syntax and overall structure of the language simulta-
neously. Using C/C++ syntax also keeps everything uniform and familiar; you don’t have to
“switch gears” every time to move from working on the engine to working on scripts.

Anyway, there’s really no need to discuss the code; for one thing it’s rather self explanatory to
begin with, and for another, the point here isn’t so much to teach you how to implement that
specific conversation as it is to impress upon you the depth of real scripting languages. More or
less, that is C/C++ code up there. There are certainly some small differences, but for the most
part that’s the same language you’re coding the engine with. Obviously, if scripts need a language
that’s almost as sophisticated as the one used to write the game itself, it’s a sign that this stuff can
get very advanced, very quickly. NPCs probably seemed like a trivial issue 10 minutes ago, but
after looking at how much is required just to ask a few questions and set a few flags, it’s clear that
even the simpler parts of an RPG benefit from, if not flat-out require, a fully procedural scripting
language.

Items and Weapons
Items and weapons follow a similar pattern to most other game objects. Each weapon and item is
associated with a script that’s executed whenever it’s used. Like NPCs, a number of items can be
scripted using command-based languages because their behavior is very “macro-like”. Others will
require interaction with game flags and conditional logic. Iteration also becomes very important
with items and weapons because they’ll often require animated elements.

The last chapter took a look at the basic scripting of items. Actually, it really just looked at the
offloading of simple item descriptions to external files, but also touched upon the theory of
externally stored functionality. This chapter, however, goes into far more detail and looks at the
creation of a complete, functional RPG weapon from start to finish.

Because RPGs are usually designed to present a convincingly detailed and realistic game world,
there obviously has to be a large and diverse selection of items and weapons. It wouldn’t make
sense if, spread over the countless towns, cities, and even continents often found in role-playing
games, there was only one type of sword or potion. Once again, this means you’re looking for a
structured and intelligent way to manage a huge amount of information. In a basic action game
with only one or two types of weapons, hardcoding their functionality is no problem; in an RPG,
however, anything less than a fully scripted solution is going to result in a tangled, unmanageable
mess.
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Furthermore, items and weapons in modern RPGs need to be attention-grabbers. Gone are the
days of casting a spell or attacking with a sword that simply causes some lost hit points; today,
gamers expect grandiose animations with detailed effects like glowing, morphing, and lens flares.
Because graphics programming is a demanding and complicated field, a feature-rich scripting
language is an absolute necessity.

Item and weapon scripts generally need to do a number of tasks. First to attend to is the actual
behind-the-scenes functionality. What this is specifically of course depends on the item or
weapon—it could be anything from damaging an enemy (decreasing its hit points) or healing a
member of your party (increasing their hit points) to unlocking a door, clearing a passage, or
whatever—the point though, is that it’s always just a simple matter of updating game variables
such as player/enemy statistics or game flags. It’s a naturally basic task, and can usually be accom-
plished with only a few lines of code. In most cases, it can be handled with a command-based lan-
guage just fine. Check out Figure 2.6.

The other side of things, however, is the version of the item or weapon’s functionality that the
player perceives. Granted, the player is well aware that the item is healing their party members, or
that the weapon is damaging the ogre they’re battling with simply because they’re the ones who
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selected and used it. But that’s not enough; like I mentioned earlier, these things need to be expe-
rienced—they need to be seen and heard. What’s the fun in using a weapon if you don’t get to see
some fireworks? So, the other thing you need to worry about when scripting items and weapons
are the visuals. This is where command-based languages fall short. Granted, it’d be possible to
code a bunch of effects directly in the engine and assign them commands that can be called from
scripts, but that’ll only result in your RPG having a processed, “cookie cutter” feel. You’ll have a
large number of items and weapons that all share a small collection of effects, resulting in a lot of
redundancy. You’d also have a ton of game-specific effect code mixed up with your engine, which
is rarely a good thing. As for coding the effects directly with the language, commands just aren’t
enough to describe unique and original visual effects

The Solution
Generally speaking, it’s best to use a C/C++-style, procedural language that will allow items and
weapons to define their own graphical effects, down to the tiniest details, from within the script
itself. This way, the script not only updates statistics and alters game flags, it also provides its own
eye candy. This whole process is actually pretty easy; it’s just a matter of providing at least a basic
set of graphical routines for scripts to call. All that’s really necessary is the typical stuff—pixel plot-
ting, drawing sprites, or maybe even playing movie files to allow for pre-rendered clips of anima-
tion—basically a refined subset of the stuff that your graphics API of choice like DirectX,
OpenGL, or SDL provides. With these in place, you can code up graphical effects just as you
would directly with C/C++.

Let’s try creating an example weapon.

What we’re going to design is a weapon called the Fire Sword (yeah I know, that sounds pretty
generic, but it’s just an example, so gimme a break, okay?). The Fire Sword is used to launch fire-
balls at enemies, and is especially powerful against aquatic or snow-based creatures such as hydras
and ice monsters. Conversely, however, it’s weaker against enemies that are used to hot, fiery envi-
ronments, such as dragons, demons, and Mariah Carey. Also, just to make things interesting and
force the player to think a bit more carefully about his strategy, the weapon, due to its heat,
should cause a slight amount of damage to the player every time it’s used. And, because it just
wouldn’t be fun without it, let’s actually throw in a fireball animation to complete the illusion.

That’s a pretty good description, but it’s also important to consider the technical aspect of this
weapon’s functionality:

■ You’ll need the capability to alter the statistics of game characters; namely their hit
points. You also need to factor in the fact that the sword causes serious damage to water-
or snow-based enemies, but is less effective against fire-based creatures.

ROLE PLAYING GAMES (RPGS)



44

■ The player needs to see an actual fireball being launched from the player’s on-screen
location to that of the enemy, as well as hear an explosion-like sound effect that’s played
upon impact. Because you’re now dealing with animation and sound, you’re definitely
going to need conditional logic and iteration. Command-based languages are no longer
an option. In addition, a basic multimedia API will have to be provided by the host appli-
cation that allows scripts to, at the very least, draw sprites on the screen and play sound
effects.

■ Finally, the player must be dealt a small amount of damage due to the extreme heat lev-
els expelled by the sword. Like the first task, this is just a matter of crunching some num-
bers and just means you need access to the player’s stats.

And there you have it. Two of the three tasks up there are simple and easily handled by a com-
mand-based language. Unfortunately, the need for animation, as well as the need to deal differ-
ent levels of damage based on the enemy’s type, rules them out and pretty much forces you to
adopt a language that gives you the capability to perform branches and loops. These concepts are
the very basis of animation and pretty much all other graphical effects, so your hands are tied. So,
let’s see some C/C++-style code for this weapon:

Player.HP -= 4;

int Y = Player.OnScreenY;
for ( int X = Player.OnScreenY; X < Enemy.OnScreen.X; X ++ )

BlitSprite ( FIREBALL, X, Y );
PlaySound ( KA_BOOM );

if ( Enemy.Type == ICE || Enemy.Type == WATER )
Enemy.HP -= 16;

elseif ( Enemy.Type == FIRE )
Enemy.HP -= 4;

else
Enemy.HP -= 8;

Pretty straightforward, no? As you can see, once a reasonably powerful procedural language like
the C/C++-variant is in place, actually coding the effects and functionality behind weapons like
the Fire Sword becomes a relatively trivial task. In this case, it basically just boiled down to a for
loop that moved a sprite across the screen and a call to a sound sample playing function.
Obviously it’s a simplistic example, but it should illustrate the fact that your imagination is the
only real limitation with such a flexible scripting system, because it allows you to code pretty
much anything you can imagine. This sort of power just isn’t possible with command-based lan-
guages. Check out Figure 2.7 to see the fire sword in all its fiery glory.

2. APPLICATIONS OF SCRIPTING SYSTEMS
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Enemies
I’ve covered the friendlier characters, like NPCs, and you understand the basis for the items 
and weapons you use to combat the forces of darkness, but what about the forces of darkness
themselves?

Enemies are the evil, hostile characters in RPGs. They roam the game world and repeatedly
attack the players in an attempt to stop them from fulfilling whatever it is their quest revolves
around. During battle, a group of enemies is very similar to the players and their travel compan-
ions; both parties are fighting to defeat the other by attacking them with weapons and aiding
themselves by using items such as healing elixirs and strength- or speed-enhancing potions.

In more general terms, they’re the very reason you play RPGs in the first place; despite all of the
conversing, exploring and puzzle solving, at least half of the gameplay time (and sometimes quite
a bit more, depending on the game) is spent on the battlefield. Not surprisingly, the way enemies
are implemented in an RPG project will have a huge effect on both the success of the project
itself, as well as the quality of the final game. So don’t screw it up! Figure 2.8 is a screenshot from
Breath of Fire, a commercial RPG with battles in the style we’re discussing.

The great thing about enemies though, is that they draw primarily on the two concepts you’ve
already learned; they have the character- and personality-oriented aspects of NPCs, but they also
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have the functional and destructive characteristics of items and weapons. As a result, determining
how to define an enemy for use in your RPG engine is basically just a matter of combining the
concepts behind these two other entities.

The Solution
You could approach this situation in any number of ways, but they all boil down to pretty familiar
territory. As was the case with NPCs, the most important characteristic to establish when describ-
ing an enemy is its personality and behavior. Is it a strong, fast and powerful beast that attacks its
opponents relentlessly and easily evades their counter-attacks? Or is it a meek, paranoid creature
with a slow attack rate and relatively weak abilities? It could be either of these, but it’ll most likely
lie somewhere in between——a gray area that demands a sensitive and easily-tuned method of
description.

You might be tempted to solve this problem by defining your enemies with a common set of
parameters. For example, the behavior of enemies in your game might be described by:

■ Strength. How powerful each attack is.
■ Speed. How likely each attack is to connect with its target, as well as how likely the

enemy is to successfully dodge a counter-attack.
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■ Endurance. How well the enemy will hold up after taking a significant amount of dam-
age. Higher endurance allows enemies to maintain their intensity when the going gets
rough.

■ Armor/Defense. How much damage incoming attacks will cause. The lower the
armor/defense level, the faster its hit points will decrease over the course of the battle
due to its vulnerability.

■ Fear. How likely the enemy is to run away from battles when approaching defeat.
■ Intelligence. Determines the overall “strategy” of the enemy’s moves during battle.

Highly intelligent enemies might intentionally attack the weakest members of the play-
er’s party, or perhaps conserve their most powerful and physically draining attacks for
the strongest. Less intelligent creatures are less likely to think this way and might waste
their time attacking the wrong people with the wrong moves, plugging away with a brute
force approach until the opponent is defeated.

You could keep adding parameters like these all day, but this seems like a pretty good list. It’s
clear that you can describe a wide variety of enemies this way; obviously a giant ogre-like beast
would have super strength, endless endurance, rock-solid defense, and be nearly fearless. It
wouldn’t be particularly smart or fast, however. Likewise, a ninja or assassin would have speed and
endurance to spare, as well as high intelligence and a reasonable level of strength. A lowly slime
would probably have low levels of all of these things, whereas the final, ultimate villain might be
maxed-out in every category. Overall, this is a simple system but it allows you to rapidly define
large groups of diverse enemies with an adequate level of flexibility.

It should seem awfully suspicious, however, because as you learned in the last chapter with the item
description files, defining such a broad group of entities in your game with nothing more than a
set of common parameters can quickly paint you into a corner and deprive you of true creative con-
trol. As you’ve most certainly guessed by now, script code comes to the rescue once again.

But how do you actually organize the script’s code? Despite the parallels I’ve drawn between
enemy scripts and that of items and NPCs, astute readers might have noticed that there exists one
major difference between them. Items, weapons, and NPCs are all invoked on a singular basis;
they perform their functionality upon activation by some sort of trigger or event, and terminate
upon completing their task. The Fire Sword is inactive until the moment you use it, at which
point it hurls a fireball across the screen, decreases the enemy’s hit points, and immediately
returns control the game engine. Gary the NPC works the same way; the only real difference is
that he talks about garlic rather than attacking anyone. In either case though, the idea is that
NPCs and weapons work on a per-use basis.

Enemies, on the other hand, much like the player, are constantly affecting the game throughout
the course of their battles. From the moment the battle starts to the point at which either the
enemy or the player is defeated, the enemy must interpret to the player’s input and make 
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decisions based on it. It’s in a constant state of activity, and as such, its script must be written in a
different manner. Basically, the difference is that you need to think of the code as being part of a
larger, constant loop rather than a single, self-contained event. Check out Figure 2.9 for a visual
idea of this.

2. APPLICATIONS OF SCRIPTING SYSTEMS

Like virtually all types of gameplay, an RPG battle is just a constantly repeating loop that, at each
iteration, accepts input from the player and the enemy, manages their interactions, and calculates
the overall results of their moves. It does this non-stop until either party is defeated, at which
point it terminates and a victor is declared. So, rather than writing a chunk of code that’s execut-
ed once and then forgotten, you need to write a much more specific and fine-grained routine
that the game engine can automatically call every time the battle loop iterates. Instead of doing
one thing and immediately being done with it, an enemy’s AI script must repeatedly process
whatever input was received since its last execution, and react to that input immediately. Here’s a
basic example:

void Act ()
{

int iWeakestPlayer, iLastAttacker;

if ( iHitPoints < 20 )
if ( rand () % 10 == 1 )

Flee ();

Figure 2.9
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else
{

iWeakestPlayer = GetWeakestPlayer ();

if ( Player [ iWeakestPlayer ].iHitPoints < 20 )
Attack ( iWeakestPlayer, METEOR_SHOWER );

else
{

iLastAttacker = GetLastAttacker ();

switch ( Player [ iLastAttacker ].iType )
{

case NINJA:
{

Attack ( iLastAttacker, THROW_FIREBALL );
break;

}

case MAGE:
{

Attack ( iLastAttacker, BROADSWORD );
break;

}

case WARRIOR:
{

Attack ( iLastAttacker, SUMMON_DEMON );
break;

}
}

}
}

}

As you can see, it’s a reasonably simple block of code. More importantly, note that it doesn’t real-
ly have a beginning or an end; it’s written to be “inserted” into an already running loop that will
provide the initial input it uses to make its decisions.

In a nutshell, the AI works like this: First the enemy script determines how close to defeat it is. If
it’s lower than a certain threshold (fewer than 20 hit points in this case), it simulates an “attempt”
to escape the battle by fleeing only if a random number generated between 1 and 10 is 1. If it
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feels strong enough to keep fighting, however, it calls a function provided by the battle engine to
determine the identity of the weakest player. If the enemy deems the player suitably close to
defeat (in this case, if his HP is less than 20), it wipes him out with the devastating “Meteor
Shower” attack (whatever that is). If the weakest player isn’t quite weak enough to finish off yet,
the enemy instead goes after whoever attacked it last and chooses a specific counter-attack based
on that player’s type.

Not too shabby, huh? Parameter-based enemy descriptions hopefully aren’t looking too appealing
now, after seeing what’s possible with procedural code.

Well that just about wraps up this discussion of RPG scripting, so you can now turn your attention
to a more action-oriented game genre—first-person shooters.

FIRST-PERSON SHOOTERS (FPSS)
The first-person shooter is another hot spot for the research and development of scripting sys-
tems. Because such games are always on the cutting edge of realism in terms of both the game
environment as well as the player’s interaction with that environment’s inhabitants, scripting plays
an important role in breathing life into the creatures and objects of an FPS game world.
Although the overall volume of media required for an FPS is usually less than that of an RPG, the
flip side is that the expected detail and depth of both enemy AI as well as environmental interac-
tion is much higher. While RPGs are usually more about the adventure and storyline as a whole,
first-person shooters rely heavily on the immediate experience and reality of the game from one
moment to the next. Figure 2.10 is a screenshot from Halo, a next-generation FPS.

As a result, players expect crates to explode into flying shards when they blow up; windows to
shatter when they’re shot; enemies to be intelligent and strategic, attacking in groups and coordi-
nating their efforts to provide a realistic opposition; and powerful guns to fight their way from
one side of the level to the other. There’s no room in an FPS for cookie-cutter bad guys who all
follow the same pattern, or weapons that are all the same basic projectile drawn with a different
sprite. Even the levels themselves need a constantly changing atmosphere and sense of character.
This all screams for a scripted solution that allows these elements to be externally coded and con-
trolled with the same flexibility of the game’s native language. Furthermore, communication
between running scripts and the host application is emphasized to an almost unparalleled degree
in an FPS in order to keep the illusion of a real, cohesive environment alive during the game.

Although a full-fledged FPS is of course based on a huge number of game elements, this section
discusses the scripting possibilities behind two of the big ones: level objects, such as crates,
retractable bridges and switches, as well as enemy AI.

2. APPLICATIONS OF SCRIPTING SYSTEMS
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Objects, Puzzles, and Switches
(Obligatory Oh My!)
The world of a highly developed FPS needs to feel “alive.” Ideally, everything around you should
properly react to your interaction with it, whether you’re using it, activating it, shooting it, throw-
ing grenades at it, or whatever else you like doing with crates and computer terminals.

If you see a light switch on the wall, you should be able to flip the lights on or off with it. If the
door you want to open is locked and you see a computer terminal across the room, chances are
that you can use the terminal to open the door. Crates, barrels, and pretty much any sort of
generic storage container (the more toxic, the better) should explode or at least fall apart when a
grenade goes off nearby. Bridges should retract and extend when their corresponding levers are
thrown, windows should shatter when struck, lights should crack and dim when shot, and, well,
you get the idea. The point is, objects in the game world need to react to you, and they should
react differently depending on how you choose to interact with them.

But it’s not entirely about property damage. As fun as it may be to blow up barrels, knock out
windows and demolish light fixtures, interaction with game objects is also a common way for the
player to advance through the level. Locating a hidden switch might be necessary in order to
extend a bridge over a chasm, gaining access to a computer terminal might be the only way to
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lower the shields surrounding the reactor you want to destroy, or whatever. In these cases, objects
are no longer self-contained, privately-operating entities. They now work together to create com-
plex, interconnected systems, and can even be combined to form elaborate puzzles. Check out
Figure 2.11.
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First-person shooters often use switches and puzzles to increase the depth of gameplay; when
pumping ammunition into aliens and zombies gets old, the player can focus instead on more
intellectual challenges.

The Solution
Almost everything in an FPS environment has an associated script. These scripts give each object in
the game world its own custom-tailored functionality, and are executed whenever said object
comes into contact with some sort of outside force, such as the shockwave of an explosion, a few
hundred rounds of bullets, or the player’s prying hands.

Within the script, functionality is further refined and organized by associating blocks of code with
events. Events tell the script who or what specifically invoked it, and allow the script to take appro-
priate action based on that information. Events are necessary because even the simplest objects
need to behave differently depending on the circumstances; it wouldn’t make much sense for a
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crate to violently explode when gently pushed, and it’d be equally confusing if the crate only slid
over a few inches after being struck by a nuclear missile.

Events in a typical FPS relate to the abilities of the players and enemies who inhabit the game
world. For example, players might be able to perform the following actions:

■ Fire. Fires the weapon the player is currently armed with.
■ Use. Attempts to use whatever is in front of the player. “Using” a crate would have little

to no effect, but using a computer terminal could cause any number of things to hap-
pen. This action can also flip switches, throw levers, and open doors.

■ Push/Move. Exerts a gentle force on whatever is in front of the player in an attempt to
move it around. For example, if the player needs to reach the opening to an air vent
that’s a few feet too high, he or she might push a nearby crate under it to use as a inter-
mediate step.

■ Collide. Simply the result of walking into something. This is less of an “action” and more
of a resulting event that might not have been intentional.

These form an almost one-to-one relationship with the events that ultimately affect the objects in
question. For example, shooting a crate would cause the game engine to alert the crate’s respec-
tive script that it’s under fire by sending it a SHOT or DESTROYED event. It might even tell the crate
what sort of weapon was used, and who was firing it. Using a computer terminal would send a USE
event to the terminal’s script, and so on. Once these events are received by scripts, they’re routed
to the proper block of code and the appropriate action is subsequently taken. Let’s look at some
example code. I’m going to show you three object scripts; one for a crate, one for a switch that
opens a door, and one for an electric fence.

For the sake of the examples, let’s pretend that this is a structure that contains the properties of
each object, such as its visibility and location. Also, Event is a structure containing relevant event
information, such as the type of event, the entity that caused it, and the direction and magnitude
of force. Obviously, InvokingEvent is an instance of Event that is passed to each event script’s main
() function automatically by the host application (the game engine).

Here’s the crate:

/*
*   Crate
*
*   Can be shot and destroyed, as well as pushed around.
*/

main ( Event InvokingEvent )
{

switch ( InvokingEvent.Type )

FIRST-PERSON SHOOTERS (FPSS)
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{
case SHOT:
{

/*
The crate has been shot and thus destroyed, so
first let's make it disappear.
*/

this.bIsVisibile = FALSE;
/*

Now let's tell the game engine to spawn an explosion
in its place.
*/

CreateExplosion ( this.iX, this.iY, this.iZ );

/*
To complete the effect, we'll tell the game engine to
spawn a particle system of wooden shards, emanating from
the explosion.
*/

CreateParticleSystem ( this.iX, this.iY, this.iZ, WOOD );

break;
}

case PUSH:
{

/*
Something or someone is pushing the crate, so it's pretty much just a

simple matter of moving it in their direction. We'll assume that the game engine
will take care of collision detection. :) The force vector contains the force of the
event along each axis, so all we really need to do is add it to the location of the
crate.

*/

this.iX += InvokingEvent.ForceVector.iX;
this.iY += InvokingEvent.ForceVector.iY;
this.iZ += InvokingEvent.ForceVector.iZ;

2. APPLICATIONS OF SCRIPTING SYSTEMS
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}
}

}

And the door switch:

/*
*   Door Switch
*
*   Can be shot and destroyed, and is also
*   used to open and close a door.
*/

main ( Event InvokingEvent )
{

switch ( InvokingEvent.Type )
{

case SHOT:
{

/*
Just to be evil, let's make the switch very fragile.
Shooting it will destroy it and render it useless!
Ha ha!
*/

this.bIsBroken = TRUE;

/*
And just to make things a bit more realistic, let's
emanate a small particle system of plastic shards.
*/

CreateParticleSystem ( this.iX, this.iY, this.iZ, PLASTIC );

break;
}

case USE:
{

FIRST-PERSON SHOOTERS (FPSS)
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/*
This is the primary function of the switch. Let's
assume that the level's doors exist in an array,
and the one we want to open or close is at index
zero.
*/

if ( Door [ 0 ].IsOpen )
CloseDoor ( 0 );

else
OpenDoor ( 0 );

break;
}

}
}

And finally, the electric fence.

/*
*   Electric Fence
*
*   Simply exists to shock whoever or whatever comes in
*   contact with it.
*/

main ( Event InvokingEvent )
{

switch ( InvokingEvent.Type )
{

case COLLIDE:
{

/*
The fence only needs to react to COLLIDE events because
its only purpose is to shock whatever touches it.
Basically, this means decreasing the health of whatever
it comes in contact with. The event structure will tell
us which entity (which includes players and enemies)
has come in contact with the fence.
*/

2. APPLICATIONS OF SCRIPTING SYSTEMS



57

Entity [ InvokingEvent.iEntityIndex ].Health -= 10;

/*
But what fun is electrocution without the visuals?
*/

CreateParticleSystem ( this.iX, this.iY, this.iZ, SPARKS );

/*
And to really drive the point home...
*/

PlaySound ( ZAP_AND_SIZZLE );
}

}
}

And there you go. Three fully-functional FPS game world objects, ready to be dropped into an
alien corridor, a military compound, or a battle arena. As you can see, the real heart of this sys-
tem is the ability of the game engine to pass event information to the script; once this is in place,
objects can communicate with each other during gameplay via the game engine and form
dynamic, lifelike systems. Switches can open doors; players and enemies can blow up kerosene
barrels; or whatever else you can come up with.

Event-based script communication is an extremely important concept, and one that will be
touched upon many times in the later chapters. In fact, let’s discuss a topic that exploits it to an
even greater extent right now.

Enemy AI
If nothing else, an FPS is all about mowing down bad guys. Whether they’re lurking through cor-
ridors, hiding behind crates and under overhangs, or piling out of dropships, your job descrip-
tion is usually pretty straightforward—to reduce them to paint.

Of course, things aren’t so simple. Enemies don’t just stand there and accept your high-speed
lead injections with open arms; they’re designed to evade your attacks, return the favor with their
own, and generally do anything they can to stop you in your tracks. Naturally, the actual strategies
and techniques involved in combat such as this are complex, requiring constant awareness of the
surrounding environment and a capable level of intelligence. This is all wrapped up into a nice
tidy package called “enemy AI”.

FIRST-PERSON SHOOTERS (FPSS)
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AI, or artificial intelligence, is what makes a good FPS such a convincing experience. Games just
aren’t fun if enemies don’t seem lifelike and unique; if you’re simply bombarded with lemming-
like creatures that dive headlong into your gunfire, you’re going to become very bored, very
quickly. So, not surprisingly, the AI of FPS bad guys is a rapidly evolving field. With each new gen-
eration of shooter, players demand more and more intelligence and strategy on behalf of their
computer-controlled opponents in hopes of a more realistic challenge.

As a result, the days of simply hardcoding a player-tracking algorithm and slapping it into the
heads of every creature in your game are long gone. Different classes of enemies need to starkly
contrast others, so as to provide an adequate level of variety and realism, and of course, to keep
the player from getting bored. Furthermore, even enemies within the same class should ideally
exhibit their own idiosyncrasies and nuances—anything to keep a particularly noticeable pattern
from emerging. In addition to simply dodging attacks, however, enemies need to exhibit clearly
realistic strategies; taking advantage of crates as hiding places, blowing up explosive objects near
the player rather than directly shooting at him, and so on.

So far, so good; by now I think it’s safe to say that you’re sold on the flexibility of scripts; obvious-
ly, a C/C++-style scripting language with maybe a few built-in math routines for handling vectors
and such should be more than enough to program lifelike AI and associate it with individual ene-
mies. But smart enemies aren’t enough if they simply operate alone. More and more, the concept
of team play is taking over, and the real fun lies in taking on a hoard of enemies that have com-
plete awareness of and communication with one another. Rather than simply acting as a chaotic
mob that charges towards the player and relies solely on its size, enemies need to intelligently
organize themselves to provide a unique and constantly evolving challenge. In games like
Rainbow Six, when you’re up against a team of terrorists, the illusion would be lost if they simply
rushed you with guns blazing. Especially in the case of hostage situations, structured enemy com-
munication and intelligence is an absolute must.

Returning to the general action genre of first person shooters, however, consider a number of
group-based techniques enemies can employ when attacking the player:

■ Breaking into simple groups for the purpose of attacking the player from a number of
angles, depriving the player of a single target to focus on.

■ Breaking into logical “task groups” that hinder the player in different ways; as one group
directly attacks the player with a point-blank assault, other groups will set up more long-
term defenses, such as blocking off power-ups or access to the rest of the level or arena.

■ Literally surrounding the player on all sides (assuming the group is large enough), leav-
ing no safe exit for the player.

As you can see, they’re rather simple ideas, but they all share a common thread—the concept of
enemy communication. In order to form any sort of group, pattern or formation, enemies need
to be able to share ideas and information that help transition their current positions and objec-
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tives into the desired ones. So if one enemy, designated as the “leader” of sorts, decides that sur-
rounding the player would be the most effective strategy, that leader needs the ability to spread
that message around.

The Solution
If enemies need to communicate, and enemies are based on scripts, what I’m really talking about
here is inter-script communication. So, for example, the script that controls the “leader” needs to be
able to send messages directly to the scripts that control the other enemies. The enemy scripts
are written specifically with this message system in mind, allowing them to interpret incoming
messages and act appropriately.

I touched on this earlier in the section on FPS objects, where object scripts were passed event
descriptions that allowed them to act differently depending on the entity’s specific method of
interaction with them. In that case, however, you relied on the game engine to send the mes-
sages; although players and enemies were of course responsible for invoking the events in the
first place due to their actions, it was ultimately the game engine that noticed and identified the
events and properly informed the object. Although engine-to-script communication is a useful
and valuable capability in its own right, direct script-to-script communication is the basis for truly
dynamic systems of game objects and entities that can, entirely on their own, work together to
solve problems and achieve goals. Figure 2.12 depicts this process graphically.
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Figure 2.12
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An actual discussion of artificial intelligence, however, would be lengthy at best and is well
beyond the scope of this book. The main lesson here is that script-to-script communication is a
must for any FPS, because it’s required for group-based enemy AI.

SUMMARY
With any luck, your interest in scripting has taken on a more focused and educated form over the
course of this chapter. This chapter took a brisk tour of a number of ways in which scripts can be
applied to two vastly different styles of games, and certainly you’ve seen plenty of reasons why
scripts are a godsend in more than a few situations. Fortunately, you’re pretty much finished with
the introductory and background-information chapters, which means actually getting your hands
dirty with some real script system development is just around the corner.

Brace yourself, because the gloves are coming off and things are going to get messy!

2. APPLICATIONS OF SCRIPTING SYSTEMS
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With the introductory stuff behind you, it’s time to roll up your sleeves and take a stab at
some basic scripting. To get started, you’re going to explore a simple but useful method

of scripting known as command-based scripting. Command-based scripts starkly contrast the types of
scripts you’ll ultimately write—they don’t support common programming language features such
as variables, loops, and conditional logic. Rather, as their name suggests, command-based lan-
guages are entirely based on specific commands that can be called with optional parameters.
These commands directly cause the game engine to do something, such as move a player on the
screen, change the background music, or display a bitmapped image. By calling a number of
commands in a sequential fashion, you can externally control the engine’s behavior (albeit in a
rather simplistic way).

Command-based languages have a number of advantages and disadvantages, covered shortly. The
most important lesson to learn about them, however, is that they’re simple and relatively weak in
terms of capabilities, but they’re very easy to implement and can be used to achieve a lot of very
cool results. In this chapter, you’re going to

■ Learn about the theory behind command-based languages, and how they’re 
implemented.

■ Implement a command-based language that manipulates the text console.
■ Use a command-based language to script the intro sequence to a generic game.
■ Apply command-based scripting to the behavior of the non-player characters in a basic

RPG engine.

This chapter introduces a number of very important concepts that will ultimately prove vital later.
Because of this, despite the relative simplicity of this chapter’s contents, it’s important that you
make sure to read and understand all of it before moving on to the following chapters.

THE BASICS OF COMMAND-BASED
SCRIPTING
Command-based languages are based on a very simple concept—high-level control of a game
engine. I say high-level because command-based scripts are usually designed to do major things.
Rather than rasterize individual polygons or rotate bitmaps, for example, they’re more con-
cerned with moving characters around in the game world, unlocking doors in fortresses, scripting
the dialogue and events in cut scenes, and giving the player items and weapons. When you think

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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in these terms, game engines really only perform a limited number of tasks. Even a game like
Quake, for example, is based primarily on only a few major actions, such as:

■ Player and robot movement within the game world.
■ The firing of player and robot (bot) weapons.
■ Managing the damage taken by collisions between players, bots, and projectiles.
■ Assigning weapons and items to players and bots who find them, and decreasing ammo

levels of those weapons as they’re used.
■ Loading new maps, changing background music, and other scene/background-oriented

tasks.

Now don’t get me wrong—Quake the engine is an extremely complex piece of software. Quake
the game, however, despite being highly complex, can be easily boiled down to these far simpler
concepts. This is true for virtually all games, and is the idea that command-based languages capi-
talize on, as shown in Figure 3.1.

THE BASICS OF COMMAND-BASED SCRIPTING

Figure 3.1

Command-based

scripts control the

game’s basic 

functionality.

High-Level Engine Control
Because game engines are really only concerned with these high-level tasks, a lot can be accom-
plished by simply giving the engine a list of actions you want it to perform in a sequential order.
As an example, think about how a Quake-like, first-person shooter game engine would switch are-
nas, on both a high- and low-level. Here’s how it might work on a low-level:

■ The screen freezes or is covered with a new bitmap to hide the inner workings of the
process from the player.

■ The memory allocated to hold the current level is freed.
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■ The file containing the new arena’s geometry, textures, shadow maps, and other such
resources is opened.

■ The file format is parsed, headers are verified, and data is carefully extracted.
■ New structures are allocated to store the arena, which are incrementally filled with the

data from the file.
■ The existing background music fades out.
■ The existing background music is freed.
■ Some sort of sound is made to give the player an auditory cue that the level change has

taken place.
■ The new background music is loaded.
■ The new background music fades in.
■ The screen freeze/bitmap is replaced by the next frame of the game engine running

again, this time with the new level loaded.

As you can see, there are quite a lot of details to consider (and even now I’m skimming over
countless intricacies). On a high-enough level, however, you can describe this sequence in much
simpler terms:

■ A background image is displayed (or the screen is frozen).
■ A new level is loaded.
■ The existing background music fades out.
■ A level-change sound is played.
■ A new background track is loaded.
■ The new background music fades in.
■ The game resumes execution.

Issues like the de-allocation of memory and the individual placement of blocks of data read from
files can be glossed over entirely when explaining such a process in high-level terms, because all
you care about is what’s conceptually going on. In a lot of ways, it’s almost like the difference
between explaining this sequence to a technical person and a non-technical person. The techie
will understand the importance of memory allocation and file handles, whereas such details will
probably be lost on a less technical person, like your mail carrier. The mail carrier will, however,
understand concepts like fading music in and out, switching levels, and so on (or just hand you
some bills and catalogs and mysteriously stop delivering to your neighborhood the next day).
Figure 3.2 illustrates how these high- and low-level entities interact.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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The point to all this is that writing a command-based script is like articulating the high-level
explanation of the process in a reasonably structured way. Let’s just jump right in and see how
the previous process would look as a command-based script:

ShowBitmap "Gfx/LevelLoading.bmp"
LoadLevel "Levels/Level4.lev"
FadeBGMusicOut
PlaySound "Sounds/LevelLoaded.wav"
LoadBGMusic "Music/Level4.mp3"
FadeBGMusicIn

As you can see, a command-based language is exactly that— a language based entirely on com-
mands. Each command maps to a specific action the game engine can perform, like displaying
bitmap images, loading MP3s, fading music in and out, and so on. As you can also see, these com-
mands can accept (and indeed, often require) various parameters to help specify their tasks more
precisely. In this regard, commands are highly analogous to functions, and can be thought of in
more or less the same ways.

THE BASICS OF COMMAND-BASED SCRIPTING
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Commands
Specifically, a command is a symbolic name given to a specific game engine function or action.
Commands can accept zero or more parameters, which can vary in data types but must always be
literal values (command-based languages don’t support variables or other methods of indirec-
tion). Here’s the general syntax:

Command Param0 Param1 Param2

Imagine writing a C program that defines a main () function and a number of other random
functions, each of which accept zero to N parameters. Now imagine the main () function cannot
declare any local variables, or use any globals, and can only call the other functions with literal
values. That’s basically what it’s like to code in a command-based language.

Of course, the syntax presented here is different. For simplicity’s sake, extraneous whitespace is
not allowed—the command and each of its parameters must be separated by a single space.
There are no commas, tabs, or anything along those lines. Commands are always expressed on a
single line and must begin at the line’s first character.

Master of Your Domain
Another defining characteristic of command-based languages is that they’re highly domain-specif-
ic. Because general-purpose structures like loops and branches don’t exist, every line of code is
just a call to a specific game engine feature. Because of this, each language is custom-designed
around a single specific game, or type of game. This is known as the language’s domain.

As you’ll soon see, many of the underlying details of a command-based scripting system’s imple-
mentation can be ported from one project, but the command list itself, and each command’s
implementation, is more or less hard-coded and generally only applicable to that specific project.
For example, the following commands would suit an RPG or RPG-like game nicely:

MovePlayer
GetItem
CastSpell
PlayMovie
Teleport
InvokeBattle

These would hardly apply to a flight simulator or racing game, however.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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Actually Getting Something Done
With all of these restrictions, you may be wondering if command-based languages (or CBLs, as
the street kids are saying nowadays) are actually useful for anything. Admittedly, the inability to
define or use variables, expressions, loops, branches, and other common features of program-
ming languages is a serious setback. What this means, however, is not that command-based script-
ing is useless, but rather that it has different applications. For example, a 16 MHz CPU that can
address 64KB of RAM might seem completely useless when compared to a 64-bit Pentium whose
speeds are measured in GHz. However, such a chip might prove invaluable when developing a
remote-controlled car or clock radio. Rather than thinking in terms of whether something is use-
ful or useless, think in terms of its applications.

Remember, a command-based language is a quick and easy way to define a sequential and static
series of events for the game engine to perform. Although this is obviously useless when attempt-
ing to script a particle system or complex AI logic for your game’s final boss, it can be applied to
simpler things like the details of your game’s intro sequence, or the behavior of simple NPCs
(non-player characters) in an RPG engine. In fact, you’ll see examples of both of these applica-
tions in the following pages.

COMMAND-BASED SCRIPTING OVERVIEW
Now that you understand the basics of command-based scripting, you’re ready to take a brief
look at how it’s actually done.

Engine Functionality Assessment
Before doing anything else, the first step in designing and implementing a command-based lan-
guage is determining two points:

■ What the engine can do.
■ What the engine’s scripts will need to do.

It’s important to differentiate between something the engine can do, and something scripts will
actually need it to do. Also, just because an engine is capable of something doesn’t mean a script
can access or invoke it. All of the functionality you’d like to make available to scripts must first be
wrapped in a command handler, which is a small piece of code that actually performs the action
associated with each command.

For example, let’s consider a simple, top-down, 2D RPG engine like the ones seen on the
Nintendo, Super Nintendo, and Sega Saturn. These games were based around 2D maps com-
posed of small, square graphics called tiles. These maps defined the background and general

COMMAND-BASED SCRIPTING OVERVIEW
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environment of each location in the game and could scroll in all four directions. On top of these
maps, sprite-based characters would move around and interact with one another, as well the
underlying background map. As you learned in the last chapter, one major issue of such games is
the non-player characters (NPCs). NPCs need to appear lifelike, at least to some extent, and
therefore can’t simply stand still and wait for the player to approach them. They must move
around on their own, which generally translates into code that must be written to define their
actions.

In the case of this example, the commands listed in Table 3.1 might prove useful for scripts:

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

Table 3.1  RPG Engine Script Commands
Command Description

SetNPCDir Sets the direction in which the NPC is facing.

MoveNPC Moves the NPC along the X and Y axes by the specified distances.

Pause Causes the NPC to stand still for the specified duration.

ShowTextBox Displays the specified string of text in a text box; used for dialogue.

Each of these commands requires some form of parameters to help direct its action. Such param-
eters can be expressed as one of two data types—integers and strings. Parameters are not separat-
ed by commas, but by a single space instead. The parameter list is also separated from the com-
mand itself by a single space, which means the overall syntax of a command in this language is as
follows:

Command Param0 Param1 Param2

And exactly this. The language is in no way free-form, so arbitrary use of whitespace is not 
permitted.

With only four commands, this particular language is hardly feature-rich. You’d be surprised by
how much these four simple commands can accomplish, however. Consider the following script.

SetNPCDir "Up"
MoveNPC 0 -20
Pause 200
SetNPCDir "Left"
MoveNPC -20 0
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Pause 400
SetNPCDir "Down"
ShowTextBox "Hmmmmm... I know I left it here somewhere..."
Pause 400

Can you tell what this does just by looking at it?
In only a few lines of simplistic script code, I’ve
defined the behavior for an NPC who’s clearly
looking for something. He starts off in a given
position, facing a given direction, and turns
“up” (which actually just means north). He
walks in that direction 20 pixels, pauses, and
then turns left (west) and walks 20 more pixels.
He pauses again, this time for a longer dura-
tion, and finally turns back towards the camera
(“down”, or south) and makes a comment
about something he lost. The script then paus-
es briefly to allow the player a chance to read
it, and, presumably, the script loops back to the
beginning and starts over.

For such a simple scripting system, and even
simpler script, this is quite a lively little charac-
ter. Imagine how much personality you could
squeeze out of your NPCs if you added just a few more commands! Hopefully, you’re beginning
to understand that you don’t need too much complexity to get decent results when scripting.

Loading and Executing Scripts
The lifespan of a script spans multiple phases, each of which are illustrated in Figure 3.3. First,
the script is loaded. In this simple language, where vertical whitespace and comments are not
permitted, this simply means loading every line of the source file into a separate element of an
array of strings. Once this process is complete, the array contains an in-memory copy of the
script, ready to run. Check out Figure 3.4 for a visual idea of a script’s in-memory form.

Once in memory, the script is executed by passing each line of code to a script handler (or
executor, or whatever you want to call it) that processes each command, reads in parameters, and
so forth. After a command and its parameters are processed and understood, the command han-
dler performs whatever task the command is associated with. The command handler for MoveNPC,
for example, uses the two integer parameters (the X and Y movement) to make direct changes to

COMMAND-BASED SCRIPTING OVERVIEW

NOTE
You may be wondering why the cardi-
nal directions in the NPC script like
"Up" and "Down" are expressed as a
string.This is because the language
doesn’t support symbolic constants
like C’s #define or C++’s const. It
would be just as easy to create a
SetNPCDir command that accepted
integer codes that specified directions
(0-3, for example), but it’s a lot harder
to remember an arbitrary number
than it is to simply write the string.
Regardless, this is still a messy solution,
so keep reading—the next chapter will
revisit this matter.
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the NPC data within the game engine. At this point, the script has succeeded in controlling the
game engine.

The execution of command-based scripts is always purely sequential. This means that execution
starts with the first command (line 0) and runs until the last command (line 5, in the case of
Figure 3.4). At each step of the way, a global variable representing the current line of code within
the script is updated to reflect the next command to process. This global might be called some-
thing like g_iCurrLine, for “current line”. When this process is repeated in a loop, the script 
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The lifespan of a script.The script is loaded into an array of strings, executed through the script handler, and

finally exerts its control of the game engine.

Figure 3.4

A script in memory.
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executes quickly and continually, simulating the execution of actual code. Once the last com-
mand in the script is reached, the script can either stop or loop back to the beginning and run
again. Figure 3.5 illustrates the execution of a script.

COMMAND-BASED SCRIPTING OVERVIEW

Figure 3.5

The execution of a

script.

Looping Scripts
So should your scripts loop or stop when the last command ends? There’s no straight answer to
this question, because this is a decision that must be made on a per-script basis. For example,
continuing on with the RPG engine theme,
an example of a script that should exe-
cute once and immediately stop would be
the script that defines the behavior of an
item or weapon. When the player uses
the item, the script needs to execute
once, allowing the item to perform its
task or action, and then immediately ter-
minate. The item shouldn’t operate more
than once unless the player has specifical-
ly requested it to do so, or if the item has
some sort of persistent nature to it (such
as a torch that must remain lit).

Scripts that should loop are those that
primarily control background-related or

TIP
The issue of looping scripts and their ten-
dency to appear contrived or predictable
can be resolved in a number of ways. First
of all, scripts that are sufficiently long can
produce enough unique behavior before
looping that players won’t have the time (or
interest) to notice a pattern develop.Also,
it’s possible to write a number of small
scripts that all perform the same action in a
slightly different way, which are then loaded
at random by the game engine to produce
behavior that is truly random (or nearly so).
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otherwise ambient entities. For example, NPCs represent the living inhabitants of the game
world, which means they should be constantly moving to keep the player’s suspension of 
disbelieve intact. NPC scripts, therefore, should immediately revert to the first command after
executing the last so that their actions never cease. Granted, this means that looped scripts will
demonstrate a discernable pattern sooner or later, which might not be a good thing. I didn’t say
command-based scripts weren’t without their disadvantages, though.

IMPLEMENTING A COMMAND-BASED
LANGUAGE
With the theory out of the way, you can now actually implement a small, command-based lan-
guage. To get things started, you’re going to keep it simple and design a set of commands for
scripting a scrolling text console like the ones seen in old text mode programs, or any Win32
console app.

Designing the Language
The first step is establishing a list of commands the language will need in order to effectively con-
trol the console. Table 3.2 lists them.

Again, just four commands. Because text consoles are pretty simple by nature, you don’t need a
lot of options and can get by with just a handful of commands. Remember, just because you can
make something complex doesn’t mean you should. Now that you have a language specification
to work with, you’re ready to write an initial script to test it.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

Table 3.2  Text Console Commands
Command Parameters Description

PrintString String Prints the specified string.

PrintStringLoop String, Count Prints the specified string the specified num-
ber of times.

Newline None Prints an empty line.

WaitForKeyPress None Suspends execution until a key is pressed.
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Writing the Script
It won’t take much to test this language, because you can deem it functional after implementing
just four commands. Here’s a reasonable test script, though, that will help determine whether
everything is working right in the following pages:

PrintString "This is a command-based language."
PrintString "Therefore, this is a command-based script."
Newline
PrintString "...and it's really quite boring."
Newline
PrintStringLoop "This string has been repeated four times." 4
Newline
PrintString "Okay, press a key already and put us both out of our misery."
PrintString "The next demo is cooler, I swear."
WaitForKeyPress

Yeah, this particular script is a bit of a downer, but it will get the job done. With your first script in
hand, it’s time to write a program that will execute it.

Implementation
Implementing a command-based language is a mostly straightforward task. Here’s the general
process:

■ The script is loaded from the file into an in-memory string array.
■ The line counter is reset to zero.
■ The command is read from the first line of code. A line’s command is considered to be

everything from the first character of the string, all the way up to the first space.
■ Based on the command, any of a number of command handlers is invoked to handle it.

These command handlers need to access the command’s parameters, so two functions
are created for that (one for reading integer parameters, the other for reading strings).
With the parameters processed, the command handler goes ahead and performs its task.
At this point, the current line of the script is completely executed.

■ The instruction counter is incremented and the process continues.
■ After the script finishes executing, its array is freed.

Basic Interface
On a basic level, all the scripting system needs to do is load scripts, run them, and unload them.
Let’s look at the load and unload functions now.

IMPLEMENTING A COMMAND-BASED LANGUAGE
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LoadScript () is used to load scripts into memory. It works like this:

■ The file is opened in binary mode, and every instance of the '\n' (newline) character is
counted to determine how many lines it contains.

■ A string array is then allocated to hold the script based on this number.
■ The script is then loaded, line-by-line, and the file is closed.

Here’s the code behind LoadScript ():

void LoadScript ( char * pstrFilename )
{

// Create a file pointer for the script
FILE * pScriptFile;

// ---- Find out how many lines of code the script is

// Open the source file in binary mode
if ( ! ( pScriptFile = fopen ( pstrFilename, "rb" ) ) )
{

printf ( "File I/O error.\n" );
exit ( 0 );

}

// Count the number of source lines
while ( ! feof ( pScriptFile ) )

if ( fgetc ( pScriptFile ) == '\n' )
++ g_iScriptSize;

++ g_iScriptSize;

// Close the file
fclose ( pScriptFile );

// ---- Load the script

// Open the script and print an error if it's not found
if ( ! ( pScriptFile = fopen ( pstrFilename, "r" ) ) )
{

printf ( "File I/O error.\n" );
exit ( 0 );

}

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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// Allocate a script of the proper size
g_ppstrScript = ( char ** ) malloc ( g_iScriptSize * sizeof ( char * ) );

// Load each line of code
for ( int iCurrLineIndex = 0;

iCurrLineIndex < g_iScriptSize;
++ iCurrLineIndex )

{
// Allocate space for the line and a null terminator
g_ppstrScript [ iCurrLineIndex ] = ( char * )

malloc ( MAX_SOURCE_LINE_SIZE + 1 );

// Load the line
fgets ( g_ppstrScript [ iCurrLineIndex ],

MAX_SOURCE_LINE_SIZE, pScriptFile );
}

// Close the script
fclose ( pScriptFile );

}

Notice that this function makes a reference to a constant called MAX_SOURCE_LINE_SIZE, which is
used to read a specific amount of text from the script file. I usually set this value to 4096, just to
eliminate all possibilities of leaving something out, but this is overkill—especially in the case of a
command-based language, I can virtually guarantee you’ll never need more than 192 or so. The
only possible exceptions will be huge string parameters, which may come up now and then when
scripting complicated dialogue sequences. So no matter what, with a large enough value this con-
stant will have you covered (besides, you’re always free to change it).

Once the source is loaded into the array, it can be executed. Before getting to that, however,
check out UnloadScript (), which is called just before the program ends to free the script’s
resources:

void UnloadScript ()
{

// Return immediately if the script is already free

if ( ! g_ppstrScript )
return;

IMPLEMENTING A COMMAND-BASED LANGUAGE
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// Free each line of code individually

for ( int iCurrLineIndex = 0;
iCurrLineIndex < g_iScriptSize;
++ iCurrLineIndex )

free ( g_ppstrScript [ iCurrLineIndex ] );

// Free the script structure itself

free ( g_ppstrScript );
}

The function first makes sure the g_ppstrScript [] array is valid, and then manually frees each
line of code. After this step, the string array pointer is freed, which completely unloads the script
from memory.

Execution
With the script in memory, it’s ready to run. This is accomplished with a call to RunScript (),
which will run until the entire script has been executed. The execution cycle for a command-
based language is really quite simple. Here’s the basic process:

■ The command is read from the current line.
■ The command is used to determine which command handler should be invoked, by

comparing the command string found in the script to each command string the lan-
guage supports. In this case, the strings are PrintString, PrintStringLoop, Newline, and
WaitForKeyPress.

■ Each of these commands is given a small block of code to handle its functionality. These
blocks of code are wrapped in a chain of if/else if statements that are used to deter-
mine which command was specified.

■ Once inside the command handler, an optional number of parameters are read from
the current line and converted from strings to their actual values. These values are then
used to help perform the commands action.

■ The command block terminates, the line counter is incremented, and a check is made
to determine whether the end of the script has been reached. If so, RunScript ()
returns; otherwise the process repeats.

All in all, it’s a pretty straightforward process. Just loop through each line of code and do what
each command specifies. Now that you understand the basic logic behind RunScript (), you can
take a look at the code. By the way, there will be a number of functions referenced here that you
haven’t seen yet, but they should be pretty self-explanatory:

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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void RunScript ()
{

// Allocate strings for holding source substrings
char pstrCommand [ MAX_COMMAND_SIZE ];
char pstrStringParam [ MAX_PARAM_SIZE ];

// Loop through each line of code and execute it
for ( g_iCurrScriptLine = 0;

g_iCurrScriptLine < g_iScriptSize;
++ g_iCurrScriptLine )

{
// ---- Process the current line

// Reset the current character
g_iCurrScriptLineChar = 0;

// Read the command
GetCommand ( pstrCommand );

// ---- Execute the command

// PrintString
if ( stricmp ( pstrCommand, COMMAND_PRINTSTRING ) == 0 )
{

// Get the string
GetStringParam ( pstrStringParam );
// Print the string
printf ( "\t%s\n", pstrStringParam );

}

// PrintStringLoop
else if ( stricmp ( pstrCommand, COMMAND_PRINTSTRINGLOOP ) == 0 )
{

// Get the string
GetStringParam ( pstrStringParam );

// Get the loop count
int iLoopCount = GetIntParam ();

// Print the string the specified number of times
for ( int iCurrString = 0;

IMPLEMENTING A COMMAND-BASED LANGUAGE
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iCurrString < iLoopCount;
++ iCurrString )

printf ( "\t%d: %s\n", iCurrString, pstrStringParam );
}

// Newline
else if ( stricmp ( pstrCommand, COMMAND_NEWLINE ) == 0 )
{

// Print a newline
printf ( "\n" );

}

// WaitForKeyPress
else if ( stricmp ( pstrCommand, COMMAND_WAITFORKEYPRESS ) == 0 )
{

// Suspend execution until a key is pressed
while ( kbhit () )

getch ();
while ( ! kbhit () );

}

// Anything else is invalid
else
{

printf ( "\tError: Invalid command.\n" );
break;

}
}

}

The function begins by creating two strings—pstrCommand and pstrStringParam. As the script is
executed, these two strings will be needed to hold both the current command and the current
string parameter. Because it’s possible that a command can have multiple string parameters, the
command handler itself may have to declare more strings if they all need to be held at once, but
because no command in this language does so, this will be fine. Note also that these two strings
use constants as well to define their length. I have MAX_COMMAND_SIZE set to 64 and MAX_PARAM_SIZE
set to 1024, just to make way for the potential huge dialogue strings mentioned earlier.

A for loop is then entered that takes you from the first command to the last. At each iteration, an
index variable called g_iCurrScriptLineChar is set to zero, and a call is made to a function called
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GetCommand () that fills pstrCommand with a string containing the specified command (you’ll learn
more about g_iCurrScriptLineChar momentarily.) A series of if/else if’s is then entered to deter-
mine which command was found. stricmp () is used to make the language case-insensitive, which
I find convenient. As you can see, each comparison is made to a constant relating to the name of
a specific command. The definitions for these constants are as follows:

#define COMMAND_PRINTSTRING         "PrintString"
#define COMMAND_PRINTSTRINGLOOP     "PrintStringLoop"
#define COMMAND_NEWLINE             "Newline"
#define COMMAND_WAITFORKEYPRESS     "WaitForKeyPress"

The contents of each
of these if/else if
blocks are the com-
mand handlers them-
selves, which is where
you’ll find the com-
mand’s implementa-
tion. You’ll find calls
to parameter-return-
ing functions through-
out these blocks of
code—two of them,
specifically—called
GetStringParam () and
GetIntParam (). Both of
these functions scan through the current line of code and extract and convert the current param-
eter to its actual value for use within the command handler. I say “current” parameter, because
repetitive calls to these functions will automatically return the command’s next parameter, in
sequence. You’ll learn more about how parameters are dealt with in a second.

After the command handler ends, the for loop automatically handles the incrementing of the
instruction counter (g_iCurrScriptLine) and makes sure the script hasn’t ended. If it has, howev-
er, the RunScript () simply returns and the job is done.

Command and Parameter Extraction
The last piece of the puzzle is determining how these parameters are read from the source file.
To understand how this works, take a look first at how GetCommand () works; the other functions
do virtually the same thing it does.

IMPLEMENTING A COMMAND-BASED LANGUAGE

NOTE
Why are the command names case-insensitive? Don’t C/C++
and indeed most other languages do just the opposite with
their reserved words? Although it’s true that most modern
languages are largely case-sensitive, I personally find this
approach arbitrary and annoying.All it seems case-sensitivity
is good for is actually allowing you to create multiple identi-
fiers with the same name, as long as their case differs, which is
a practice I find messy and highly prone to logic errors. Unless
you really want to differentiate between MyCommand and
myCommand (which will only end in tears and turmoil), I suggest
you stick with case-insensitivity.
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GetCommand ()
The key to everything is g_iCurrScriptLineChar. Although g_iCurrScriptLine keeps track of the
current line within the script, g_iCurrScriptLineChar keeps track of the current character within
that line. Whenever a new line is executed by the execution loop, g_iCurrScriptLineChar is imme-
diately set to zero. This puts the index within the source line string at the very beginning, which,
coincidentally, is where the command begins. Remember, because of this language’s strict white-
space policy, you know for sure that leading whitespace will never come before the command’s
first character. For example, in the following line of code:

PrintStringLoop "Loop" 4

The first character of the command, P, is found at character index zero. The name of the com-
mand extends all the way up to the first space, which, as you can see, comes just after p.
Everything in between these two indexes, inclusive, composes a substring specifying the com-
mands name. GetCommand () does nothing more than scans through these characters and places
them in the specified destination string. Check it out:

void GetCommand ( char * pstrDestString )
{

// Keep track of the command's length
int iCommandSize = 0;

// Create a space for the current character
char cCurrChar;

// Read all characters until the first space to isolate the command
while ( g_iCurrScriptLineChar <

( int ) strlen ( g_ppstrScript [ g_iCurrScriptLine ] ) )
{

// Read the next character from the line
cCurrChar = g_ppstrScript

[ g_iCurrScriptLine ][ g_iCurrScriptLineChar ];

// If a space (or newline) has been read, the command is complete
if ( cCurrChar == ' ' || cCurrChar == '\n' )

break;

// Otherwise, append it to the current command
pstrDestString [ iCommandSize ] = cCurrChar;

// Increment the length of the command
++ iCommandSize;

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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// Move to the next character in the current line
++ g_iCurrScriptLineChar;

}

// Skip the trailing space
++ g_iCurrScriptLineChar;

// Append a null terminator
pstrDestString [ iCommandSize ] = '\0';

// Convert it all to uppercase
strupr ( pstrDestString );

}

Just as expected, this function is little more than a character-reading loop that incrementally
builds a new string containing the name of the command. There are a few details to note, howev-
er. First of all, note that the loop checks for both single-space and newline characters to deter-
mine whether the command is complete. Remember, commands like Newline and
WaitForKeyPress don’t accept parameters, so in their cases, the end of the command is also the
end of the line.

Also, after the loop finishes, you increment the g_iCurrScriptLineChar character index once
more. This is because, as you know, a single space separates the command from the first parame-
ter. It’s much easier to simply get this space out of the way and save subsequent calls to the
Get*Param () functions from having to worry about it. A null terminator is then appended to the
newly created string, and it’s converted to uppercase.

By now, it should be clear why
g_iCurrScriptLineChar is so
important. Because this is a glob-
al value that persists between
calls to GetCommand () and
Get*Param (), each of these three
functions can use it to deter-
mine where exactly in the cur-
rent source line you are. This is
why repeated calls to the param-
eter extraction functions always
produce the next parameter,
because they’re all updating the
same global character index.

IMPLEMENTING A COMMAND-BASED LANGUAGE

NOTE
You may be wondering why I’m using both strupr ()
to convert the command string to uppercase, and
using stricmp () when comparing it to each com-
mand name. stricmp () is all I need to perform a
case-insensitive comparison, but I’m a bit anal reten-
tive when it comes to this sort of thing and like to
simply convert all human-written input to uppercase
for that added bit of cleanliness and order. Now if
you’ll excuse me, I’m going to adjust each of the
objects on my desk until they’re all at perfect 90-
degree angles and make sure the oven is still off.
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The process followed by GetCommand () is repeated for both GetIntParam () and GetStringParam (),
so you should have no trouble following them. The only real difference is that unlike GetCommand
(), both of these functions convert their substring in some form to create a “final value” that the
command handler will use. For example, integer parameters found in the script will, by their very
nature, not be integers. They’ll be strings, and will have to be converted with a call to the atoi ()
function. This function will return an actual int value, which is the final value the command han-
dler will want. Likewise, even though string parameters are already in string form, their surround-
ing double-quotes need to be dealt with, because the script writer obviously doesn’t intend them
to appear in the final output. In both cases, the substring extracted from the script code must
first be converted before returning it to the caller.

GetIntParam ()
GetIntParam (), like GetCommand (), scans through the current line of code from the initial posi-
tion of g_iCurrScriptLineChar, all the way until the first space character is encountered. Once this
substring has been extracted, atoi () is used to convert it to a true integer value, which is
returned to the caller. Have a look at the code:

int GetIntParam ()
{

// Create some space for the integer's string representation
char pstrString [ MAX_PARAM_SIZE ];

// Keep track of the parameter's length
int iParamSize = 0;

// Create a space for the current character
char cCurrChar;

// Read all characters until the next space to isolate the integer
while ( g_iCurrScriptLineChar <

( int ) strlen ( g_ppstrScript [ g_iCurrScriptLine ] ) )
{

// Read the next character from the line
cCurrChar = g_ppstrScript

[ g_iCurrScriptLine ][ g_iCurrScriptLineChar ];

// If a space (or newline) has been read, the command is complete
if ( cCurrChar == ' ' || cCurrChar == '\n' )

break;

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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// Otherwise, append it to the current command
pstrString [ iParamSize ] = cCurrChar;

// Increment the length of the command
++ iParamSize;

// Move to the next character in the current line
++ g_iCurrScriptLineChar;

}

// Move past the trailing space
++ g_iCurrScriptLineChar;

// Append a null terminator
pstrString [ iParamSize ] = '\0';

// Convert the string to an integer
int iIntValue = atoi ( pstrString );

// Return the integer value
return iIntValue;

}

There shouldn’t be any real surprises here, because it’s virtually the same logic found in
GetCommand (). Remember that this function must also check for newlines before reading the 
next character, because the last parameter on the line will not be followed by a space.

GetStringParam ()
Lastly, there’s GetStringParam (). At this point, the function’s code will almost seem redundant,
because it shares so much logic with the last two functions you’ve looked at. You know the drill;
dive right in:

void GetStringParam ( char * pstrDestString )
{

// Keep track of the parameter's length
int iParamSize = 0;

// Create a space for the current character
char cCurrChar;

IMPLEMENTING A COMMAND-BASED LANGUAGE



86

// Move past the opening double quote
++ g_iCurrScriptLineChar;

// Read all characters until the closing double quote to isolate
// the string
while ( g_iCurrScriptLineChar <

( int ) strlen ( g_ppstrScript [ g_iCurrScriptLine ] ) )
{

// Read the next character from the line
cCurrChar = g_ppstrScript

[ g_iCurrScriptLine ][ g_iCurrScriptLineChar ];

// If a double quote (or newline) has been read, the command
// is complete
if ( cCurrChar == '"' || cCurrChar == '\n' )

break;

// Otherwise, append it to the current command
pstrDestString [ iParamSize ] = cCurrChar;

// Increment the length of the command
++ iParamSize;

// Move to the next character in the current line
++ g_iCurrScriptLineChar;

}

// Skip the trailing space and double quote
g_iCurrScriptLineChar += 2;

// Append a null terminator
pstrDestString [ iParamSize ] = '\0';

}

As usual, it extracts the parameter’s substring. However, there are a few subtle differences in the
way this function works that are important to recognize. First of all, remember that a string para-
meter’s final value is the version of the string without the double-quotes, as the parameter
appears in the script. Rather than read the entire double-quote delimited string from the script
and then attempt to perform some sort of physical processing to remove the quotes, the function
just works around them entirely. Before entering the substring extraction loop, it increments
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g_iCurrScriptLineChar to avoid the first quote. It then runs until the next quote is found, without
including it. This is why it’s very important to note that GetStringParam () reads characters until a
quote or newline character is encountered, rather than a space or newline, as the last two func-
tions did.

Lastly, the function increments
g_iCurrScriptLineChar by two.
This is because, at the moment
when the substring extraction
loop has terminated, the char-
acter index will point directly
to the string’s closing double-
quote character. This closing
quote, as well as the space
immediately following it, are
both skipped by incrementing
g_iCurrScriptLineChar by two,
which once again sets things
up nicely for the next call to a
parameter-extracting function.

The Command Handlers
At this point, you’ve learned about every major aspect of the scripting system. You can load and
unload scripts, run them, and manage the extraction and processing of each command and its
parameters. At this point, you have everything you need to implement the commands themselves,
and thus complete your first implementation of a command-based language.

With only four commands, and such simplistic ones at that, you’d be right in assuming that this is
probably the easiest part of all. Let’s take a look at the code first:

// PrintString
if ( stricmp ( pstrCommand, COMMAND_PRINTSTRING ) == 0 )
{

// Get the string
GetStringParam ( pstrStringParam );

// Print the string
printf ( "\t%s\n", pstrStringParam );

}

IMPLEMENTING A COMMAND-BASED LANGUAGE

TIP
You may have noticed that each of these three func-
tions share a main loop that is virtually identical. I did
this purposely to help illustrate their individual func-
tionality more clearly, but in practice, I suggest you
base all three functions on a more basic function that
simply extracts a substring starting from the current
position of g_iCurrScriptLineChar until a space, dou-
ble-quote, or newline is found.This function could
then be used as a generic starting point for extracting
commands and both types of parameters, saving you
from the perils of such otherwise redundant code.
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// PrintStringLoop

else if ( stricmp ( pstrCommand, COMMAND_PRINTSTRINGLOOP ) == 0 )
{

// Get the string
GetStringParam ( pstrStringParam );

// Get the loop count
int iLoopCount = GetIntParam ();

// Print the string the specified number of times
for ( int iCurrString = 0; iCurrString < iLoopCount; ++ iCurrString )

printf ( "\t%d: %s\n", iCurrString, pstrStringParam );
}

// Newline
else if ( stricmp ( pstrCommand, COMMAND_NEWLINE ) == 0 )
{

// Print a newline
printf ( "\n" );

}

// WaitForKeyPress
else if ( stricmp ( pstrCommand, COMMAND_WAITFORKEYPRESS ) == 0 )
{

// Suspend execution until a key is pressed
while ( kbhit () )

getch ();
while ( ! kbhit () );

}

Just as you expected, right? PrintString is implemented by passing the specified string to printf
(). PrintStringLoop does the same thing, except it does so inside a for loop that runs until the
specified integer parameter is reached. Newline is yet another example of a printf ()-based com-
mand, and WaitForKeyPress just enters an empty loop that checks the status of kbhit () at each
iteration. By the way, the two lines prior to this loop, as follows,

while ( kbhit () )
getch ();
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are just used to make sure the keyboard buffer is clear beforehand. Also, just to make things a bit
more interesting, PrintStringLoop prints each string after a tab and a number that marks where it
is in the loop.

Figure 3.6 illustrates this general process of the script controlling the text console.

IMPLEMENTING A COMMAND-BASED LANGUAGE

Figure 3.6

The process of commands in a script making their way to the text console.

Now, at long last, here’s the mind-blowing output of the script. It’s clearly the edge-of-your-seat
thrill ride of the summer:

This is a command-based language.
Therefore, this is a command-based script.

...and it's really quite boring.

0: This string has been repeated four times.
1: This string has been repeated four times.
2: This string has been repeated four times.
3: This string has been repeated four times.

Okay, press a key already and put us both out of our misery.
The next demo is cooler, I swear.

Granted, slapping some strings of text onto the screen isn’t exactly revolutionary, but it’s a work-
ing basis for command-based scripts and can be almost immediately put to use in more exciting
demos and applications. Hopefully, however, this section has taught you that even in the case of
very simple scripting, there are a lot of details to consider.
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Before moving on, there’s an important lesson to be learned here about command-based lan-
guages. Because these languages consist entirely of domain-specific commands, the actual body of
RunScript () has to change almost entirely from project to project. Otherwise, the existing com-
mand handlers will almost invariably have to be removed entirely and replaced with new ones.
This is one of the more severe downsides of command-based scripting. Although the script load-
ing and unloading interface remains the same, as well as the helper functions like GetCommand (),
GetStringParam (), and GetIntParam (), the real guts of the system— the command handlers— are
unfortunately rarely reusable.

SCRIPTING A GAME INTRO SEQUENCE
You’ll now apply your newfound skills to something a bit flashier. One great application of com-
mand-based scripting is static game sequences, like cinematic cut scenes, or a game’s intro. Game
intros generally follow a basic pattern, wherein various copyright info and credits screens are dis-
played, followed by some sort of a title screen. These various screens are also generally linked
together with transitions of some sort.

This will be the premise behind this next example of command-based scripting. I’ve prepared the
graphics and some very basic transition code to be used in a simple game intro sequence you’ll
write a script to control. Figure 3.7 displays the general sequence of the intro as I’ve planned it:
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The intro sequence will be composed of three full-screen images, each of which is separated by a transition.

First a copyright screen is displayed, followed by a credits screen, followed by the game’s title
screen. To go from one screen to the next, I’ve chosen one of the simplest visual transitions I
could think of. It’s sort of a “double wipe,” or “fold” as I call it, wherein either the two horizontal
or vertical edges of the screen move inward, covering the image with two expanding black bor-
ders until the entire screen is cleared. Figure 3.8 illustrates how both of these work.
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The Language
In addition to displaying these images and performing transitions, the intro program plays
sounds as well. Table 3.3 lists each of the commands the language will offer to facilitate every-
thing you need.

I just added an Exit command on a whim here; it doesn’t really serve a direct purpose because
the script will end anyway upon the execution of the file line. You’ll also notice the addition of
Pause, which will allow each graphic in the intro to remain on-screen, undisturbed, for a brief
period before moving to the next.

SCRIPTING A GAME INTRO SEQUENCE

Figure 3.8

Horizontal and vertical folding transitions. Simple but effective.
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The Script
You know what you want the intro to look like, roughly at least, so you can now write the script:

DrawBitmap "gfx/copyright.bmp"
PlaySound "sound/ambient.wav"
Pause 3000
PlaySound "sound/wipe.wav"
FoldCloseEffectY
DrawBitmap "gfx/ynh_presents.bmp"
PlaySound "sound/ambient.wav"
Pause 3000
PlaySound "sound/wipe.wav"
FoldCloseEffectX
DrawBitmap "gfx/title.bmp"
PlaySound "sound/title.wav"
WaitForKeyPress
PlaySound "sound/wipe.wav"
FoldCloseEffectY
Exit

If you follow along carefully, you should be able to visualize exactly how it will play out. Each
screen is displayed, along with an ambient sound effect of some sort, and allowed to remain on-

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

Table 3.3  Intro Sequence Commands
Command Parameters Description

DrawBitmap String Draws the specified .BMP file on the screen.

PlaySound String Plays the specified .WAV file.

Pause Integer Pauses the intro for the specified duration.

WaitForKeyPress None Pauses the intro until a key is pressed.

FoldCloseEffectX None Performs a horizontal “fold close” effect.

FoldCloseEffectY None Performs a vertical “fold close” effect.

Exit None Causes the program to terminate.
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screen for a few seconds thanks to Pause. FoldCloseEffect transitions to the next screen, along
with a transition sound effect. Finally, the title screen (which plays a different effect) is displayed
and remains on-screen until a key is pressed.

It may be simple, but this is the same idea behind just about any game intro sequence. Add some
commands for playing .MPEG or .AVI movies instead of displaying bitmaps, and you can easily
choreograph pro-quality introductions with nothing more than a command-based language.

The Implementation
The implementation for the commands is by no means advanced, but this is a graphical demo,
which ends up making things considerably more complex. All graphics and sound code have
been implemented with my simple wrapper API, so the code itself should look more or less self-
explanatory.

The real difference, however, is that this program runs alongside a main program loop, which
prevents RunScript () from simply running until the script finishes. Because games are generally
based around the concept of a main game loop, it’s important that RunScript () be redesigned to
simply execute one instruction at a time, so that it can be called iteratively rather than once. By
executing one instruction per frame, your scripts can effectively run concurrently with your game
engine. Figure 3.9 illustrates this concept.

SCRIPTING A GAME INTRO SEQUENCE

Figure 3.9

Running the script

alongside the game

engine.
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The actual demo code is rather cluttered with calls to my wrapper API, so I’ve chosen to leave it
out here, rather than risk the confusion it might cause. I strongly encourage you to check it out
on the CD, however, although you can rest assured that the implementation of each command is
simple either way. Here’s the code to the new version of RunScript () with the command han-
dlers left out:

void RunScript ()
{

// Make sure we aren't beyond the end of the script
if ( g_iCurrScriptLine > g_iScriptSize )

return;

// Allocate some space for parsing substrings
char pstrCommand [ MAX_COMMAND_SIZE ];
char pstrStringParam [ MAX_PARAM_SIZE ];

// ---- Process the current line

// Reset the current character
g_iCurrScriptLineChar = 0;

// Read the command
GetCommand ( pstrCommand );

// ---- Execute the command

// Move to the next line
++ g_iCurrScriptLine;

}

As you can see, the for loop is gone. Because the function is now only expected to execute one
command per call, the function now manually increments the current line before returning, and
always checks it against the end of the script just after being called.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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SCRIPTING AN RPG CHARACTER’S
BEHAVIOR
The game intro was an interesting application for command-based scripting, but it’s time to set
your sights on something a bit more game-like. As you learned in the last chapter, and as was
mentioned earlier in this chapter, RPGs have a number of non-player characters, called NPCs,
that need to be automated in some way so they appear to move around in a lifelike fashion. This
is accomplished, as you might imagine, with scripts. Specifically, however, command-based scripts
can be used with great results, because NPCs, at least some of the less pivotal ones, generally
move in predictable, static patterns that don’t change over time. Figure 3.10 illustrates this.

SCRIPTING AN RPG CHARACTER’S BEHAVIOR

Figure 3.10

NPCs often move in

static, unchanging pat-

terns, which naturally

lend themselves to

command-based

scripting.

The Language
This means you can now actually implement a version of the commands listed earlier when dis-
cussing RPG scripting. Table 3.4 lists these commands.



96

Using these commands, you can move the character around in all directions, change the direc-
tion the player’s facing, display text in a text box to simulate dialogue, and cause the player to
stand still for arbitrary periods. All of these abilities come together to form a lifelike character
that seems to be functioning entirely under his or her own control (and in a manner of speaking,
actually is).

Improving the Syntax
Before continuing, I should mention a slight alteration I made to the script interpreter used by
this demo. Currently, the syntax of this language prevents some of the more helpful aspects of
free-form code, like vertical whitespace and comments. These are usually used to help make code
more readable and descriptive, but have been unsupported by this system until now.

The addition of both of these syntax features is quite simple. Let’s look at an example of a script
with both vertical whitespace and a familiar syntax for comments:

// Do something
ShowTextBox "This is something."
PlaySound "Explosion.wav"

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

Table 3.4  RPG Commands
Command Parameters Description

MoveChar Integer, Integer Moves the character the specified X and Y
distances.

SetCharLoc Integer, Integer Moves the character to the specified X,Y
location.

SetCharDir String Sets the direction the character is facing.

ShowTextBox String Displays the specified string of text in the
text box.

HideTextBox None Hides the text box.

Pause Integer Halts the script for the specified duration.
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// Do something else
ShowTextBox "This is something else."
PlaySound "Buzzer.wav"

Much nicer, eh? And all it takes is the following addition to RunScript (), which is added to the
beginning of the function just before the command is read with GetCommand ():

if ( strlen ( g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ] ) == 0 ||
( g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ][ 0 ] == '/' &&
g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ][ 1 ] == '/' ) )

{
// Move to the next line
++ g_NPC.iCurrScriptLine;

// Exit the function
return;

}

First, the length of the line is checked. If it’s zero, meaning it’s an empty string, you know you’re
dealing with vertical whitespace and can move on. The first two characters are then checked, to
determine whether they’re both slashes. If so, you’re on a comment line. In both cases, the cur-
rent line is incremented and the function returns.

Managing a Game Character
The last thing you need to worry about before moving on to the script is how the NPC will be
stored internally. Now obviously, because this is only a demo as opposed to a full game, all you
really need is the bare minimum.

Because the extent of this language’s control of the NPC is really just moving him around, all his
internal structure needs to represent is his current location. Of course, you also need to know
what direction he’s facing, so add that to the list as well. That’s not everything though, because
there’s the issue of how he’ll move exactly.

The MoveChar command moves the character in pixel increments, but you certainly don’t want the
NPC to simply disappear at one X, Y location and appear at another. Rather, he should smoothly
“walk” from his current location to the specified destination, pixel by pixel. The only problem is
that RunScripts () can’t simply enter a loop to move the character then and there, because it
would cause the rest of the game loop to stall until the loop completed. This wouldn’t matter
much in the demo, but it would ruin a real game—imagine the sheer un-playability of a game in
which every NPC’s movement caused the rest of the game loop to freeze.

SCRIPTING AN RPG CHARACTER’S BEHAVIOR
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So, you’ll instead give the NPC two fields within his structure that define his current movement
along the X and Y movements. For example, if you want the NPC to move north 20 pixels, you
set his Y-movement to 20. At each iteration of the game loop, the NPC’s Y-movement would be
evaluated. If it was greater than zero, he would move up one pixel, and the Y-movement field
would be decremented. This would allow the character to move in any direction, for any dis-
tance, without losing sync with the rest of the game loop.

So, with all of that out of the way, take a look at the structure.

typedef struct _NPC
{

// Character

int iDir;                 // The direction the character is
// facing

int iX,                   // X location
iY;                   // Y location

int iMoveX,               // X-axis movement
iMoveY;               // Y-axis movement

// Script

char ** ppstrScript;      // Pointer to the current script
int iScriptSize;          // The size of the current script
int iCurrScriptLine;      // The current line in the script
int iCurrScriptLineChar;  // The current character in the current

// line

int iIsPaused;            // Is the script currently paused?
unsigned int iPauseEndTime;  // If so, when will it elapse?

}
NPC;

Wait a sec, what’s with the stuff under the // Script comment? I’ve decided to directly include
the NPC’s script within its structure. This is a bit more reflective of how an actual game imple-
mentation would work, because in an environment where 200 NPCs are active at one time, it
helps to make each individual character as self-contained as possible. This way, the script is direct-
ly bound to the NPC himself. Also, you’ll notice the iIsPaused and iPauseEndTime fields. iIsPaused
is a flag that determines whether the script is currently paused, and iPauseEndTime is the time,
expressed in milliseconds, at which the script will become active again. Again, because the script

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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must remain synchronous with the game loop, the Pause command can’t simply enter an empty
loop within RunScript () until the duration elapses. Rather, RunScript ()will check the script’s
pause status and end times each time it’s called. This way, the script can pause arbitrarily without
stalling the rest of the game loop.

The Script
The script for the character is pretty straightforward, but is considerably longer than anything
you’ve seen before, and is the first to use lines that consist of comments or vertical whitespace.
Take a look:

// RPG NPC Script
// A Command-Based Language Demo
// Written by Alex Varanese

// ---- Backing up
ShowTextBox "WELCOME TO THIS DEMO."
Pause 2400
ShowTextBox "THIS DEMO WILL CONTROL THE ONSCREEN NPC."
Pause 2400
ShowTextBox "LET'S START BY BACKING UP SLOWLY..."
Pause 2400
HideTextBox
Pause 800
MoveChar 0 -48
Pause 800

// ---- Walking in a square pattern
ShowTextBox "THAT WAS SIMPLE ENOUGH."
Pause 2400
ShowTextBox "NOW LET'S WALK IN A SQUARE PATTERN."
Pause 2400
HideTextBox
Pause 800
SetCharDir "Right"
MoveChar 40 0
MoveChar 8 8
SetCharDir "Down"
MoveChar 0 80
MoveChar -8 8

SCRIPTING AN RPG CHARACTER’S BEHAVIOR
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SetCharDir "Left"
MoveChar -80 0
MoveChar -8 -8
SetCharDir "Up"
MoveChar 0 -80
MoveChar 8 -8
SetCharDir "Right"
MoveChar 40 0
Pause 800

// Random movement with text box
ShowTextBox "WE CAN EVEN MOVE AROUND WITH THE TEXT BOX ACTIVE!"
Pause 2400
ShowTextBox "WHEEEEEEEEEEE!!!"
Pause 800
SetCharDir "Down"
MoveChar 12, 38
SetCharDir "Left"
MoveChar -40, 10
SetCharDir "Up"
MoveChar 7, 0
SetCharDir "Right"
MoveChar -28, -9
MoveChar 12, -8
SetCharDir "Down"
MoveChar 4, 37

MoveChar 12, 4

// Transition back to the start of the demo
ShowTextBox "THIS DEMO WILL RESTART MOMENTARILY..."
Pause 2400
SetCharLoc 296 208
SetCharDir "Down"

Who says command-based scripts can’t be complex, huh? As you’ll see in the demo included on
the CD, this little guy is capable of quite a bit. You can find the scripted RPG NPC demo on the
CD in the Programs/Chapter 3/Scripted RPG NPC/ folder.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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The Implementation
The demo requires two major resources to run—the castle background image and the NPCs ani-
mation frames. Figure 3.11 displays some of these.

These of course come together to form a basic but convincing scene, as shown in Figure 3.12.

SCRIPTING AN RPG CHARACTER’S BEHAVIOR

Figure 3.11

Resources used by the

NPC demo.

Figure 3.12

The running NPC

demo.
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Of course, the real changes lie in RunScript (). In addition to the new command handlers, which
should be pretty much no-brainers, there are some other general changes as well. Here’s the
function, with the command handlers this time (notice I left them in this time because the
graphics-intensive code has been offloaded to the main loop):

void RunScript ()
{

// Only perform the next line of code if the player has stopped moving
if ( g_NPC.iMoveX || g_NPC.iMoveY )

return;

// Return if the script is currently paused
if ( g_NPC.iIsPaused )

if ( W_GetTickCount () > g_NPC.iPauseEndTime )
g_NPC.iIsPaused = TRUE;

else
return;

// If the script is finished, loop back to the start
if ( g_NPC.iCurrScriptLine >= g_NPC.iScriptSize )

g_NPC.iCurrScriptLine = 0;

// Allocate some space for parsing substrings
char pstrCommand [ MAX_COMMAND_SIZE ];
char pstrStringParam [ MAX_PARAM_SIZE ];

// ---- Process the current line

// Skip it if it's whitespace or a comment
if ( strlen ( g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ] ) == 0 ||

( g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ][ 0 ] == '/' &&
g_NPC.ppstrScript [ g_NPC.iCurrScriptLine ][ 1 ] == '/' ) )

{
// Move to the next line
++ g_NPC.iCurrScriptLine;

// Exit the function
return;

}

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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// Reset the current character
g_NPC.iCurrScriptLineChar = 0;

// Read the command
GetCommand ( pstrCommand );

// ---- Execute the command

// MoveChar
if ( stricmp ( pstrCommand, COMMAND_MOVECHAR ) == 0 )
{

// Move the player to the specified X, Y location

g_NPC.iMoveX = GetIntParam ();
g_NPC.iMoveY = GetIntParam ();

}

// SetCharLoc
if ( stricmp ( pstrCommand, COMMAND_SETCHARLOC ) == 0 )
{

// Read the specified X, Y target location
int iX = GetIntParam (),

iY = GetIntParam ();

// Calculate the distance to this location
int iXDist = iX - g_NPC.iX,

iYDist = iY - g_NPC.iY;

// Set the player along this path
g_NPC.iMoveX = iXDist;
g_NPC.iMoveY = iYDist;

}

// SetCharDir
else if ( stricmp ( pstrCommand, COMMAND_SETCHARDIR ) == 0 )
{

// Read a single string parameter, which is the direction
// the character should face
GetStringParam ( pstrStringParam );

SCRIPTING AN RPG CHARACTER’S BEHAVIOR
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if ( stricmp ( pstrStringParam, "Up" ) == 0 )
g_NPC.iDir  = UP;

if ( stricmp ( pstrStringParam, "Down" ) == 0 )
g_NPC.iDir  = DOWN;

if ( stricmp ( pstrStringParam, "Left" ) == 0 )
g_NPC.iDir  = LEFT;

if ( stricmp ( pstrStringParam, "Right" ) == 0 )
g_NPC.iDir  = RIGHT;

}

// ShowTextBox
else if ( stricmp ( pstrCommand, COMMAND_SHOWTEXTBOX ) == 0 )
{

// Read the string and copy it into the text box message
GetStringParam ( pstrStringParam );
strcpy ( g_pstrTextBoxMssg, pstrStringParam );

// Activate the text box
g_iIsTextBoxActive = TRUE;

}

// HideTextBox
else if ( stricmp ( pstrCommand, COMMAND_HIDETEXTBOX ) == 0 )
{

// Deactivate the text box
g_iIsTextBoxActive = FALSE;

}

// Pause

else if ( stricmp ( pstrCommand, COMMAND_PAUSE ) == 0 )
{

// Read a single integer parameter for the duration
int iPauseDur = GetIntParam ();

// Calculate the pause end time
unsigned int iPauseEndTime = W_GetTickCount () + iPauseDur;

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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// Activate the pause
g_NPC.iIsPaused = TRUE;
g_NPC.iPauseEndTime = iPauseEndTime;

}

// Move to the next line
++ g_NPC.iCurrScriptLine;

}

The function begins by checking the NPC’s X and Y movement. If he’s currently in motion, the
function returns without evaluating the line or incrementing the line counter. This allows the
character to complete his current task without the rest of the script getting out of sync. The status
of the script’s pause flag is then determined. If the script is currently paused, the end time is
compared to the current time to determine whether it’s time to activate again. If so, the script is
activated and the next line is executed. Otherwise, the function returns. The current line is then
compared to the last line in the script, and is looped back to zero if necessary. This allows the
NPC to continue his behavior until the user ends the demo.

The typical script-handling logic is up next, along with the newly added code for handling verti-
cal whitespace and comments. The actual command-handlers should be pretty self-explanatory.
Commands for NPC movement set the movement fields with the appropriate values, the direc-
tion-setting command sets the NPC’s iDir field, and so on. Notice, however, that the commands
for hiding and showing the text box don’t actually blit the text box graphic to the screen or print
the string. Rather, they simply set a global flag called g_iIsTextBoxActive to TRUE or FALSE, and
copy the specified string parameter into a global string called g_pstrTextBoxMssg (in the case of
ShowTextBox, that is). This is because the game loop is solely responsible for managing the demo’s
visuals. All RunScript () cares about is setting the proper flags, resting assured that the next itera-
tion of the main loop will immediately translate those flag updates to the screen. The next sec-
tion, then, discusses how this loop works.

The Demo’s Main Loop
It’s generally good practice to design the main loop of your game in such a way that it’s primarily
responsible for the physical output of graphics and sound. That way, the actual game logic
(which will presumably be carried out by separate functions) can focus on flags and other global
variables that only indirectly control such things.

This demo does exactly that. At each frame, it does a number of things:

■ Calls RunScript () to execute the next line of code in the NPC’s script.
■ Draws the background image of the castle hall.

SCRIPTING AN RPG CHARACTER’S BEHAVIOR
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■ Updates the current frame of animation, so the character always appears to be walking
(even when he’s standing still, heh).

■ Sets the direction the character is facing, in case it was changed within the last frame by
RunScript ().

■ Blits the appropriate character animation sprite based on the direction he’s facing and
the current frame.

■ Draws the text box if it’s currently active, as well as the current text box message (which
is centered within the box).

■ Blits the entire completed frame to the screen.
■ Moves the character along his current path, assuming he’s in motion.
■ Checks the status of the keyboard and exits if a key has been pressed.

Just to bring it all home, here’s the inner-most code from the game’s main loop. Try to follow
along, keeping the previous bulleted list in mind:

// Execute the next command
RunScript ();

// Draw the background
W_BlitImage ( g_hBG, 0, 0 );

// Update the animation frame if necessary
if ( W_GetTimerState ( g_hAnimTimer ) )

if ( iCurrAnimFrame )
iCurrAnimFrame = 0;

else
iCurrAnimFrame = 1;

// Draw the character depending on the direction he's facing
switch ( g_NPC.iDir )
{

case UP:
if ( iCurrAnimFrame )

phCurrFrame = & g_hCharUp0;
else

phCurrFrame = & g_hCharUp1;
break;

case DOWN:
if ( iCurrAnimFrame )

phCurrFrame = & g_hCharDown0;

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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else
phCurrFrame = & g_hCharDown1;

break;

case LEFT:
if ( iCurrAnimFrame )

phCurrFrame = & g_hCharLeft0;
else

phCurrFrame = & g_hCharLeft1;
break;

case RIGHT:
if ( iCurrAnimFrame )

phCurrFrame = & g_hCharRight0;
else

phCurrFrame = & g_hCharRight1;
break;

}

W_BlitImage ( * phCurrFrame, g_NPC.iX, g_NPC.iY );

// Draw the text box if active
if ( g_iIsTextBoxActive )
{

// Draw the text box background image
W_BlitImage ( g_hTextBox, 26, 360 );

// Determine where the text string should start within the box
int iX = 319 - ( W_GetStringPixelLength ( g_pstrTextBoxMssg ) / 2 );

// Draw the string
W_DrawTextString ( g_pstrTextBoxMssg, iX, 399 );

}

// Blit the framebuffer to the screen
W_BlitFrame ();

// Move the character if necessary
if ( W_GetTimerState ( g_hMoveTimer ) )
{

SCRIPTING AN RPG CHARACTER’S BEHAVIOR
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// Handle X-axis movement
if ( g_NPC.iMoveX > 0 )
{

++ g_NPC.iX;
-- g_NPC.iMoveX;

}
if ( g_NPC.iMoveX < 0 )
{

-- g_NPC.iX;
++ g_NPC.iMoveX;

}

// Handle Y-axis movement
if ( g_NPC.iMoveY > 0 )
{

++ g_NPC.iY;
-- g_NPC.iMoveY;

}
if ( g_NPC.iMoveY < 0 )
{

-- g_NPC.iY;
++ g_NPC.iMoveY;

}
}

// If a key was pressed, exit
if ( g_iExitApp || W_GetAnyKeyState () )

break;

So that wraps up the NPC demo. Not bad, eh?
Imagine creating an entire town, bustling with
the lively actions of tens or even hundreds of
NPCs running on command-based scripts.
They could carry on conversations when spo-
ken to, walk around and animate on their own,
and seem convincingly alive in general. That
does bring up an important issue that hasn’t
been addressed yet, however—how exactly do
you get more than one script running at once?

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

NOTE
Notice that rather than animate the
character only while he’s moving, the
NPC is constantly in an animated
state, even when standing still. I did
this as a subtle nod to the old Dragon
Warrior games for the Nintendo and
the Japanese Super Famicom, which did
the same thing. I find it strangely cute.
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CONCURRENT SCRIPT EXECUTION
Unless your game has some sort of Twilight Zone-like premise in which your character and one
NPC are the only humans left on the planet, you’re probably going to want more than one game
entity active at once. The problem with this is that so far, this scripting system has been designed
with a single script in mind.

Fortunately, command-based scripting is simple enough to make the concurrent execution of
multiple scripts yet another reasonably easy addition. The key is noting that the current system
executes the next line of the script at each iteration of the main loop. All that’s necessary to facili-
tate the execution of multiple scripts is to execute the next line of each of those scripts, in
sequence, rather than just one. By altering RunScripts () just slightly to accept an index parame-
ter that tells it which NPC’s script to execute, this can be done easily. This is demonstrated in
Figure 3.13.

The only major change that needs to be made involves using an array to store NPCs instead of a
single global instance of the NPC structure. Of course, in order to properly handle the possibility
of multiple scripts, each script-related function must be changed to accept a parameter that helps
it index the proper script, which means that LoadScript (), UnloadScript (), RunScript (),
GetCommand (), GetIntParam (), and GetStringParam () need to be altered to accept such a 
parameter.

CONCURRENT SCRIPT EXECUTION

Figure 3.13

Executing a single

instruction from each

script.
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Once these changes have been made (which you can see for yourself on the demo included on
the CD), it becomes possible to create any number of NPCs, all of which will seem to move
around simultaneously. Check out Figure 3.14.

3. INTRODUCTION TO COMMAND-BASED SCRIPTING

Figure 3.14

The multiple NPC

demo.

SUMMARY
You must admit; this is pretty cool. You’re only just getting warmed up, and you’ve already got
some basic game scripting going! The last demo even got you as far as the concurrent execution
of multiple character scripts, which should definitely help you understand the true potential of
command-based scripting. Simplistic or not, command-based scripts can pack enough power to
bring moderately detailed game worlds to life.

In the next chapter, you’re going to cover a lot of ground as you take a mainly theoretical 
tour of the countless improvements that can be made on the scripting system built in this chap-
ter. Along the way, the fundamental concepts presented will form a foundation for the more
advanced material covered in the book’s later chapters, which means that the next chapter is an
important one.
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Overall, command-based languages are a lot of fun to play with. They can be implemented
extremely quickly, and once up and running, can be used to solve a reasonable amount of basic
scripting problems. After the next chapter, you’ll have command-based languages behind you
and can move on to designing and implementing a C-style language and truly becoming a game
scripting master.

How much harder can it be, right?

ON THE CD
The CD contains the four demos created in this chapter, available in both source and executable
form. All demos except the first, the console text output demo, require a Win32/DirectX plat-
form to run and therefore must be compiled as such. Check out the Read Me!.txt file in their
respective directories for compilation information.

The demos for this chapter can be found on the accompanying CD-ROM in Programs/Chapter 3/.
The following is a breakdown of this folder’s contents:

■ Console CBL Demo/. A simple demo that demonstrates the functionality of a command-
based scripting language by printing text to the console.

■ Scripted Intro/. This demo makes things a bit more interesting by applying a command-
based language to the scripting of a game intro sequence.

■ Scripted RPG NPC/. In our first taste of the scripting of dynamic game entities, this
next demo uses a command-based script to control the movement of a role playing game
(RPG) non-player character (NPC).

■ Multiple NPCs/. The chapter’s final demo builds on the last by introducing an entire
group of concurrently moving NPCs that seem to function entirely in parallel.

Each demo comes in both source and executable forms, in appropriately named Source/ and
Executable/ directories. I recommend starting with the executables, as they can be tested right
away to get a quick idea of what’s going on.

CHALLENGES
■ Easy: Add and implement new commands for controlling the characters in the RPG NPC

demos.
■ Intermediate: Rework the script interpreter so it can handle whitespace more flexibly. Try

allowing commands and parameters to be separated from one another by any arbitrary
amount of spaces and tabs, in turn enabling you to be more free-form about your code.

CHALLENGES
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■ Intermediate: Add escape sequences that allow the double-quote symbol (") to appear
within string literals without messing up the interpreter. Naturally, this can be important
when scripting dialogue sequences.

■ Difficult: Implement anything from the next chapter (after reading it, of course).

3. INTRODUCTION TO COMMAND-BASED SCRIPTING
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The last chapter introduced command-based scripting, and was a gentle introduction to the
process of writing code in a custom-designed language and executing it from within the

game engine. Although this form of scripting is among the simplest possible solutions, it has
proven quite capable of handling basic scripting problems, like the details of a game’s intro
sequence or the autonomous behavior of non-player characters.

Ultimately, you need to write scripts in a C/C++-style language featuring everything you are used
to as a programmer, including variables, arrays, loops, conditional logic, and functions. In addi-
tion, it would be nice to be able to compile this code down to a lower-level format that is not only
faster to execute within the game engine, but much safer from the prying eyes of malicious
gamers who would otherwise hack and possibly even break the game’s scripts. You’ll get there
soon enough, but you don’t have to abandon command-based languages entirely. You can still
improve the system considerably, perhaps even to the point that it remains useful for certain spe-
cialized tasks regardless of how powerful other scripting solutions may be.

This chapter discusses topics that bring the simple command-based language closer and closer to
the high-level procedural languages you’re used to coding in. Although the language won’t attain
such flexibility and power entirely, along the way you’ll be introduced to many of the concepts
that will form the groundwork for the more advanced material presented later in the book. For
this reason, I strongly suggest you read this chapter carefully. Even if you think command-based
scripting is a joke, you’ll still learn a lot about general scripting concepts and issues here.

This chapter is largely theoretical, introducing you to the concepts and basic implementation
details of some advanced command-based language enhancements. The final implementation of
these concepts isn’t covered here , because most of it will intrude on the material presented by
later chapters and disrupt the flow of the book. Fortunately, most of what’s discussed here should
be easy to get working for at least intermediate-level coders, so you’re encouraged to give it a shot
on your own. Anything that doesn’t make sense now, however, will certainly become clear as you
progress through the rest of the book.

In this chapter, you’re going to learn about

■ New data types
■ Symbolic constants
■ Simple iterative and conditional logic
■ Event-based scripting
■ Compiling command-based scripts to a binary format
■ Basic script preprocessing

4. ADVANCED COMMAND-BASED SCRIPTING
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NEW DATA TYPES
The current command-based scripting system is decidedly simple in its support for data types.
Parameters can be integers or strings, with no real middle ground. You can simulate symbolic
constants in a brute-force sort of manner using descriptive string literals, like "Up" and "Down", for
example, but this is obviously a messy way to solve the problem.

Furthermore, any sort of 3D game is going to need floating-point support; moving characters
around in a top-down 2D game engine is one thing, because screen coordinates map directly to
integers. 3D space, however, is generally independent of any specific resolution (within reason)
and as such, needs floating-point precision to prevent character movements from being jerky and
erratic.

Boolean Constants
Before moving into general-purpose sym-
bolic constants, you can start small by
adding a built-in Boolean data type.
Boolean data, of course, is always either
true or false, which means the addition
of such a type is a simple matter of cre-
ating a new function, perhaps called
GetBoolParam (), that returns 1 or 0 if
the parameter string it extracts is 
equal to TRUE or FALSE, respectively. 
This doesn’t require any major addi-
tions to syntax, minus the two keywords,
and is a fast-and-easy improvement that
prevents you from having to use 1 or 0
or string literals. Figure 4.1 illustrates
this concept.

Floating-Point
Support
Floating-point support is, fortunately, extremely easy to add. All it really comes down to is a func-
tion just like GetIntParam (), called GetFloatParam (), which passes the extracted parameter string
to atof () instead of atoi (). This function converts a string to a floating-point value automatical-
ly, immediately making floating-point parameters possible. Check out Figure 4.2.

NEW DATA TYPES

TIP
Unless you like the idea of making an explicit
separation between integer and Boolean
parameters (which is understandable), there’s
an even easier way to support Booleans with-
out making a significant change to your exist-
ing code base. Rather than writing a separate
function called GetBoolParam (), you can just
rewrite GetIntParam () to automatically
detect the TRUE and FALSE keywords, and
return 1 or 0 to the caller.This would allow
your existing commands to keep functioning
the way they do, and make the addition of
such keywords virtually transparent to the
rest of the system.
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General-Purpose Symbolic Constants
Having built-in TRUE and FALSE constants is great, but there will be times when an enumeration of
arbitrary symbolic constants will be necessary. You’ve already seen an example of this in the last
chapter, when you were forced to use the string literal values "Up", "Down", "Left", and "Right" to
represent the cardinal directions. It would be much cleaner to be able to define constants UP,
DOWN, LEFT, and RIGHT as symbols that mapped to the integer values 0-3 (or any four unique integer
values, for that matter).

Interpreting these constants as parameters is very simple—you’ve already seen how this works
with the GetBoolParam () function proposed in the last section. The problem, however, is the actu-
al mapping of the constant identifier to its value. Much like higher-level languages like C/C++,
you need to define a constant’s value if you want it to actually mean anything to the runtime
interpreter.

A clean and simple solution is to define a new command called DefConst (Define Constant) that
accepts two parameters—a constant identifier and an integer value. When this command is exe-
cuted, the interpreter will make a record of the constant name and value, and use the value in
place of any reference to the name it finds in subsequent commands. DefConst is a special com-
mand in that it’s not part of any specific domain—any command-based language, whether it’s for
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a puzzle game or a flight simulator, can use it in the same way (as illustrated in Figure 4.3).
Here’s an example:

DefConst UP 0
DefConst DOWN 1
DefConst LEFT 2
DefConst RIGHT 3

NEW DATA TYPES

Figure 4.3

DefConst is a 

domain-independent

command.

An Internal Constant List
The question is, how does the interpreter “make a record” of the constant? The easiest approach
is to implement a simple linked list wherein each node maintains two values—a constant identifi-
er string (like "UP", "DOWN", or "PLAYER_ANIM_JUMP") and an integer value. When a DefConst com-
mand is executed, the first parameter will contain the constant’s identifier, and the second will be
its value. A new node is then created in the list and these two pieces of data are saved there.
Check out Figure 4.4.

Figure 4.4

A script’s constants can be stored in a linked list called the constant list.



118

From this point on, whenever a command is executed, constants can be accepted in the place of
integer parameters. In these cases, the specified identifier is used as a key to search the constant
list and find its associated value. In fact, a slick way to add constants to your existing commands
without changing them is to simply rewrite GetIntParam () to transparently replace constants with
their respective values. Whenever the
function reads a new parameter, it
determines whether the first letter of
the string is a letter or an underscore—
because valid identifiers are generally
sequences of numbers, letters, and
underscores with a leading character
that is never a number, this simple test
tells you whether you’re dealing with a
constant. If not, you pass it to atoi () to
convert it to an integer just like always.
Otherwise, you search the constant list
until its matching record is found and
return its associated integer value
instead. If the constant is not found, the
script is referencing an undefined iden-
tifier and an error should be reported.
This process is illustrated in Figure 4.5.

This brings up an important issue, however.
The implementation of DefConst will have
to be more intelligent than simply dump-
ing the specified identifier into the list.
One of two cases could prevent the con-
stant from functioning properly and should
be checked for before the command exe-
cutes. First and foremost, the constant’s
identifier must be valid. Due to the simplis-
tic nature of the language’s syntax, this real-
ly just means making sure the constant
doesn’t start with a number. Second, the
identifier specified can’t already exist in the
list. If it does, the script is attempting to
redefine an existing constant, which is ille-
gal. Figure 4.6 illustrates the process of
adding a new constant to the list.
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NOTE
Of course, constants can store more than just
integer values.You can probably find uses for
both floating-point and string values as well;
I’m sticking to integers here, however,
because they’re simpler.Another reason
they’re generally more useful than anything
else, however, is that the real goal of using
this sort of constants isn’t so much to repre-
sent data symbolically, but rather simulate
enumerations. Individual constants like char-
acter names aren’t as important as groups of
constants, wherein the values of the con-
stants don’t matter as long as each is unique.

TIP
Linked lists, although simple to implement,
actually aren’t the best way to store the
constant list. Remember, every time a com-
mand executes that specifies a constant for
one or more parameters, GetIntParam ()
has to perform a full search of each node in
the list.This can begin to take its toll on the
script’s performance, as string comparisons
aren’t exactly the fastest operation in the
world and slow down more and more
depending on the size of the list.Among
the most efficient implementations is using
the hash table, which can search huge lists
of strings in nearly linear time, making it
almost as fast as an array.
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So, to summarize, the implementation of constants is twofold. First, DefConst must be used to
define the constant by assigning it an integer value. This value is added to the constant list and
ready to go. Then, GetIntParam () is rewritten to transparently handle constant references, which
allows existing commands to keep functioning without even having to know such constants exist.
Here’s a simple example of using constants:

// Define some directional constants
DefConst LEFT 0
DefConst RIGHT 1
DefConst PAUSE_DUR 400

NEW DATA TYPES

Figure 4.5

Handling constant

parameters.

Figure 4.6

Adding a new constant to the constant list.
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// Cause an NPC to pace back and forth
SetNPCDir LEFT
MoveNPC 20 0
Pause PAUSE_DUR
SetNPCDir RIGHT
MoveNPC -20 0
Pause PAUSE_DUR

Cool, huh? Now the NPC can be moved around using actual directional constants, and the dura-
tion at which he rests after each movement can even be stored in a constant. This will come in
particularly handy if you want to use the same pause duration everywhere in the script but find
yourself constantly tweaking the value. Using a constant allows you to automatically update the
duration of every pause using that constant with a single change, as illustrated in Figure 4.7.
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Figure 4.7
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A Two-Pass Approach
The approach to implementing the previous constants is simple, straightforward, and robust.
There are numerous other ways to achieve the same results, however, some of which provide
additional flexibility and functionality. One of these alternatives borrows some of the techniques
used to code assemblers and compilers, and involves making two separate passes over the script—
the first of which collects information regarding each of its constants, the second of which actual-
ly executes the commands. Check out Figure 4.8.

Despite the added complexity, there are definite advantages to this approach. First of all, remem-
ber that, as you saw in the last chapter, it’s often desirable for scripts to loop indefinitely (or at
least more than once). This comes in particularly handy when creating autonomous game enti-
ties like the NPCs in Chapter 3’s multiple NPC demo. However, this means that all DefConst com-
mands will be executed multiple times as well, causing immediate constant redefinition errors.
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One easy way around this is to maintain a flag that monitors whether the script is in its first itera-
tion; if so, constant declarations are handled; if not, they’re ignored because the constant list has
already been built. Check out Figure 4.9.

This is a reasonable solution, and will be necessary if you stick to a single-pass approach. However,
the two-pass approach allows you to solve the problem in a more elegant way. Remember, even if
the DefConst commands are ignored in subsequent iterations of the script, there’s still the small
overhead of reading each command string from the script buffer and determining whether it’s a
constant declaration. This in itself takes time, and although individual instances will seem instan-
taneous, if you have 20 constant declarations per script, and have 50 script-controlled characters
running around, you’re looking at quite a bit of useless string comparisons.

The two-pass method lets you define your constants ahead of time, and then immediately dispose
of all instances of DefConst so that they won’t bog you down later. Remember, even though this
method operates in two passes, the first pass is only performed once—looping the script only
means repeating the second pass (execution). If the first pass over the script builds up the con-
stant list by handling each DefConst command, there’s no need to hold on to the actual code in
which these constants are defined any longer. On the most basic level, you can simply free each

NEW DATA TYPES

Figure 4.8
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string in the script array that con-
tains a DefConst command, and
tell the interpreter to check for
and ignore null pointers. Now, the
comparison of each line’s com-
mand to DefConst can be eliminat-
ed entirely, saving time when large
numbers of scripts are running
concurrently.

So one benefit of the two-pass
approach is that it alleviates a
small string comparison overhead.
Granted, this is mostly a theoreti-
cal advantage, but it’s worth 
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Figure 4.9

A flag can be maintained to prevent constant declarations to be executed multiple times.

TIP
An even better way to handle the initial disposal of
DefConst lines from the script is to store the script’s
code in a linked list, rather than a static array.This
way, nodes containing DefConst lines can be
removed from the list entirely, further saving you
from having to check for a null pointer every time a
line of code is executed. Because removing a node
from a linked list automatically causes the pointers
in the previous and next nodes to link directly to
each other, the script will execute at maximum
speed, completely oblivious to the fact that it con-
tained constant declarations in the first place.
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mentioning nonetheless. A real application of two-pass execution, however, is eliminating the
idea of constants altogether at runtime.

If you think about it, constants don’t provide any additional functionality that wasn’t available
before as far as actual script execution goes. For example, consider the following script fragment:

DefConst MY_CONST 20
MyCommand MY_CONST

This could be rewritten in the following manner and have absolutely no impact on the script’s
ultimate behavior whatsoever:

MyCommand 20

In fact, the previous line of code would run faster, because the DefConst line would never have to
be executed and the constant list would never have to be searched in order to convert MY_CONST to
the integer literal value of 20. When you get right down to it, constants are just a human luxury—
all they do is let programmers think in more natural, tangible terms (it’s easier to remember UP,
DOWN, LEFT, and RIGHT than it is to remember 0, 1, 2,
and 3). Furthermore, they let you use the same
value over and over within scripts without worrying
about needing to change each instance individually
later. Although these are indeed useful benefits,
they don’t help the script accomplish anything new
that it couldn’t before. And as you’ve seen, they add
an overhead to the execution that, although often
negligible, does exist.

The two-pass approach lets you enjoy the best of
both worlds, however, because it gives you the ability
to eliminate constants entirely from the runtime
aspect of the script. This is done through some basic
preprocessing of the script, which means you actually make changes to the script code before
attempting to execute it. Specifically, as the first pass is being performed, each parameter of each
command is analyzed to determine whether it’s a constant. If so, it’s replaced with the integer
value found in its corresponding node in the constant list. This can be done a number of ways,
but the easiest is to create a new string about the same size as the existing line of code, copy
everything in the old line up until the first character of the constant, write the integer value, and
then write everything from just after the last character in the constant to the end of the line. This
will produce a new line of code wherein the constant reference has been replaced entirely with
its integer value. This can even be applied to the otherwise built-in TRUE and FALSE keywords for
the same reasons. Check out Figure 4.10 to see this in action.

NEW DATA TYPES

NOTE
Constants defined with C’s
#define directive don’t actually
persist until runtime— the com-
piler (or rather, the preprocessor)
replaces all instances of the con-
stant’s name with its value.This
allows the coder to deal with the
symbol, whereas the processor is
just fed raw data as it likes it.
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Now, with the preprocessed code entirely devoid of constant references, the constant list can be
disposed of entirely and any extra code written into GetIntParam () for handling constants can be
removed. The finished script will now appear to the interpreter as if it were written entirely by
hand, and execute just as fast. How cool is that?

Loading Before Executing
Aside from the added complexity
of the two-pass method, there is
one downside. Especially in the
case of constant preprocessing,
a two-pass interpreter will be
performing a considerable
amount of string processing
and manipulation in its first
pass, which means steps should
be taken to ensure that only the
second pass is performed at
runtime.

Just as graphics and sound are
always loaded from the disk

4. ADVANCED COMMAND-BASED SCRIPTING

Figure 4.10
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TIP
In addition to loading all scripts up front, another way
to improve overall performance is to implement a
caching mechanism that orders scripts based on how
recently they were active.This way, scripts can slowly
be phased out of the system.A script that hasn’t
been used recently is less likely to be reused than a
script that has just finished executing. Once a script
reaches the end of the cache, it can be unloaded
from memory entirely.This is an efficient method of
memory organization that helps intelligently opti-
mize the space spent on in-memory scripts.
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long before they’re actually used, scripts should be both loaded and preprocessed before run-
ning. This allows the first of the two passes to take as much time as it needs without intruding on
the script’s overall runtime performance. What this does mean, however, is that your engine
should be designed specifically to determine all of the scripts it will need for a specific level,
town, or whatever, and make sure to load all of them up front.

Once in memory, a preprocessed script can be run once or looped with no additional perform-
ance penalty. This allows the game engine to invoke and terminate scripts at will, with the assur-
ance that all scripts have been loaded and prepped in full already.

SIMPLE ITERATIVE AND
CONDITIONAL LOGIC
It goes without saying that, just as in traditional programming, iterative and conditional logic play
a huge role in scripting. Of course, simple command-based languages are designed specifically to
avoid these concepts, as they’re generally difficult to implement and require a number of other
features to be added as well (for example, its hard to use both looping and branching without
variables and expressions).

However, applications for both loops and branching logic abound when scripting games, so you
should at least investigate the possibilities. For example, consider the NPC behavior you scripted
in the last chapter. NPCs are a great example of the power of command-based scripting, because
they can often get by with simple, predictable, static movement and speech. However, especially
in the case of RPGs, with the turbulent nature of their always-changing game worlds, even non-
pivotal NPCs help create a far more immersive world if they can manage to react to specific
events and conditions (Figure 4.11 illustrates this).

Conditional Logic and Game Flags
For example, imagine a simple villager in an RPG. The player can talk to this character, invoking
a script that defines his reaction to the player’s presence via both speech and movement. The
character talks about the weather, or whatever global plague you’re in the process of valiantly
defeating, and seems pretty lifelike in general. The problem arises when you talk to him more
than one time and receive the same canned response every time. Also, imagine returning to town
after your quest is complete and hearing him make continual references to the villain you’ve
already destroyed! The player won’t appreciate going to the trouble of saving the world if none of
its inhabitants is intelligent enough to know the difference.

The common thread between both repeatedly talking to the character, as well as talking to him
or her again after completing a large task, is that the conditions of the world are slightly differ-
ent. In the first case, nothing has really changed, aside from the fact that this particular NPC has

SIMPLE ITERATIVE AND CONDITIONAL LOGIC
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been talked to already. In the second case, the NPC now lives in a world no longer threatened by
“the ultimate evil,” and can probably react in a much cheerier manner. As discussed in Chapter 2,
these are all examples of game flags.

Game flags are set and cleared as various events transpire, and persist throughout the lifespan of
the game. Each flag corresponds to a specific and individual event, ranging from mundane details
like whether you’ve talked to Ed on the corner, all the way up to huge accomplishments like defus-
ing the nuke embedded in the planet’s central fusion reactor. Check out Figures 4.12 and 4.13.

In both cases, the change was binary. You’ve talked to Ed or you haven’t. You’ve defused the
bomb or you haven’t. You have enough money to buy a sword
or you don’t. Because all of these conditions are either on or
off, you can add very simple conditional logic to your scripts
that does nothing more than perform one of two possible
actions depending on the status of the specified flag.

Because the game’s flags are probably going to be stored in
an array or something along those lines, each flag can likely
be referenced with an integer index. This means a condition-
al logic structure would only need the integer of the flag the
script wants to check, which is even easier to implement.

4. ADVANCED COMMAND-BASED SCRIPTING

Figure 4.11

Command-based

scripts are good for

predictable, “canned”

NPC movement.

NOTE
Of course, game flags
don’t have to be binary.
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states, but for simplicity’s
sake. this chapter uses off
and on for now.
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Furthermore, you can use the symbolic constants described in the previous section to give each
flag a descriptive name such as ED_TALKED_TO or NUKE_DEFUSED.

Specifying a flag with either an integer parameter or constant is easy. The real issue is determin-
ing how to group code in such a way that the interpreter knows it’s part of a specific condition.
One solution is to take the easy way out and place a restriction on scripts that only allows individ-
ual commands to be executed for true and false conditions. This might look like this:

If NUKE_DEFUSED
ShowTextBox "You did it! Congrats!"
ShowTextBox "Help! There's a nuke in the reactor!"
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Figure 4.12
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Figure 4.13

Using game flags to alter the behavior of NPCs based on the player’s actions.
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In this simple example, the new If command works as follows. First, its single integer parameter
(which, of course, can also be a constant) is evaluated. The following two lines of code provide
both the true and false actions. If the flag is set, the first of these two lines is executed and the
second is skipped. Otherwise, the reverse takes place. This is extremely easy to implement, but it’s
highly restrictive and doesn’t let you do a whole lot in reaction to various flag states. If you want
to do more than one thing as a the result of a flag evaluation, you have to precede each com-
mand with the same If NUKE_DEFUSED line, which will obviously result in a huge mess.

Grouping Code with Blocks
An easier and more flexible solution is to allow the script to encapsulate specific chunks of its
code with blocks. A block of script code is just like a block of C/C++ code, and even more like a
C/C++ function—it wraps a sequential series of commands and assigns it a single name by which
it can be referenced. In this way, the commands can be thought of by the rest of the script as a
singular unit. Here’s an example of a block definition:

// If the nuke has been defused
Block NukeDefused
{
// The NPC should congratulate the player
ShowTextBox "You did it! Congrats!"
Pause 400

// Then he should jump up and down
PlayNPCAnim JUMP_UP_AND_DOWN

// If the nuke is still primed to detonate
Block NukePrimed
{
// The NPC should seem worried
ShowTextBox "Help! There's a nuke in the reactor!"
Pause 400

// So worried, in fact, that he runs in a circle
SetNPCDir LEFT
MoveNPC -24 0
SetNPCDir DOWN
MoveNPC 0 24
SetNPCDir RIGHT
MoveNPC 24 0

4. ADVANCED COMMAND-BASED SCRIPTING
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SetNPCDir UP
MoveNPC 0 -24
}

These blocks provide much fuller reactions to each condition, and can be referred to with a sin-
gle name. Now, if the If command is rewritten to instead accept three parameters—an integer
flag index and two block names—you could rewrite the previous code like this:

If NUKE_DEFUSED NukeDefused NukePrimed

Slick, eh? Now, with one line of code, you can easily reference arbitrarily sized blocks that can
fully handle any condition. Of course, you can still only handle binary situations, but that should
be more than enough for the purposes of a command-based language. Check out Figure 4.14.
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Figure 4.14
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sulate script code and
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Of course, this only a conceptual overview. The real issue is actually routing the flow of execution
from the If command to the first command of either of the blocks, and then returning when fin-
ished. The first and most important piece of information is where the block resides within the
script. Naturally, without knowing this, you have no way to actually invoke the proper block after
evaluating the flag. In addition, you need to know when each block ends, so you know how many
commands to execute before returning the flow of the script back to the If.

The Block List
This information can be gathered in the same way the constant list was pieced together in the
first pass of the two-pass approach discussed earlier. In fact, blocks almost require an initial pass to



130

be performed after loading the script, because attempting to collect information about a script’s
blocks while executing that same script is tricky and error-prone at best.

Naturally, you’ll store this information in another linked list called the block list. This list will con-
tain the names of each block, as well as the indexes of the first and last commands (or, if you pre-
fer, the amount of commands in the block, although either method will work). Therefore, in
addition to scouting for DefConst lines, the first pass also keeps an eye out for lines that begin with
the Block command. Once this is found, the following process is performed:

■ The block name, which follows the Block command just as the constant identifier fol-
lowed DefConst, is read.

■ The name of the block is verified to ensure that it’s a valid name, and the block list is
searched to ensure that no other block is already using the name.

■ The next line is read, which should contain an open brace only.
■ The next line contains the block’s first command; this index is saved into the block list.
■ Each subsequent command is read until a closing brace is found. This is the final com-

mand of the block and is also saved to the table.

Check out Figure 4.15 to see this process graphically. With the block list fully assembled, the exe-
cution phase can begin and the If commands can vector to blocks easily. Of course, there’s one
final issue, and that’s how the If command is returned to once the block completes. An easy solu-
tion consists simply of saving the current line of code into a variable before entering the block.
Once the block is complete, this line of code is used to return to the If (or rather, the command
immediately following it), and execution continues. As you’ll see later in the book, this process is
very similar to the way function calls are facilitated in higher-level languages. Figure 4.16 illus-
trates the process.
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Iterative Logic
Getting back to the original topic, there’s the separate issue of looping and iteration. Much like
the If command, a command for looping needs the capability to stop at a certain point, in
response to some event. Because this simple scripting system is designed only to have access to
binary game flags, these will have to do.

Looping can be implemented with a new command, named While because it most closely match-
es the functionality of C/C++’s while loop. While takes two parameters, a flag index and a block
name. For example, if you wanted an NPC to run to the east (away from the reactor), stopping to
yell and scream periodically, until the nuke was defused, you might write a script like this:

SIMPLE ITERATIVE AND CONDITIONAL LOGIC

Figure 4.16

Saving the current line of code before vectoring to a block allows the block to return.

TIP
Earlier in the chapter I discussed directly replacing constants within the
script’s code with their respective values in a preprocessing step that
allowed the script to execute faster and without the need for a separate
constant list.This idea can be applied to blocks as well; rather than forc-
ing If commands to look up the block’s entry in the block list in order
to find the index of its first command, that index can be used to directly
replace the block name.
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Block RunLikeHell
{
// Run to the left/east, away from the reactor
MoveNPC 80 0
// Stop for a moment to scream bloody murder
ShowTextBox "WE'RE ALL GONNA DIE!!!"
Pause 300
// Keep moving!
MoveNPC 80 0
// Scream some more
ShowTextBox "SERIOUSLY! IT'S ALL OVER!!!"
Pause 300
// As long as the loop runs, this block will be executed over and over
}

// If the nuke is still primed, keep our poor NPC moving
While NUKE_PRIMED RunLikeHell

The cool thing is, the syntax of While almost gives it an English-like feel to it: “While the nuke is
primed, run like hell!” Check out Figure 4.17 for a visual idea of how this works.

You may have noticed, however, that you’re now using a flag called NUKE_PRIMED instead of
NUKE_DEFUSED, like you were earlier. This is because, so far, there’s no way to test for the opposite of
a flag’s status, whether it be set or cleared. You can alleviate this problem by adding the possibility
for a C/C++-style negation operator to precede the flag index in a While command, which would
look like this:

While ! NUKE_DEFUSED RunLikeHell

4. ADVANCED COMMAND-BASED SCRIPTING

Figure 4.17
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This is a decent solution, but it’s a bit complex; you now have to test for optional parameters,
which is more logic than you’re used to. Instead, it’s easier to just add another looping com-
mand, one that will provide the converse of While:

Until NUKE_DEFUSED RunLikeHell

Simple, huh? Instead of looping while a flag is set, Until loops until a flag is set. This allows you to
use the same techniques you’re used to. Of course, there’s no need to actually implement two
separate loop commands in the actual interpreter’s code. While and Until can be handled by the
same code; Until just needs to perform an automatic negation of the flag’s value.

The looping commands of course use the same the block list gathered to support If, so overall,
once If is implemented, While and Until will be trivial additions. Also, just as If saves the current
line of code before invoking a block, the looping commands will have to do so as well so sequen-
tial execution can resume when the loop terminates.

Nesting
The addition of looping and branching commands inadvertently exposed you to the concepts of
grouping common code in blocks, and invoking those blocks by name. Because this concept so
closely mirrors the concept of functions, you may be wondering how nesting would work. In
other words, could a Block contain an If or While command of its own?

Given the current state of the runtime interpreter, the answer is no. Remember, the only reason
you can safely invoke a block in the first place is because you save the line of script to which it will
have to return in a variable. If you were to call another block from within this block, it would per-
manently overwrite that variable with a new index, thus robbing the first block of the ability to
return to the command that invoked it.

The best way to support nesting is to implement an invocation stack that maintains each of the
indexes that blocks will need to return, in the order in which the blocks were invoked. For exam-
ple, consider the following code:

While FLAG_X BlockX

Block BlockX
{
ShowTextBox "Block X called."
Pause 400
While FLAG_Y BlockY
}

SIMPLE ITERATIVE AND CONDITIONAL LOGIC
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Block BlockY
{
ShowTextBox "Block Y called."
Pause 400
While FLAG_Z BlockZ
}

Block BlockZ
{
ShowTextBox "Block Z called."
Pause 400
}

First BlockX is called, which will push the index of the first While line onto the stack. Then, BlockY
is called, which pushes the index of BlockX’s While line onto the stack. The same is done for
BlockY and its While command, which finally calls BlockZ. BlockZ immediately returns after display-
ing the text box and pausing, which pops the top value off of the stack and uses it as the index to
return to. Execution then returns to BlockY, which pops the new top value off the stack and uses
it to return to BlockX. BlockX, which is also returning, pops the final value off the stack, leaving the
stack once again empty, and uses that value to return to the initial While command. Figure 4.18
illustrates an invocation stack in action.

4. ADVANCED COMMAND-BASED SCRIPTING

Figure 4.18

An invocation stack allows nested iterative and conditional logic.
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As you can see, support for nested block invocation is not a trivial matter, so I won’t discuss it past
this. Besides, as the book progresses, you’ll get into real functions and function calls, and learn all
about how this process works for serious scripting languages. Until then, nesting is a luxury that
isn’t necessary for the basic scripting that command-based languages are meant to provide.

EVENT-BASED SCRIPTING
Games are really nothing more than a sequence of events, which naturally plays an important
role in scripting. Events are triggered in response to both the actions of the player and non-
player entities, and must be handled in order to create a cohesive and responsive game environ-
ment. Because scripts are often used to encapsulate portions of the game’s logic, it helps to be
able to bind scripts to specific events, so that the game engine will automatically invoke the script
upon the triggering of the event.

You can already do this, because your scripts are stored in memory and can be run at any time (if
you recall, the final demo of the last chapter stored a script within each NPCs structure, which
could be invoked individually by passing an index parameter to RunScript ()). All that’s necessary
is to let the game engine know the index into your array of currently loaded scripts of the specific
script you’d like to see run when a certain event happens, and the engine’s event handler should
take care of the rest.

Events, like many things, however, come in varying levels. There are very high-level events, such
as the defusing of the nuke. There are then lower-level events, like talking to a specific NPC in a
specific town. Events can be even of a lower-level than that. That individual NPC alone may be
able to respond to a handful of its own events. In this regard, events often form a hierarchy,
much like a computer’s file system. Figure 4.19 illustrates an event hierarchy.

As it stands now, your system only deals with scripts on the file level. Each file maps directly to
one script, which, in turn, can be used to react to one event. This is fine in many cases, but when

EVENT-BASED SCRIPTING

Figure 4.19
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you start getting lower and lower on the heirarchy, and events become more and more specific, it
gets cumbersome to implement each of these events’ scripts in separate files. For example, if an
NPC named Steve can react to three events—being talked to, being pushed, and being offered
money—your current system would force you to write the following scripts:

steve_talk.cbl
steve_push.cbl
steve_offer_money.cbl

After a while, creating a new file for each event will get ridiculous. It won’t be long before you
reach this point:

steve_approach_while_holding_red_sword.cbl

It would be much nicer to be able to store Steve’s entire event handling scripts in a single file
called steve.cbl. You already have a system for defining blocks with symbolic names, so all you
really need to do is allow the game engine to request a specific block to run, rather than an
entire script. For example, imagine rewriting RunScript () to accept a script index as well as a
block name. You could then use it like this:

RunScript ( SCRIPT_NPC_STEVE, "Talk" );

This allows script files and blocks to map more naturally to levels of the event hierarchy, as shown
in Figure 4.20. Inside the function, RunScript () would then simply reposition the current line of
the script to the first function of the block, using the block list in the same way If, While, and
Until did. This is actually even easier, because there’s no return index to worry about; once the
block is finished, the RunScript () function just returns to its caller.

4. ADVANCED COMMAND-BASED SCRIPTING

NOTE
One important issue regarding the invocation of specific script blocks
is that it will disrupt execution if that script is already running.
Because of this, it’s best to write certain scripts for the purpose of
running concurrently in the background with the game engine (syn-
chronously), whereas other scripts are designed specifically to provide
a number of blocks to be invoked on a non-looping basis in reaction to
events (asynchronously).Therefore, Steve may instead be implemented
with two files: steve_sync.cbl, which runs in the background indefi-
nitely like the NPC scripts of the last chapter, and steve_async.cbl,
which solely exists to provide blocks the game engine can invoke to
handle Steve-specific events.
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COMPILING SCRIPTS TO A
BINARY FORMAT
Thus far you’ve seen a number of ways to enhance a script’s power and flexibility, but what about
the script data itself? You’re currently subjecting your poor real-time game engine to a lot of string
processing that, at least when compared to dealing strictly with integer values, is slow. Just as you
learned in Chapter 1, interpreting a script on a source-code level is considerably slower than execut-
ing a compiled script expressed in some binary format, yet that’s exactly what you’re doing.

Fortunately, it would be relatively easy to write a “compiler” that would translate human-readable
script files to a binary format, and there are a number of important reasons why you would want
to do this, as discussed in the following sections.

Increased Execution Speed
First and foremost, scripts always run faster in a compiled form than they do in source code form.
It’s just a simple matter of logic—if processing human-readable source code is more complex and
taxing on the processor than processing a binary format, the binary format will obviously execute
much faster.

Think about it—currently, every time a command is executed, the following has to be done:

■ The command is read with a call to GetCommand (). This involves reading each character
from the line until a space is found and placing these characters in a separate string buffer.

COMPILING SCRIPTS TO A BINARY FORMAT
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■ The string buffer containing the command is then compared to each possible command
name, which is another operation that requires traversing each character in the string.
Each character is read from the string buffer and compared to the corresponding char-
acter in the specified command name to make sure the strings match overall.

■ Once a command has been matched, its handler is invoked which performs even more
string processing. GetStringParam () and GetIntParam () are used to read string and
integer parameters from the source line, performing more or less the same operation
performed by GetCommand ().

■ GetIntParam () might not have to traverse the constant list, depending on whether a pre-
processing phase was applied to the script upon its loading.

■ The If, While, and Until commands will have to search the block list in order to find the
first command of the destination block, again, unless the script was preprocessed to
replace all block names with such information.

Yuck! That’s a lot of work just to execute a single command. Now multiply that by the number of
commands in your script, and further multiply that by the number of scripts you have running
concurrently, and you have a considerable load of string processing bearing down on the CPU
(and that says nothing of any script blocks that may be called by the game engine asynchronously
in response to events, which of course add more overhead).

Fortunately, compilation provides a much faster alternative. When all of this extraneous string
data is replaced with numeric data that expresses the same overall script, scripts will execute
exponentially faster. Check out Figure 4.21.

4. ADVANCED COMMAND-BASED SCRIPTING

Figure 4.21

Numeric data executes much faster than string data.
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Detecting Compile-Time Errors
The fastest script format in the world doesn’t matter if it has errors that cause everything to
choke and die at runtime. Despite the simplicity of a command-based language, there’s still plen-
ty of room for error, both logic errors that simply cause unexpected behavior, and more serious
errors that bring everything to a screeching halt. For example, how easy is it to misspell a com-
mand and not know it? The current implementation would simply ignore something like
“MuveNPC”, causing your NPC to inexplicably do nothing. Of course, parameters are a serious
source of potential errors as well. Parameters of the wrong type can cause serious errors as well—
providing an integer when a string is expected will cause GetStringParam () to scan through the
entire line looking for a non-existent double-quote terminator. Simply not providing enough
parameters can lead to runtime quirks, from simple logic errors to string boundary violations.

A compiler can detect all of this long before the script ever has to execute, allowing you to make
your changes ahead of time. A compiler simply won’t produce a binary version of the script until
all errors have been dealt with, allowing you to run your scripts with confidence. Also, less poten-
tial for runtime errors means less runtime error checking is needed, contributing yet another
small performance boost.

Malicious Script Hacking
Lastly, and in many ways most importantly, is the issue of what malicious players can do when a
script is in an easily readable and editable form. For example, the While and Until loops practical-
ly read like broken English, which just screams “hack me!” to anyone who happens to load them
into a text editor.

When scripts are that easily modifiable, every line of dialog, every NPC movement, and every oth-
erwise cinematic moment in your game is at the mercy of the player. In the case of single player
games, this a marginally serious issue, but when multiplayer games come into play, true havoc can
be wreaked. With a single player game, it’s really only your artistic vision that’s at stake, and the
possibility of the player either cheating or screwing up their personal version of the game.
Obviously this isn’t ideal, but it’s nothing to get worked up over because it won’t affect anyone
other than the hacker.

Script hackers can ruin multiplayer games, however, which often rely on client-side scripts to con-
trol certain aspects of the game’s logic. Like all client-side cheats, such hacks may result in one
player having an unfair advantage over the rest of the players. For example, if one of your scripts
causes the players character to slow down and lose accuracy when he’s hit with a poison dart, a
quick change to poison_dart.cbl can give that player an unconditional immunity that puts every-
one else at a disadvantage.

COMPILING SCRIPTS TO A BINARY FORMAT
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Compiled scripts are not in a format that’s easily readable by humans, nor are they even easily
opened in a text editor in the first place. Unless the player is willing to crack them open in a hex
editor and understands your compiled script format, you can sleep tight knowing that your game
is safe and all is well.

How a CBL Compiler Works
A command-based language is easily compiled. Really, all you need to do is assign each command
a unique integer value, and write a program that will convert each command from a string to this
value. This compiled data is then written sequentially to a separate, binary file, and a new run-
time environment is created to load and support the new format.

For example, imagine your game’s particular language is composed of the commands listed in
Table 4.1.

Of course, it also supports the more generic, domain-independent commands, listed in Table 4.2.

These commands can each be assigned a unique integer value, which could be called a command
code, as listed in Table 4.3.

4. ADVANCED COMMAND-BASED SCRIPTING

Table 4.1 Example Language Commands
Command Description

MovePlayer Moves the player to a specified X,Y location.

GetItem Adds the specified item to the player’s inventory.

PlayPlayerAnim   Plays a player animation.

MoveNPC Moves the specified NPC to the specified X,Y location.

PlayNPCAnim Plays an NPC animation.

PlaySound Plays a sound.

PlayMovie Plays a full-screen movie.

ShowTextBox Displays a string of text in the text box.

Pause Pauses execution of the script for the specified duration.
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Table 4.2  Domain-Independent Commands
Command Description

DefConst Defines a constant and assigns it the specified integer value.

If Evaluates the specified flag and executes one of the two specified
blocks based on the result.

While Executes the specified block until the specified flag is cleared.

Until Executes the specified block until the specified flag is set.

Table 4.3  Command Codes
Command Code

DefConst 0

If 1

While 2

Until 3

MovePlayer 4

GetItem 5

PlayPlayerAnim 6

MoveNPC 7

PlayNPCAnim 8

PlaySound 9

PlayMovie 10

ShowTextBox 11

Pause 12
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This means that, if the compiler were fed a script that consisted of the following sequence of
commands (ignore parameters for now):

DefConst
DefConst
MovePlayer
MoveNPC
PlaySound
MovePlayer
GetItem
PlaySound

The compiler would translate this to the following numeric sequence (see for yourself by compar-
ing it to the previous table):

0 0 4 7 9 4 5 9

As long as you keep ignoring parameters for just a moment, you can turn this into a fully descrip-
tive, compiled script by simply preceding this data with another integer value that tells the script
loader how many instructions there are to load:

8 0 0 4 7 9 4 5 9

The script loader then reads this first integer value, uses it to determine how many instructions
the file contains, and reads them into an array.

Executing Compiled Scripts
Once this file is loaded into memory, it can be executed easily—a lot more easily than source
code can be interpreted. Instead of reading the command string from the current source line,
you can just read the value of the array index that corresponds to the current line and enter a
switch block that routes control to the proper handler. For example:

// Read the command
int iCurrCommand = g_Script [ iCurrLine ];

// Route control to the proper command handler
switch ( iCurrCommand )
{

case COMMAND_DEFCONST:
// DefConst handler
break;

4. ADVANCED COMMAND-BASED SCRIPTING
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case COMMAND_MOVEPLAYER:
// MovePlayer handler
break;

case COMMAND_PAUSE:
// Pause handler
break;

}

These new numeric “command codes” make everything much faster, smaller, easier, and more
robust. Of course, you are skipping one major advantage that you can easily take advantage of
when compiling.

Compile-Time Preprocessing
You’ve already seen the advantage of preprocessing the DefConst command, as well as references
to constants to block names. Of course, you had to do this when the script was loaded, in the
game engine, which meant more room for error as the game is initializing and running.
Offloading this process to the compiler makes the game engine’s code much simpler and, as
always, reduces the chances of runtime errors.

Preprocessing Constants
Because of this, DefConst doesn’t even need to be compiled to a command code; rather, it can
simply be preprocessed out of the script at compile-time, thus shifting all of the codes down by
one. The language’s new codes are listed in Table 4.4.

This means the compiler will now be responsible for generating the constant list and using it to
replace constant references with their values. Scripts can now be executed with no preprocessing
step and without the need to maintain or consult a constant list.

Block Reference Preprocessing
The block list can, for the most part, be handled by the compiler as well. In the compiler’s first
pass over the source, the block list described earlier will be built up and used to replace all refer-
ences to block names with the block’s index into the list so the string component can be discard-
ed. At runtime, this index will be used to find the block’s information when executing If, While,
and Until instructions. Of course, the block list still has to persist until runtime, because the
game engine will need to know where each block begins and ends.

Each entry in the block list can therefore be written out to the compiled script file as two integer
values, the locations of the block’s beginning and terminating commands. In addition, this list

COMPILING SCRIPTS TO A BINARY FORMAT
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will be preceded with the number of entries it contains, just like you did with the command list
itself. For example, imagine a script has two blocks. The first block begins at the seventh com-
mand and ends at the twelfth, and the second begins at the 22nd and ends at the 34th. The
block list would then be written out like this:

2 7 12 22 34

The leading 2 tells you how many blocks are in the list, whereas the following values are the start-
ing and ending commands. The runtime environment can then load this into an in-memory
array and be ready to roll.

Parameters
Last is the issue of compiling parameters. Parameters are a bit more complex than commands,
because they come in a number of different forms. Fortunately, however, by the time preprocess-
ing is through, you’ll only have integers and strings to deal with. Naturally, integers are extremely

4. ADVANCED COMMAND-BASED SCRIPTING

Table 4.4  Revised Command Codes
Command Code

If 0

While 1

Until 2

MovePlayer 3

GetItem 4

PlayPlayerAnim 5

MoveNPC 6

PlayNPCAnim 7

PlaySound 8

PlayMovie 9

ShowTextBox 10

Pause 11
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simple to compile, because they’re already in an irreducible format. Strings, although more com-
plex, really can’t be compiled much either, aside from attempting to perform some sort of com-
pression (but then, that’s not compiling, it’s just compressing).

The first and most important step when compiling parameters is ensuring that the command has
been supplied with both the right number of parameters, as well as parameters of the proper
data type. Once this is taken care of, the next step is to write them out to the file, immediately fol-
lowing the command code. Because each command has a fixed number of parameters, the
loader can tell how many instructions to read based on the command code alone. The loader
then knows to read this number of parameters before expecting the next command code.
Integers can be written out as-is, as long as the script loader knows to always read four bytes.
Strings can be written out in their typical null-terminated form, as long as the loader knows this
as well. Figure 4.22 illustrates the storage of commands and parameters in a compiled script file.
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The real issue is what to do with them in memory. Because parameters add a whole new dimen-
sion of data to deal with, you can no longer simply store the compiled script in an integer array.
Rather, each element of this array must be a structure that contains the command code and the
parameters. For simplicity’s sake, you can just give each element the capability to store a fixed
number of parameters, so you can pick some maximum that you know you’ll never exceed. Eight
should be more than enough.

However, because a parameter can be either a string or an integer, you need a way to allow either
of these possibilities to exist at any of the array’s indexes. This can be easily accomplished with
the following union:

union Param                            // A parameter
{

int iIntLiteral;                   // An integer value
char * pstrStringLiteral;          // A string value

}
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These parameters can then be stored in a static array, which is itself part of a larger structure that
represents a compiled command:

typedef struct Command                 // A compiled command
{

int iCommandCode;                    // The command code
Param ParamList [ MAX_PARAM_COUNT ]; // The parameter list

}

Remember, MAX_PARAM_COUNT is set to some number that is most likely to support any command,
like 8 or 16 (both of which are total overkill). Lastly, within each command handler, you can 
now easily access parameters simply by referencing its ParamList [] array. There’s no dire need
for specific GetIntParam () or GetStringParam () functions, but it is always a good idea to wrap
array access in such functions to help abstract things. Figure 4.23 illustrates the in-memory 
command array.

4. ADVANCED COMMAND-BASED SCRIPTING

NOTE
On most 32-bit platforms, the size of an integer is usually indicative of
the size of a far/long pointer as well, which means that the total size of
the Param union will most often be four bytes, because the integer and
string pointer will perfectly overlap with one another.

Figure 4.23
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BASIC SCRIPT PREPROCESSING
The last subject I’d like to mention is the preprocessing of scripts as they’re compiled. You’ve
already seen some basic examples of preprocessing—both the compiler and an earlier version of
the script loader made multiple passes over the source code to replace constant and block refer-
ences with direct numeric values. In a lot of ways, this process is analogous to the #define direc-
tive of C/C++’s preprocessor. For example, the following script:
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DefConst MY_CONST 256
MyCommand MY_CONST

Is basically doing the same thing as the small C/C++ code fragment:

#define MY_CONST 256
MyCommand ( MY_CONST );

DefConst can therefore be viewed as a way to define simple macros, especially because the compil-
er will literally perform the same macro expansion that C/C++’s #define does. Of course, there’s
one other extremely useful preprocessor directive in C/C++ that everyone uses: #include.

Why would such simplistic command-based scripts need to include other files within themselves?
Well, under normal circumstances they wouldn’t, but with the introduction of the DefConst com-
mand, it’s possible for scripts to define large quantities of constants that are useful all across the
board. Without the capability to include scripts within other scripts, these constants would have
to be re-declared in each script that wanted to use them. This would be bad enough for reasons
of redundancy, but it can really cause problems when one or two of those constants need to be
changed, and 20 files have to be updated to fully reflect it.

For example, any decent RPG will have countless NPCs, all of which need to move around on the
map. As you’ve seen, the cardinal directions play an important part in this, which is why DefConst
proved so useful. So, imagine that you have 200 NPCs in your game, all of which need UP, DOWN,
LEFT, and RIGHT constants. Declaring them in all 200 files would be insanity.

The solution is a new command, IncludeFile, that includes files with the main script. For exam-
ple, let’s look at a file called directions.cbl that declares constants for the cardinal directions:

// The cardinal directions
DefConst UP 0
DefConst DOWN 1
DefConst LEFT 2
DefConst RIGHT 3

Note the file doesn’t even have any code in it; all it does is declare constants. Now, let’s look at an
NPC script file:

// Load the direction file
IncludeFile "directions.cbl"
// Use the directions in the code
SetPlayerDir UP
MovePlayer 0, -40

BASIC SCRIPT PREPROCESSING



148

Directions and other miscellaneous constants are one thing, but the real attraction here are
game flags. Remember, games may have hundreds or even thousands of flags, the constants for
which need to be available to all scripts. Declaring all of your flags in a single file means every
script can easily reference various events and states. For example, here’s a file called flags.cbl:

// Game flags
DefConst NUKE_DEFUSED 0
DefConst REACTOR_POWERED_DOWN 1
DefConst TOWN_DESTROYED 2
DefConst STEVE_TALKED_TO 3

And here’s a sample script that uses it:

// Include the game's flags
IncludeFile "flags.cbl"

Until TOWN_DESTROYED MoveNPCs

Assuming this file also declares a block called MoveNPCs, this script will cause the town’s NPCs to
move around until it’s destroyed. Check out Figure 4.24 for a graphical view of file inclusion.
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File-Inclusion Implementation
A file-inclusion preprocessor command is simple to implement, at least on a basic level. The idea
is that, whenever an IncludeFile command is found, that particular line of code is removed from
the script and replaced with the contents of the file it specifies. This means that a single line of
code can be expanded to N lines, which in turn means that you’ll have to make a change to the
way the compiler stores the source code internally. Assuming the compiler loads script source
files just as the examples from Chapter 3 did, it’s going to have everything locked up in a static
array. This is fine until a file needs to be loaded into the script at the position of an IncludeFile
command, at which point a large number of extra lines will need to be inserted into the array.

For this reason, the compiler should store the source in a linked list. This allows entire files to be
inserted at will.

The only real caveat to the file-inclusion command is that included files can in turn include files
of their own. Because of this, the inclusion macro must be recursive—after a file is loaded into
the source code linked list, each of the nodes it added must be searched to determine whether
they too include files. If so, the process completes until a file is loaded that doesn’t include any
files of its own.

Remember, the inclusion command doesn’t
perform any syntax checking or compiling on
its own—all it does is load into the raw text
data. The compiler then deals with everything
as if it were one big file; it has no idea that the
contents of the source code linked list were
ever spread out among multiple files. For
example, the previous game flag example
would ultimately appear to the compiler like
this:

// Include the game's flags
// Game flags
DefConst NUKE_DEFUSED 0
DefConst REACTOR_POWERED_DOWN 1
DefConst TOWN_DESTROYED 2
DefConst STEVE_TALKED_TO 3

Until TOWN_DESTROYED MoveNPCs

BASIC SCRIPT PREPROCESSING

CAUTION
Because it’s entirely possible that two
files will attempt to include each other,
there’s always the potential for such
files to catch themselves in an infinitely
recursive loop.To prevent this, you
should maintain an list of filenames ref-
erenced by IncludeFile commands, and
ignore any instances of IncludeFile that
reference filenames already in this list.
This will prevent any file from being
loaded more than once, as well as any
recursive nightmares from emerging.
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As you can see, even the comments were included, but of course, that doesn’t matter to the com-
piler. The contents of the source code linked list after every file has been included would most
likely appear cluttered and disorganized if you were to print it, but of course, the compiler could-
n’t care less as long as the code is syntactically valid. Check out Figure 4.25.
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Figure 4.25

The preprocessor simply loads each file into a large script linked list as if they have always been one large unit.

SUMMARY
Phew! This chapter has covered a lot of ground, even if it was largely theoretical. Remember, this
chapter wasn’t designed to help you literally implement the topics covered here. Rather, I just
wanted to introduce a number of possible improvements to the system created in the last chapter,
as well as lay the groundwork for some of the fundamental concepts you’ll be exploring later in
the book.

Issues such as preprocessing, macro and file expansion, managing constants, and grouping code
into blocks all overlap heavily with the real compiler theory you’ll be learning as you progress
through the following chapters. Although everything discussed here was highly simplified and
watered down, the underlying ideas are all there and will hopefully put you in a better frame of
mind for tackling them in their true, real-life forms later. I personally find difficult stuff much eas-

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



151

ier to master when I’ve had a chance to think about it on a more simplistic level beforehand.
That was the idea of this chapter—whether you try to implement any of this stuff or not, it will
hopefully get the gears turning in your head a bit, so by the time you reach real compiler issues,
the light bulbs will already be flashing and you’ll find yourself saying “Hey! That’s almost exactly
how I thought it would work!”

Like I said, everything presented here is to be taken as theory, because I’ve hardly given you
enough details to outline a full implementation. However, you’ll notice that every concept I used
to explain the conceptual implementation of these features was intermediate at best: string pro-
cessing, textbook data structures like linked lists and hash tables, and so on. Although this chap-
ter alone isn’t going to help a total beginner get anywhere, any coder with a decent grasp on
basic computer science should have no trouble getting virtually everything covered in this chap-
ter to work in a command-based scripting system.

In the end, my goal is to help you understand that even simple scripting can be extremely useful
if it’s applied properly, and maybe given some help with the sort of boosted feature set we dis-
cussed here. Actually implementing everything this chapter covered would be a lot of work, but it
would solve the vast majority of the scripting problems presented by mid-range games. Granted,
the triple-A titles out there on the market will need something more sophisticated, but what luck!
That’s exactly what the following pages will cover.

SUMMARY
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In the last section, you took your first steps towards developing your own scripting system by
designing and implementing a command-based language from the ground up. Although the

finished product was rather modest, many of the concepts behind basic script execution were
illustrated first hand. The following chapters take things to the next level, however. In fact, it’d
probably be more appropriate to refer to what’s ahead as a entire paradigm shift—the sheer com-
plexity and depth of the components involved with the finished scripting system will require not
only a significant amount of structure and foresight, but a marathon runner’s endurance as well.

You’ll learn how compilers, assemblers, and runtime environments work together to simulate a
basic CPU running inside your game, turning your engine into a virtual machine capable of run-
ning extremely powerful compiled scripts. No detail will be spared, so you probably won’t be sur-
prised that this topic will comprise the largest portion of the book—four sections to be exact.
The system you’re going to build over the course of these sections, called XtremeScript, will be
capable of handling virtually any task you can think of. If you can do it with C/C++, you can more
than likely do it with XtremeScript.

But before you get hip-deep in the nitty gritties, the first and most important step is to become
fully acquainted with this type of scripting system as a whole. A clear view of the big picture will
be more helpful in getting you started than anything else, so it’s first on the list of things to cover.

If you’re ready, let’s get started. This chapter will cover

■ The compilation of high-level code.
■ The assembly of low-level code.
■ The basic layout of a virtual machine.
■ The design and arrangement of the XtremeScript system, which we’ll build throughout

the remainder of this book.

OVERALL SCRIPTING ARCHITECTURE
The overall architecture of a system like XtremeScript involves many interconnected compo-
nents, which themselves can be broken down considerably, as most of them are complex individ-
ual systems in their own right. On the most basic level, however, you have the layout illustrated in
Figure 5.1.

As you can see, there are really only three major components when you pan out far enough. All
three were briefly introduced in Chapter 1, but this time we’re going to dig a little deeper.

5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS
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High-Level Code
High-level code is the most widely recognized part of a scripting system. Because it’s what scripts
are written with in the first place, it’s the human interface to the script module and perhaps the
system’s most useful component. High-level languages (HLLs), which include examples such as
C, C++, Pascal and Java, were created so that problems could be described in an abstract, English-
like manner. This makes HLLs extremely versatile and directly applicable to countless fields, but
it’s in fact due to this human-friendly nature that they’re extremely inefficient when read directly
by a CPU.

Humans think in high-level terms; our minds are almost entirely based on the concept of multi-
ple levels of abstraction. This unfortunately separates us from our silicon-based friends, who pre-
fer to see things in much finer, absolute terms; in other words, they speak a low-level language of
their own. Naturally, high-level code must eventu-
ally be reduced to low-level code in order for a
CPU to execute it, so you use a program called a
compiler to handle this translation. The end
result is the same program, differing only in the
way it’s described.

XtremeScript, while also the name of our future
scripting system as a whole, is more precisely the
name of the high-level language that the system
is based around. XtremeScript is what’s known
as a Csubset language, meaning it implements the
majority of the C language you already use (but

OVERALL SCRIPTING ARCHITECTURE
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XtremeScript system.

NOTE
Technically, XtremeScript isn’t exactly
a C subset; in addition to implement-
ing a smaller portion of the C lan-
guage, it also introduces a few of its
own constructs and features, and
makes subtle changes to some of C’s
existing aspects. Either way, the lan-
guage is clearly influenced heavily by
C, so we might as well use the term.
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not quite all). This is great news because it means you can write your script code in almost the
same language you’d use to write a game engine itself. The downside, however, is that C is a com-
plex language, and writing a program that compiles C code anything but a trivial task. The extra
effort involved, however, will be more than worth it in the end. In many ways, XtremeScript is
also very similar to other scripting languages like JavaScript and PHP. If you have experience with
either of these, you’ll feel right at home.

In short, high-level code is what you write scripts with. A compiler translates it to a low-level code,
which can then be easily executed.

Low-Level Code
Low-level code, which most commonly refers to assembly language and machine code, is a way to
directly control a processor such as your central processing unit, floating-point processing unit,
or virtual machine (which is what you’re interested in). In order to maximize speed and mini-
mize memory requirements, low-level code consists of very simple instructions that, although of
limited use on their own, can be combined to solve problems of limitless complexity. For an
example of what low-level code is like, check out the following example.

Here’s some C code to execute a simple assignment expression:

A = ( B + C ) * 8 / 5;

Here’s the same line of code after being reduced to a generic assembly language:

mov Tmp, B
add Tmp, C
mul Tmp, 8
div Tmp, 5
mov A, Tmp

Notice that the assembly version is, to put it in rather primitive terms, only doing “one thing” per
line. Although the C version can handle not only the entire expression but also the assignment
with only a single line, the assembly version requires five. To briefly explain what’s actually going
on here, assume that Tmp is a temporary storage location of some sort (often called a register). First
B is moved into T (notice that this notation places the destination (Tmp) before the source (B)). C is
then added to Tmp, so the temporary location now holds the sum of B and C. This sum is then
multiplied by 8 and divided by 5. With the expression completed, Tmp now holds the final result,
which is assigned to A with another mov (“move”) instruction.

Assembly language isn’t particularly difficult to code with once you’re used to it, but it should
now be easy to understand why C is the preferred choice in most cases. The good news is that, for
the most part, all of your scripting will be done in XtremeScript rather than assembly. Although

5. INTRODUCTION TO PROCEDURAL SCRIPTING SYSTEMS
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PC developers often turn to assembly language coding for an extra speed boost when maximum
performance is required (such as in the case of graphics routines), scripts stand to gain little
from it by comparison.

In accordance with my continuing theme of borrowing syntax from popular languages to make
your script system as familiar and easy-to-use as possible, the assembly language of the
XtremeScript system will be loosely based on the Intel 80X86 syntax that you might already be
familiar with. We’ll indeed take a number of creative liberties, but the Intel syntax will be pre-
served whenever possible. Once again, this eases the transition from writing engine code to writ-
ing script code in a game project and helps keeps things uniform and consistent.

Lastly, low-level code designed specifically to run on a virtual machine is often referred to as byte-
code; this is an important term, so keep it in mind.

The Virtual Machine
With the two major languages involved in your scripting system accounted for, the last piece of
the puzzle is the runtime environment. The virtual machine ultimately makes your scripts usable
because XtremeScript code isn’t compiled to the machine code of a physical processor such as
the 80X86. To reiterate what you learned in Chapter 1, recall that the general purpose of a VM is
to run code “on top” of the hardware CPU. It allows scripts to control the game engine just as the
interpreter component of your command-based script module did, albeit in a far more sophisti-
cated manner. See Figure 5.2.

OVERALL SCRIPTING ARCHITECTURE

Figure 5.2
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The XtremeScript virtual machine closely mirrors a hardware-based computer in many ways. For
example, it provides its own threading system to allow multiple scripts to run simultaneously; it
manages protected memory and other resources required by a running script; it allows scripts to
communicate with one another via a message system; and perhaps most importantly, it provides
an interface between scripts and the host application (the game itself), allowing the two to com-
municate easily. Figure 5.3 is a diagram of the VM’s general layout.
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Because the VM is designed to run inside a host application rather than directly on the CPU, it
makes the scripts themselves completely platform independent. For instance, if you create and
release a game for Windows, and later decide to port it to Linux, the game’s scripts will run with-
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Machine) has been written for a vast number of systems, allowing Java code to run on any of
them without rewriting a single line.

The XtremeScript Virtual Machine, referred to as the XVM, will be implemented as a static
library that can be dropped into any game project with minimal setup. It will be highly portable
from one project to the next, making it an invaluable tool in your game development arsenal.

A DEEPER LOOK AT XTREMESCRIPT
Now that you understand the most fundamental layout of the XtremeScript system, let’s look a
bit closer. As mentioned, a scripting engine such as the one you’re going to build is naturally a
highly complex piece of software, so the best way to learn how it works is to take a “top-down”
approach, wherein you start with the basics and slowly work your way towards the specifics. In the
last section, you learned that the XtremeScript system is based on three major entities: the high-
level language that scripts are written in, the low-level language that scripts are translated into by
the compiler, and the virtual machine that executes the low-level language version and manages
communication with the host application (the game). The next level of detail will bring into
focus two new topics—what these basic components are themselves made of, and specifically how
they interact with each other.

Each of these elements is of course covered extensively in their own dedicated set of chapters
later in the book, but before you get there, you’re going to learn how they interact with each
other and why they’re individually important. In order to do that, we’ll now look at the complete
process of turning a text-based script into a compiled, binary version running inside the VM.
Along the way you’ll see why each component is necessary and what each is composed of.

The basic process, as you might have already gathered, is as follows:

1. Write the script using the XtremeScript language in a plain text file.
2. Compile the script with the XtremeScript compiler. This will produce a new text file contain-

ing the assembly language (low-level) equivalent of the original high-level script.
3. Assemble the low-level script with the XtremeScript assembler. This will produce a binary ver-

sion of the low-level script in XVM machine code.
4. Link the XVM static library into your game engine.
5. At runtime, load the binary script file. The XVM will now process the machine code and the

script will execute.

Figure 5.4 illustrates this process in a bit more detail.

That’s definitely more complicated! But before your head explodes, let’s get right down to what’s
going on in this diagram.

A DEEPER LOOK AT XTREMESCRIPT
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High-Level Code/Compilation
Once again, you can start with the high-level code. This is without a doubt the most profoundly
convoluted step in the entire process of passing a script through the XtremeScript system, and
that’s no coincidence. In all of computer science, the most difficult problems faced by software
engineers are often the ones that deal with the complexities of the interface between humans
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and computers. Natural language synthesis, image recognition, and artificial intelligence are but
a few of the fields of study that have puzzled programmers for decades. Not surprisingly, the area
of scripting that involves understanding and translating a human-readable language like C (or a
derivative of that language like XtremeScript) is significantly more complex than understanding
the lower-level steps, which operate entirely on computer-friendly code and data. The complexity
of this step is proportional to its significance, however; the purpose of building a system like this
in the first place is to the convenience and flexibility of scripting with high-level code. Without
this first step, you probably wouldn’t waste your time building the rest.

There are two major entities in the high-level portion of your scripting system. First you have the
XtremeScript language itself, and second, the compiler that understands it and translates it to
assembly. Designing the language will be a relatively easy job; all you really have to do is pick and
choose the features you like from C, add a few of your own, and put this together in a formal lan-
guage specification that you can refer to later. The compiler, on the other hand, is orders of mag-
nitude more difficult to implement. In order to build it, you have to delve into the complex and
esoteric world of compiler theory, the field of computer science that deals specifically with translat-
ing high-level languages. Compiler theory has earned something of a bad reputation over the
years; many programmers simply look at the complexities of a language like C or C++ and imme-
diately assume that the idea of writing software that would understand it is a virtually insurmount-
able task.

Make no mistake—compiler theory is
hard stuff, and you’re going to learn
that fact first hand. But it’s not that
hard. In fact, as long as a compiler proj-
ect is approached with a great deal of
planning, meticulously structured code,
and a little patience, anyone can do it.
So, to get your feet wet and shed the
first rays of light on this shadowy and
mysterious topic, let’s look at the basic
breakdown of a compiler. You know the
compiler accepts a text file containing
source code, and spits out a new file
containing either assembly language or
machine code (which is almost the same
thing), but what’s going on between those two ends of the pipeline? Figure 5.5 shows an excerpt
of Figure 5.4, this time focusing on the steps the compiler takes.

A DEEPER LOOK AT XTREMESCRIPT

NOTE
This chapter explores a third component in
the high-level world as well, but it is mostly
lumped together with general compiler theory.
It’s the preprocessor, an incredibly useful utility
introduced in the last chapter, and one you no
doubt have extensive experience with as a C
programmer.You’ll most likely be taking advan-
tage of a few of the more common preproces-
sor directives, such as #include for combing
separate source files at compile time, and
#define for creating constants and macros.
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Lexical Analysis
The first and most basic operation the compiler performs is breaking the source file into mean-
ingful chunks called tokens. Tokens are the fine-grained components that languages are based on.
Examples include reserved words like C’s if, while, else, and void. Tokens also include arithmetic
and logic operators, structure symbols like commas and parentheses, as well as identifiers like
PlayerAmmo and immediate values like 63 or "Hello, world!". Lexical analysis, not surprisingly, is
performed by a component of the compiler called the lexical analyzer, or lexer for short. In addi-
tion to recognizing and extracting tokens, the lexer strips away any unnecessary or extraneous
content like comments and whitespace. The final output of the lexer is a more structured version
of the original source code.

Parsing/Syntactic Analysis
With the source code now reduced to a collection of tokens, the compiler invokes the parsing
phase, which analyzes the syntax of token strings. Token strings are sequences of tokens that form
meaningful language constructs, like statements and expressions. For example, consider the fol-
lowing line of code:

if = ( void + ) ;-; 96 X

This would pass through the parser without a problem because it’s composed entirely of valid
tokens. However, as is clearly visible just by looking at it, it’s not even close to following the 
rules of syntax. Parsing is one of the most complex parts of compiler construction, and can be
approached in a number of ways. The parser often outputs what is known as an AST, or Abstract
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Syntax Tree. The AST is a convenient way to internally represent source code, and allows for more
structured analysis later.

Semantic Analysis
Although the syntax of a language tells you what valid source code looks like, the semantics of a
language is focused on what that code means. Let’s look at another example line of code:

int Q = "Hello" + 3.14159;

The syntax here is correct, and thus the parser won’t have a problem with it. According to pure
syntax, all you’re doing is adding two values and assigning them to a newly declared identifier.
The semantics behind this line of code, however, are invalid; you’re trying to “add” a string value
to a floating-point value and assign the “result” to an integer. Obviously, this doesn’t make any
sense and the source file needs to be rejected. After the semantic analysis phase, the internal rep-
resentation of the source code is guaranteed to be correct, so you’re ready to get started with the
actual translation. Be assured that at this point, a lot of the really hard stuff is over with.

Intermediate Code Generation
Now that you have a fully validated internal representation of the source code, you can take the
first step towards reducing it to a lower-level language. Instead of directly converting it to a specif-
ic assembly language, however, you’re going to translate it to what’s known as intermediate code, or
I-code. I-code is something of a conversion halfway between the source language (XtremeScript in
this case) and the target language (XVM assembly). I-code lets you work with a version of the
source code that is very similar to assembly, and might be almost identical in this case, but is still
not necessarily tied to any target machine, like the XVM. You can instead save all of your
machine-specific alterations to the code for later steps.

Optimization
One of the final phases of compilation is an optional but extremely important one. Hand-written
assembly from an experienced low-level coder usually yields the highest performance and
requires the least amount of space. Common algorithms and operations, especially when part of
a loop, usually end up being somewhat redundant because of their high-level, abstract nature.
When the low-level code that performs these tasks is written directly by the programmer, these
patterns are easily noticed, and can be truncated or rewritten to achieve the same result with less
code. Compilers, however, have a much harder time recognizing these patterns and usually pro-
duce code that isn’t quite as efficient as their hand-written equivalent. As a result, compilers are
expected to optimize the code they produce whenever possible. The study of compiler-driven
optimization has been expanding for decades, and today’s compilers can often produce code that
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performs at virtually the same level as the code written by a human (or better). In this case, opti-
mization is far less important, however. The speed overhead associated with scripts is so great 
(relative to native machine code like 80X86, that is) that the difference between optimized and
unoptimzed script code is usually unnoticeable. Regardless, it’s still a topic worth exploring.

Assembly Language Generation
The final step, of course, is converting optimized I-code to assembly language. In the case of
scripts running on a virtual machine, this is really a rather simple step. I-code instructions usually
have a nearly one-to-one mapping with the compiler’s target code, so this phase is pretty simple.
Once this is done, compilation is finished and a high-level script has been reduced to a low-level
one.

The Symbol Table
Throughout the process of compilation, a data structure called the symbol table is used extensively.
The symbol table stores information about the script’s identifiers; function names, variable
names, and so on. In addition to the identifier’s name, its value, data type, and scope are also
recorded (among many other things). The symbol table is an extremely important part of the
compiler, which should be evident by its widespread use among the compiler’s various phases.

The Front End versus the Back End
The phases of compilation can be separated into two extremely important groups. These are the
front end and the back end, and are separated by the generation of intermediate code. The pur-
pose of the front end is to translate a high-level source language to I-code, whereas the purpose
of the back end is to reduce that I-code to a low-level target language. The beauty of this
approach is that the source and target languages can be changed simply by swapping their
respective ends. For example, if you wanted your compiler to accept Pascal source rather than
XtremeScript, you’d simply rewrite the front end to lex and parse Pascal. If you wanted to gener-
ate code for the Intel 80X86 rather than the XVM, you’d rewrite the back end. This is why I-code
is designed to have such a generic structure.

This wraps up the look at the high-level world of XtremeScript. To reiterate, the compiler and its
associated language are the two most complex aspects of virtually any scripting system, but are also
the most useful. Although the remaining elements are by no means trivial, few would disagree that
they pale in comparison to the difficulty involved in implementing the high-level entities.

At this stage, you can compile XtremeScript code, but the output is an ASCII assembly language
file. This will once again have to be translated to a lower-level language in order to create the exe-
cutable scripts you’re after, so let’s move on to the next step in the process.
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Low-Level Code/Assembly
Turning an ASCII-formatted assembly language source file into a binary, machine-code version is
far simpler than compiling high-level code, but it’s still a reasonably involved process. This
process is called assembly, and is naturally handled by a program called an assembler.

The Assembler
Assembly language is significantly simpler than higher-level code for obvious reasons. One of the
major differences is that low-level code doesn’t perform iteration through abstract structures like
while and for loops. Rather, basic comparisons are made involving two operands and the results
determine whether a jump is made to a given line label. Jumps in assembly language are analo-
gous to the frowned-upon goto keyword in C. goto might be considered poor programming prac-
tice in higher-level contexts, but it’s the very foundation of low-level branching and iteration.

Jumps also provide the only real complexity in the assembly process. Assemblers spend most of
their time simply reading each instruction and converting them to their numeric equivalent
(called an opcode). The size of opcodes varies, however, depending primarily on the number and
types of parameters they accept. Because of this, the size of a given block of instructions can be
hard to determine until after the assembly process. In order to translate a jump, however, the dis-
tance from the jump instruction to its target instruction must be known. As a result, many assem-
blers employ a two-pass approach. The first pass reduces every instruction to an opcode, whereas
the second pass finalizes jumps by calculating the distance to their target instructions.

The Disassembler
Disassemblers are nifty little utilities that can reverse the process of an assembler. By mapping
numeric opcodes to their instruction mnemonics, rather than the other way around, an assem-
bled binary script can be converted back to its human-readable, assembly language, equivalent.
Disassemblers are commonly used for reverse engineering, hacking compiled programs, and
other less-than-mainstream activities. It might not come as a surprise, but they’ll be of very little
use in this scenario. There’s really no need to reverse engineer a system you’ve built yourself
(unless a sharp blow to the head leaves you with a bad case of amnesia), and it’s unlikely that
you’ll ever have to “hack” into your own scripts. Because of this, you’re left to implement a 
disassembler on your own if you’re interested (which you’ll be more than capable of doing after
chapter 9).

The Debugger
Bugs are often considered the crux of a programmer’s existence (especially mine). Due primarily
to our error-prone nature as humans, as well as the complexity of computer systems, bugs play a
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pivotal and recurring role in the development of software. Although programmers still usually
spend far more time debugging a program than they do writing it, many tools have been invent-
ed to help ease and accelerate the process of hunting bugs down and squashing them. These
tools are called debuggers.

In the low-level world, debuggers usually work by loading an assembly language program into
memory and letting the user step through it, instruction by instruction. As each instruction is exe-
cuted, its operands are listed and the state of the virtual machine is presented in an organized
manner. For example, memory maps can be displayed to let the users monitor how and where
memory is being manipulated, or the contents of the stack can be illustrated in a literal stack for-
mat to allow the users to watch the stack grow and shrink and take note of incoming and outgo-
ing values.

Debuggers are similar to virtual machines in the sense that they provide a runtime environment
for scripts. The main differences are of course that debuggers are meant to be used for develop-
ment purposes only; they generally don’t provide the intended output of the script, but rather
present a visual representation of its existence in memory at runtime. They’re also far less per-
formance-critical, because debugging is usually a slow process that’s meant to be taken one step
at a time (no horrific pun intended).

Lastly, there exist a number of popular variations on the simple debugger discussed here. For
example, many compilers can optionally output a debug version of the executable containing extra
information that can be specifically utilized by debugging programs. This can include line num-
bers from the original source code, identifier names, comments, or anything else that the compil-
er normally discards somewhere along the way but that might prove useful while analyzing the
code within the confines of a debugger. Many development packages take this a step further by
displaying the original high-level code in between blocks of assembly to provide the most accu-
rate depiction of how source code behaves at runtime.

With both the compiler and assembler in place, you can produce binary, executable scripts from
text-based source files. This is the brunt of the work involved in building a scripting system, but
you still need something to actually execute those scripts with.

The Virtual Machine
The final piece of the puzzle is, as always, the virtual machine. The VM, like the command-based
script module from the last two chapters, is a fully embeddable software component that can be
easily dropped into a game project with little to no modification. It’s implemented in this book as
a static library, but a dynamically linked library would certainly have its benefits.
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Although you’ve already learned about the XVM for the most part, there are a few things that
could use some elaboration. For instance, w haven’t really decided on how exactly a script will
communicate with the host application. You know that one of the primary features of a VM is its
interface with the game engine, but how this will actually work is still something of a mystery.

In almost any software system, an interface between two entities is usually embodied by a collection
of exposed functions. By calling one of these functions, you’re in essence “sending a message” to
the entity that exposes it. For instance, if the script wants to know how much ammo the player
has, it requests that information by calling a function exposed by the game engine called
GetPlayerAmmo (). It’s equally likely that the game will need to call one of the script’s functions as
well. This is very important in the case of event-based scripting, in which case the script might
provide a function pointer to the game engine that would then be used to tell the script when a
given event has taken place. As an example, the script for an enemy character might give the
game engine a pointer to a function called HandleDamage () that would then be called every time
the enemy is shot or otherwise damaged. This is called a callback, because the runtime environ-
ment is calling one of the script’s functions “back” after previously having a pointer to it. The col-
lection of functions the game engine exposes is called it’s API, or Application Programming Interface.

Another serious issue in the case of virtual machines is security. As was mentioned briefly in the
first chapter, scripts can wreak some pretty serious havoc when left unchecked. Buggy code can
just flip out and lock the game up by overwriting the wrong memory areas or losing itself in an
endless loop, whereas malicious code can intentionally cause problems in the same manner. If a
script crashes and the virtual machine isn’t there to handle the situation, the game engine can
often go down with it. This is an undesirable situation, so a number of measures should be taken
to prevent it whenever possible. This can include “loop timeouts” that attempt to provide a timely
end to otherwise infinite loops by imposing a limit on the number of iterations they can cycle
through, and of course memory protection such as monitoring the reading and writing of a given
script to make sure it stays within its allocated address space.

Recursion can also quickly spiral out of control, so stack space should be carefully monitored. In
the event that something does go wrong, the virtual machine will at least have a good idea of
what it was and where it happened, allowing a graceful cleanup or exit.

THE XTREMESCRIPT SYSTEM
You now have a good idea of how this script system is going to work. You’ve looked at the high-
level and low-level languages and utilities, the virtual machine, and the details regarding the
interface between scripts and the game engine. The following summary outlines the major fea-
tures and primary details of the XtremeScript system. This will be the starting point in the
process of implementing it.

THE XTREMESCRIPT SYSTEM
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High-Level
The high-level aspect of XtremeScript can be summarized with the following points:

■ Based around XtremeScript, a C-subset language our scripts will be written in. The lan-
guage will be designed to resemble C and C++ as much as possible, in order to keep the
environment familiar to the programmer.

■ High-level code will be compiled with the XtremeScript compiler and translated to an
ASCII-formatted assembly source file ready to be assembled.

■ A preprocessor will be included to deliver many of the popular directives C program-
mers are accustomed to.

■ High-level code will provide the human interface to the underlying script system.

Low-Level
Below the high-level components of the system lies the lower-level:

■ Based around a simple assembly language with Intel 80X86-style syntax. Once again, a
similar syntax is intended to keep things uniform and consistent.

■ Assembly language is assembled into binary, executable scripts composed of bytecode
with the XtremeScript assembler.

■ Additional utilities include a disassembler that converts executable scripts back to ASCII-
formatted assembly source files, and a simple debugger that provides a controlled and
interactive runtime environment for compiled scripts.

Runtime
Lastly, the system is rounded out by its run-time presence:

■ Scripts are executed at runtime inside the XtremeScript Virtual Machine, or XVM.
■ The XVM is an embeddable component, packaged in a static library that can be easily

linked to a game project.
■ The XVM provides an interface between running scripts and the game engine through

an API consisting of game engine functions that scripts can call. Scripts can expose func-
tions of their own, allowing the game engine to perform callbacks. This is primarily use-
ful for trapping events.

■ Multiple scripts can be loaded and run simultaneously.
■ Scripts can communicate with one another via a message system. This can be useful in

the case of multiple enemy scripts that need to coordinate themselves with one another,
for instance.
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■ Each running script is given a protected environment with its own block of memory,
code, stack space, and message queue. Scripts cannot read or write outside of their own
address space, ensuring a higher-level of stability.

■ Other general security schemes can be put in place, such as loop timeout limits.

That pretty much wraps things up. This list, although superficial, will provide an adequate road
map for the coming chapters. These components really are significantly more complex than
what’s listed here, but this should be enough to get you started with the general order of things.

SUMMARY
This chapter has practically sent you through a time warp. Only a few pages ago you were apply-
ing the finishing touches to your modest, charming little command-based script module, and
already you’ve taken your first major step towards designing and implementing a true scripting
system with a C-based high-level language and numerous components and utilities.

The remainder of this section of the book focuses on the more general topics of procedural
scripting systems. In the next chapter you’re going to be introduced to a few of the most popular
scripting systems in use today and learn how to integrate them with your own programs. You
might even pick up an idea or two for XtremeScript.

After that, you’re going to take a look at C, C++, and a number of other high-level languages. As
you look through their design and function, you’ll start to nail down the features you need and
don’t need in order to script games. From this list, you’ll be able to draft up a formal language
specification for XtremeScript. You’ll also add a few of your own ideas, and the end result will be
a detailed blueprint that will come in very handy when the compiler theory section rolls around.

If nothing else, the one thing you should have picked up in this chapter is that you have a long
road ahead. Fortunately, you’re going to learn so much along the way that every last step will be
more than worth it. And, as you’ve learned throughout this chapter, the end result will be a pow-
erful, versatile system that will prove useful in countless future projects.

You’re encouraged to read this chapter more than once if even the slightest detail seems a bit
fuzzy. Remember, you can sweat most of the details you’ve covered so far; you obviously can’t be
expected to truly understand the phases of compilation or the details of the XVM architecture
just yet. I included it all to give you an idea of the complexity behind what you’re doing. What
you do need to know, however, is how these general pieces fit together. That’s the most important
thing.

Aside from that, roll up your sleeves—the real fun is just getting started!

SUMMARY
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The last chapter introduced you to scripting in a more technical manner through a general
overview of how the pieces fit together, with a focus on exactly how they do so in

XtremeScript. Armed with this information, you’re now ready for your first hands-on encounter
with “real” scripting, which will be the integration of some of the more popular existing scripting
systems with a graphical C program.

In this chapter, you’re going to:

■ Learn about the concept of integration and the use of abstraction layers to facilitate
communication between separate entities.

■ Take a tour of three popular scripting languages—Lua, Python, and Tcl—and learn
enough about them to write reasonably powerful scripts.

■ Learn how these scripting systems are integrated with C programs and, combined with
your knowledge of their respective languages, use them to control a small, graphical host
application.

INTEGRATION
Before getting into the details of how to use these existing scripting systems, you need to master
the concept that underlies the use of all of them— integration. Integration, to put it simply, is the
process of taking two or more separate, often unrelated entities and making them communicate
and work together for some common goal. You can see examples of integration and its impor-
tance all throughout the software world—3D rendering and modeling packages often extend
their functionality through the use of plug-ins; Sun’s Java Connector Architecture allows modern,
Java-based application servers to talk to legacy enterprise information systems to make corporate
transaction records and inventory catalogs available on the Web; and of course, game engines
communicate with scripting systems to allow game designers and players to provide game content
and modifications in an external and modular fashion. See Figure 6.1.

Generally, the biggest challenge involved in integrating two things is establishing some sort of
channel through which they can easily and reliably communicate. This provides the foundation
for everything else, as virtually any facet of an integration project will ultimately rely on the capa-
bility for entity X to talk to entity Y and receive a response.

The solution to this problem lies in an age-old software-engineering concept known as the
abstraction layer. An abstraction layer, also known as an interface, is any software component that sits
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between two or more entities, interpreting and routing their input and output instead of letting
them communicate directly (which may not even be possible). To understand this concept better,
consider the analogy of a human translator. A translator for English and Japanese, for example, is
someone who is fluent in both languages and allows English-only speakers to communicate with
Japanese-only speakers by listening to what the first party has to say in one language, and repeat-
ing it to the second party in the other. The process works both ways, and the end result is that the
two parties can easily communicating despite an otherwise impenetrable language barrier. This
process is illustrated in Figure 6.2.

INTEGRATION

Figure 6.1

Examples of 

integration.
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It’s called a layer because, for example, the translator is “wedged” in between the English and
Japanese speaking parties, much like a layer of adhesive sits between two surfaces. It’s considered
abstract because neither entity knows all the details of the others; in this case, the Japanese speak-
ers don’t know English, and the gai-jin don’t know Japanese. Regardless, thanks to the translator,
they can communicate as if this issue didn’t even exist. To either side, the process of inter-lan-
guage communication has been abstracted to something far simpler. Rather than having to spend
years upon years attaining fluency in the language of the other party, both parties can carry on in
almost the exact same manner they usually would, while still getting the job done.

Bringing this example back to the context of game scripting, the reason you need an integrating
layer of abstraction between a script and the game engine is because neither the scripting lan-
guage nor C has built-in facilities for “talking” to the other. In computer science terms, phrases
like “talking to” and “sending messages between” software entities generally mean calling func-
tions. In other words, if you have two programs in memory, each of which has a number of func-
tions for receiving input and producing output, these two programs can communicate rather eas-
ily by simply calling each other’s functions. Anyone who’s done any reasonable amount of
Windows programming should have plenty of experience with this (think callbacks). Check out
Figure 6.3 for a more visual explanation.

When Program X calls one of Program Y’s functions, it’s talking to it. When Program Y returns a
value, or calls one of Program X’s functions, it’s talking back. So, it seems that in order for a
script written in, say, Python, to communicate with the game engine written in C, all they need to
do is call each other’s functions and everything will work out. The problem is, there are no built-
in provisions for doing this. Even if you define a function in your Python script called MovePlayer
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(), which accepts two numeric values for moving the player along the X- and Y-axes, the following
code certainly won’t compile in C:

Int X = 16,
Y = 32;

MovePlayer ( X, Y );

Why not? Because from the perspective of your C compiler, MovePlayer () doesn’t exist. More
importantly, even if the compiler knew about the function, how would the function be called?
Python and XtremeScript, like all scripting languages, are not compiled to machine code. Unlike
the C functions, there is no block of native assembly language in memory that implements the
logic behind the MovePlayer () function. Rather, this function is represented as a different, assem-
bly-like format that exists in and can be executed by Python’s runtime environment and nothing
else. Your poor C compiler wouldn’t know what to do with the function call either way. Figure 6.4
illustrates this.

Likewise, how is your Python script going to talk to C? Just as your compiled C program runs
directly on the machine and expects the functions it calls to exist in the physical “world” of, for

INTEGRATION
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example, 80x86 machine code, Python expects just the opposite and deals only with other Python
scripts, which are far more high-level and “virtual” because they run inside the Python runtime
environment. The problem is that these two languages exist in “parallel dimensions” so to speak,
and therefore have no intrinsic methods of communication.

If you’re in the mood for a fairly out-there example, consider the following. Many scientists in the
quantum mechanics and physics communities believe that the universe exists in a larger
multiverse; a “collection” of presumably infinite separate, parallel universes. This means that while
you may live on earth, a person just like you may also live on a “different” earth—one that resides
in another universe. As it stands now, there’s no way for you to talk to your alter-ego in this
dimension, just like C can’t communicate with Python. However, if we can find a way to reach out
of, or transcend, or own universe, we might be able to establish a means by which multiple univers-
es can communicate with each other. Although I’ve admittedly taken more than a little dramatic
license here, this is in essence the same thing you’re trying to do with C and the scripting system
of choice. Of course, the integration of scripting systems is probably a lot less likely to make its
way into an episode of the Twilight Zone.

Coming back down to earth, this is where the handy translator comes back into the picture. It
may no longer be a problem of English vs. Japanese, but as you’ve seen, any time two or more
software components are having trouble communicating, an abstraction layer can solve the prob-
lem by providing a common ground of some sort. The problem, to put it specifically, is that you
need the scripting system to call C functions and vice versa, but have no way of doing so.

To figure this out, let’s look more carefully at exactly what the translator does. When the English
party says something to the translator, the spoken phrase is recognized and understood by the
translator’s brain, and then converted to its corresponding equivalent in Japanese. These new
Japanese words are then spoken by the translator, and are subsequently understood by the
Japanese party. The reason I’ve phrased this in such detail is that it’s almost an exact analogy for
the abstraction of inter-language function calls. The key to remember here is that the exact
sound waves that are produced in English are not the same waves that the Japanese party ulti-
mately understands. Likewise, the Python system will not receive the exact same function call that
was sent out by the C program when it comes time for the two to communicate. Rather, it will
receive a translated function call that was sent by the abstraction layer. The same is true conversely.

To put it simply, the abstraction layer will be assigned the job of sitting in between C and Python.
This layer is capable of understanding function calls from both C and Python, and likewise, is
capable of issuing them as well. So, when Python wants to talk to C, it instead calls the abstraction
layer’s functions for sending a message. The abstraction layer will then make a new function call
of its own, but one that conveys the same message, to the C program. This new function call will
be understandable by C, and the message will have traveled from the script to the game engine.
Naturally, the process is reversed when C wants to talk to Python. Have a look at Figure 6.5.
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Again, this is an abstraction because Python and C still haven’t learned how to talk to each other.
Rather, they’ve simply learned how to talk to a translator, which in turn is capable of talking to
the other party for them.

IMPLEMENTATION OF SCRIPTING SYSTEMS
Generally, a scripting system is implemented in the form of a static library or something similar,
although a dynamic library like a Windows DLL would work just as well and in roughly the same
way. This library usually contains two crucially important components, both of which are neces-
sary to fully enable the scripting process. The first and most obvious component is the runtime
environment (also known as a virtual machine, a term you should be familiar with by now), which
is capable of loading scripts in the system’s language, such as Python or Tcl. Once loaded, the
runtime environment either automatically begins execution of the script, or waits for the host
application to give it the green light. The other component is the interface that allows it to talk to
the host application and vice versa. This is of course the abstraction layer. The host application is
then linked with this library, and the resulting executable is capable of being externally con-
trolled by scripts. When a scripting system is encapsulated in this way for easy integration with
host applications, it’s an embeddable scripting system, because it “embeds” itself into the host in the
same way a 3D graphics card is “embedded” into your computer, or a pacemaker is “embedded”
into your body.

Scripting languages vary in their details quite a bit from one to the next, but scripting systems
themselves are almost invariably written in C or C++. This means that the runtime environment
that runs the Python script, as well as the interface that allows it to talk to the game engine, are
both written in a language that the engine is directly compatible with. Because a C program can
easily talk to a C library, that’s one side of the C-Python interface taken care of already. The other
half of the puzzle is also easily solved because the Python library not only physically contains the
Python script, but has records of all of its relevant information—including data about what sort of
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functions the script defines as well as how to call them. This information, coupled with the fact
that it already has an intrinsic connection to the C host application, explains exactly how func-
tion calls can be translated back and forth from the script to the host.

In other words, both the C program and the Python script can now break up their function calls
into two groups. First are traditional calls that work within their respective environment; C calls to
C functions, and Python calls to Python functions. These are called intra-language function calls.
The second group consists of calls from the host that are intended for Python and calls from
Python that are intended for the host (inter-language function calls). Because neither of these
function calls go directly from Python to C or vice versa, they all really just boil down to calling
the Python library and requesting it to translate the message. Check out Figure 6.6 to see this 
in action.

The API provided by the typical scripting system library are pretty much what you would expect;
functions for loading and unloading scripts, functions that tell a given script to start or stop 
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running, perhaps a few general functions for initializing and shutting down the runtime environ-
ment itself, and of course, functions for calling other functions defined by the script. If you write
a script called my_script.scr, for example, that consists of three functions, DoThing0 (), DoThing1
(), and DoThing2 (), the pseudocode for a small C program that loads and interacts with the
script through the scripting system library might look like this:

InitRuntime ();                  // Initialize the runtime environment
LoadScript ( "my_script.scr" );  // Load the script
CallFunction ( "DoThing0" );     // Call DoThing0 ()
CallFunction ( "DoThing1" );     // Call DoThing1 ()
CallFunction ( "DoThing2" );     // Call DoThing2 ()
FreeScript ();                   // Free the script
ShutDownRuntime ();              // Shut the environment down again

Pretty straightforward, huh? The one detail I haven’t really covered is how you pass parameters to
these functions, but this still illustrates the overall process pretty well. I also haven’t talked about
how the scripting system library knows which C functions correspond to incoming function calls
from the script, so let’s just scrap the theoretical talk and get your hands dirty with some real
scripting action and answer these questions in practice.

THE BOUNCING HEAD DEMO
In order to try out these scripting systems, the first thing you’ll need is a host application to
script. Obviously it would be a bit ridiculous for me to wheel out a full game just for use in this
chapter, so instead you’re going to start small and script a simple bouncing sprite demo.

The demo is decidedly basic; it displays a background image, loads a few frames of a rotating
alien head, and bounces them around the screen while looping through the alien’s animation.
The background image is a little composition of some of my hi-res texture art and some random
junk strewn over it, all of which is given a dark, hazy purplish tint. It has the kind of look to it that
reflects the amount of Crystal Method and BT I listen to while doing this sort of thing. You can
see the demo running in Figure 6.7, or run the included Demo 6.1 on the CD and see it for your-
self.

The goal here is to get familiar with the scripting systems this chapter covers by recoding the
logic behind the demo with scripts, so your first step is to walk through everything the demo does
in a reasonable level of detail. After doing this, you should be able to pick and choose the ele-
ments that should be offloaded to scripts, and which should remain hardcoded in C.

THE BOUNCING HEAD DEMO
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In a nutshell, the demo is composed of three phases: initialization, the main loop, and shutdown.
Let’s first look at the steps taken by the initialization phase:

■ The Wrappuh API is initialized, which provides the program with simple access to
DirectX for graphics, sound, and input.

■ The video mode is set. In this case, 640x480 is used with 16-bit color.
■ The random number generator is seeded.
■ Each of the separate on-screen alien head sprites is initialized with random locations,

velocities, and directions.
■ The background image is loaded.
■ Each frame in the spinning alien head animation is loaded, one by one.
■ The current frame of the animation is set to 0.
■ Two timers are initialized—one that will tell you when to advance the animation to the

next frame, and one that will tell you when to move the sprites along their path.
■ The while loop that will be the main loop of the program is started and runs until the

Escape key is pressed.

Initializing such a simple demo may have seemed trivial at first, but when you actually analyze
things like this, they usually turn out to be just a bit more complex than you originally anticipat-
ed. The lesson here is that when scripting, don’t overestimate or underestimate your require-
ments. Depending on the situation, your scripting language of choice might not even be capable
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of handling a small detail you’ve overlooked, and as a result, you’ll end up finding out that your
language of choice was inappropriate halfway into the process of writing the actual scripts. This
certainly isn’t a fun revelation, so plan ahead.

Now that you’ve nailed down exactly what the initialization phase can do (and what the other two
phases will do in a moment), you can tell for sure whether a given language will be capable of
handling the job. Moving on, let’s look at the guts of the main loop. At each frame of the demo,
you’ll have to:

■ Blit the full screen background image, mainly to display the image itself, but also to over-
write the previous frame.

■ Loop through each unique on-screen sprite and draw it at its current location, with the
current frame of the spinning head animation. Each head has the ability to spin in the
opposite direction, so you may need to invert the current frame number to simulate the
other direction.

■ Blit the newly finished frame to the screen.
■ Check the status of the Escape key, and exit the program if it’s been pressed.
■ Check the animation timer and update the animation if necessary.
■ Check the movement timer and, if necessary, loop through each on-screen sprite and

move along its current path at its current velocity. Once the sprite has been moved, you
must check its location against each of the four boundaries of the screen and adjust its
direction in the event of a collision to simulate a bounce.

Lastly, let’s look at what’s required to shut the demo down after the main loop has been terminat-
ed by pressing Escape:

■ Free the background image.
■ Free each frame of the animation, one by one.
■ Shut down the Wrappuh API.

As is usually the case, the shutdown phase is the simplest. So, now that you know exactly what the
demo needs to do, you can decide which parts will remain in C, and which parts will be removed
to be re-implemented with scripts. Naturally, you aren’t going to redo the entire demo in a script-
ing language, because that would pretty much defeat the whole purpose of scripting in the first
place. So, let’s get the list of things that should remain in C out of the way:

■ The first and last steps of the initialization phase should stay in C simply because they’re
so basic. The first step is the initialization of Wrappuh— it happens only once and
involves nothing more than calling a function, so there’s no need to script that. The last
step is starting the while loop, which is a bit more serious. If you actually move the loop
itself into the scripts, your C program will do virtually nothing in the next version of the
demo— it passes control to the script, which will run until the user exits, and the C side
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of things will be inactive. A better design is to keep the actual main program loop run-
ning in C and give the script only a small portion of each loop iteration to keep the
sprites bouncing around. Also, the random number generator can be seeded in C. This
is another operation that’s done only once and is so basic and obscure that there’s no
need for the script to worry about it.

■ The C host will load the images.
■ The C host will set the video mode.
■ Just about everything the main loop needs to do will be scripted, so you can forget about

C here. The C program will check for the user pressing Escape, however (although this
could be done in either language).

■ Just like the initialization phase, there’s no need to make the script worry about shutting
down the Wrappuh API, so you can leave that where it is.

As you can see, the C version will barely do anything; aside from the most basic initialization and
shut down tasks, the only thing C is really responsible for is providing the main loop itself. In this
regard, the C program can now be considered a “shell” or “skeleton” that just sets the stage for
the scripts to do the real work. So, let’s think about what you’ll need to recode with scripts:

■ The scripts will handle setting all of the initial sprite information, like their location and
direction.

■ Once in the loop, the scripts will be in charge of almost everything. They’ll move the
sprites around, they’ll check for collisions, and they’ll even make the calls to the blitter
in order to physically get the graphics on the screen.

■ The script won’t really have any hand in the shut down process.

Once you have this logic re-imple-
mented in scripts, you can test
their true power, which is the capa-
bility to change this functionality
even after the C program has been
compiled. This will enable you to
alter the bouncing effect or really
any other aspect of the scripted
program on a whim.

You’re ready to roll at this point.
The host application is written,
your goals for the scripts are clear,
so all that’s left is to jump in and
learn about your first scripting 
language.
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LUA (AND BASIC SCRIPTING CONCEPTS)
The first stop on your scripting language tour is the quaint little town of Lua. Lua is a simple,
easy-to-use language and scripting system designed to extend any sort of program by giving it the
capability to load and execute optionally compiled scripts (which, really, is the goal of virtually
any scripting system). Lua the language is paradoxically characterized by both its basic and
straightforward syntax, as well its understated but powerful capability to be expanded significantly
by the only non-primitive data structure it supports, the table. Don’t let its mild-mannered appear-
ance fool you, however; Lua’s been put to good use in such commercial games as MDK2 and
Balder’s Gate. It can definitely pull its weight when it has to. Lua the scripting system is equally
clean and easy to use; it comes as a single static library coded in pure C and ready to be dropped
into any host application for some hot, steamy scripting action.

Before getting into the details of how to write scripts in the Lua language, have a look at the com-
ponents that the Lua system provides.

The Lua System at a Glance
I think the real beauty of the Lua scripting system is its simplicity. When you initially download
the package, you won’t find billions of scattered files and executables. Instead, you’ll find the
include files and libraries needed to link Lua into your host application, as well as a small handful
of utilities. That’s all you need, and that’s all you get. Of course, you can find Lua on the includ-
ed CD under the Scripting Systems/Lua/ directory.

The Lua Library
The Lua library is composed mainly of two files: lua.lib and lua.h. The library in most respects
follows the archetypical outline in that it provides a clean API for initializing itself and shutting
down, as well as functions for loading scripts, executing them, and building the function call
interface that will let them talk back and forth with your host application. I’ll get back to the
details of how to use this library later.

The luac Compiler
Lua comes with an easy-to-use command-line driven compiler called luac. Typing luac at the com-
mand prompt will display the program’s usage info. To compile a script, simply type:

luac <Filename>

LUA (AND BASIC SCRIPTING CONCEPTS)
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where Filename is the name of the script. The script will be compiled into a file called luac.out by
default, but this can be changed with the -o switch. For example, if you have a script called
test.lua that you want compiled to a file with the same name, you type this:

luac -o test.out test.lua

What may surprise you about all this, however, is that you don’t ever actually need to use the luac
compiler in order to use the scripting system. Scripts written in Lua can be loaded directly by the
Lua library and will be compiled on-the-fly, at the time they’re loaded. This is a nice feature
because it allows you to immediately see the results of your script code; you don’t have to waste
any time on an intermediate compiling step, and you don’t have to manage two filenames. The
downsides, however, include the fact that you won’t get particularly meaningful compile-time
errors when your compiling is done at runtime. Because your game (or whatever the host appli-
cation may be) will be in control of the screen at the time, Lua won’t be able to print out a list of
syntax errors, for example. The other problem is that loading scripts will now be somewhat slow-
er, as Lua will have to spend the extra time compiling it then and there.

So, luac is generally a good program to have around. Not only does it let you compile your scripts
ahead of time for much faster loading at runtime, but it also provides you with the same level of
compile-time error information that you’d expect from any other compiler. Another advantage is
that you won’t have to distribute the source to your scripts with your game; instead, you can just
release the compiled binaries, which aren’t particularly easy for malicious gamers to hack, and
also take up less space. In other words, you don’t have to use the compiler, but you will most likely
want to (and definitely should anyway).

The lua Interactive Interpreter
Another utility that comes with Lua is the interactive interpreter. This useful little program, also
accessible from the command prompt, simply displays the following upon invocation:

>

Although the interface is about as friendly as the infamous DEBUG utility that ships with MS-DOS,
the program lets you immediately test out blocks of Lua code by typing them directly into the
interpreter and seeing the results in real time (hence the “interactivity”). I haven’t discussed the
syntax of Lua yet, but the following should be pretty self-explanatory. For example, if you were to
type the following:

> X = 32
> Y = 64
> print ( X + Y )
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You’d see the following output:

96

The last piece of information regarding
the lua interactive interpreter worth
mentioning is that it can also be used
to immediately run simple scripts with-
out the need to embed the lua.lib run-
time environment into a C program.
Simply call lua with a filename as the
single command-line parameter, like so:

lua my_script.lua

and it will attempt to execute and print
the output of the script. In addition, lua will provide the same level of detail in compile-time
errors as luac will, which can be useful. Lastly, scripts running inside the lua interpreter are auto-
matically given a special print () function, which can be used to print values to the screen, much
like printf () in C. Even though I haven’t discussed Lua syntax yet, the following should be pret-
ty self-explanatory:

print ( "Hello, world!" );

Running this in lua, strangely enough, produces the following output:

Hello, world!

Keep this function in mind as you read through the following sections.

The Lua Language
Lua as a language is simple and straightforward. It won’t take long to learn the syntax and seman-
tics behind it, and once you have them down, you’ll find it elegant and easy to use. The syntax
somewhat resembles a mixture of C, BASIC, and Pascal, resulting in a no-frills look and feel that,
although not a perfect C clone, should still be an easy transition to make when switching from
game engine code to script code. This chapter refers to Lua 4.0, the latest official release at the
time of this writing.

The interactive interpreter I mentioned in the last section will be extremely useful during the
next few pages; if you really want to follow along, start it up and play with some of the language
examples that are discussed. It’s the best and fastest way to get really familiar with how Lua works.
I highly recommend it.
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TIP
You’ll notice that the interpreter seems to
evaluate your statements as soon as you
press Enter, even if they’re supposed to be
part of a larger construct such as an if block.
To enter a full block of code without immedi-
ately executing it as it’s typed, simply follow
each line in the block with a backslash (\),
much like a multi-line #define macro in C.All
of the code will be executed at once after the
first non-backslash-terminated line is entered.
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Comments
I like to introduce comment syntax first when describing a language, because it generally shows
up in the code examples anyway. Lua’s single comment type is denoted with a double-dash:

-- This is a comment.

Just like the // comment in C++, Lua’s comments cause everything from the double-dashes to the
end of the line to be ignored by the compiler. Lua has no provisions for block comments, so
multi-line comments must be broken into single lines manually:

-- This is the first line of a comment,
-- which is continued down here,
-- and finished here.

It’s a bit of a hassle, but oh well. :)

Variables
Like most scripting languages, Lua is typeless. This means that any variable can hold any value of
any type at any time, as opposed to languages like C, which force you to declare a variable of a
given type and stick to that type throughout the variable’s lifespan. Also unlike C, Lua variables
need not be officially declared. Rather, a variable is brought into existence at the time of its first
assignment. However, as you’ll see, this initial
assignment is restricted to some extent in many
cases and is often considered a somewhat
“implicit” declaration. More on this later.

Identifiers in Lua follow the same rules that
exist in C—valid identifiers are sequences of
letters, numbers, and underscores that begin
with a non-numeric character (meaning a let-
ter or underscore). Identifiers are also case-sen-
sitive, so myvar, myVar, MyVar, and MYVAR are all
considered different variable names.

Because variables need only be assigned to be
declared, the following block of code would
declare and initialize two variables, X and Y:

X = 4096            -- Declare X and set its value to 4096
Y = "Hello, world!" -- Declare Y as a string containing "Hello, world!"
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Avoid creating identifiers that consist
of an underscore followed by an all-
caps string, such as _IDENTIFIER.This
convention is used internally by Lua for
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scripts may potentially break your
code. Besides, they’re ugly anyway.
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This little example also illustrates another quirk of Lua’s syntax: that semicolons aren’t required
to terminate lines. However, the semicolon can still be used and is still required in the case of
statements that span multiple lines. Consider the following:

MyVar0 = 128     -- Valid statement; semicolons are optional.

MyVar1 = 256;      -- Also valid; semicolons can be used if preferred.

print (
"This is a long line!"
);            -- Valid, multi-line statements are allowed as long

-- as the semicolon is present.
print (
"So is this!"
)             -- Invalid, multi-line statements must end with ';'.

Even though variables only
need to be assigned to be
declared, they still can’t actually
be used as arithmetic expres-
sions without being given some
sort of initial value. This is
because all variables are
assigned nil before their first
assignment, which doesn’t make
sense in the case of math opera-
tions. For example:

U = 1024;
V = 2048;
print ( U + V );
print ( U + V + W );

This would produce the following:

3072
error: attempt to perform arithmetic on global 'W' (a nil value)
stack traceback:

1:       main of string "print ( U + V ); ..." at line 4

The first line of the output is the sum 3072, just like you would expect, but the following lines are
an error message letting you know that W cannot be used to perform arithmetic. I’ll discuss nil in
more detail in the following section.

LUA (AND BASIC SCRIPTING CONCEPTS)

TIP
Even though it’s optional in most cases, I suggest
using semicolons to terminate all statements in Lua
anyway. Not only does it make the language seem
that much more C/C++ like, but it also makes your
code clearer and more robust. If you find that a given
statement is getting too long and want to break it
into multiple lines, having a semicolon already in
place will make sure you don’t forget to add it after-
wards and wind up with a compile-time error. It’s just
a good rule of thumb to stick with.As a C and/or
C++ programmer, it will be a reflex anyway.
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The last issue of variables to cover now is the concept of multiple assignment, which Lua supports.
Multiple assignment allows you to put more than one variable on the left side of the assignment
operator, like so:

X, Y, Z = 2, 4, 8;

After this line executes, X will equal 2, Y will equal 4, and Z will equal 8. This left-to-right order
allows you to tell which identifier will receive which value. Multiple assignment works for any sort
of assignment, so you can use it to move the value of one set of variables into another as well:

U, V, W = X, Y, Z;
Print ( U, V, W );

Which will produce the following (assuming you’re using the same X, Y, and Z you initialized in
the last example):

2       4       8

If you’re anything like me, the first thought you had when you saw this form of assignment nota-
tion was “what happens if you don’t provide an equal number of variables and values on both
sides of the assignment operator?” Fortunately, in another example of Lua’s robust nature, this is
handled automatically. In the first case, if you don’t provide enough values on the right side to
assign to all of the variables left side, the extra variables will be assigned nil:

X, Y, Z = 16, 32;

This will assign X 16 and Y 32, but Z will be set to nil. This even works in cases when the extra vari-
able has already been initialized. For example:

U, V, W = 256, 512, 1024;
print ( U, V, W );
U, V, W = 2048, 4096;
print ( U, V, W );

Even though W was assigned a value in the first assignment, which will be visible in the output of
the first print () call, the second assignment will replace it with nil:

256    512    1024
2048   4096   nil

In the second case, where there aren’t enough variables on the right side to receive all of the val-
ues on the left, the unused values will simply be ignored, so a line like this:

X, Y = 8192, 16384, 32768, 65536;

is perfectly legal and will only assign X and Y the first two values. The last two variables will simply
vanish without a trace, much like Paulie Shore’s career.
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Overall, multiple assignment is a convenient shorthand but definitely has potential to make your
code less-than-readable. Only use it in cases when you’re sure that the code is clearly understand-
able, and try not to do it for too many variables at once. Don’t try to get cute and impress your
friends with huge tangles of multiple assignment; it will only result in error-prone code. One
good use of the technique; however, is swapping two values in one line easily:

X = 16;                    -- Declare some variables
Y = 32;
print ( "Unswapped:", X, Y ); -- Print them out
X, Y = Y, X;               -- Swap them with multiple assignment
print ( "Swapped:", X, Y );   -- Print the swapped values

This will produce the following:

Unswapped:   16        32
Swapped:     32        16

Data Types
Now that you can declare and use variables, you’re probably interested in knowing what you can
stuff into them. Lua supports six data types:

■ Numeric. Integer and floating-point values. Unlike C, these two types of numeric values
are considered the same data type.

■ String. A string of characters.
■ Function. A reference to a formally declared function, much like a function pointer in C

(but simpler to use and more discreet).
■ Table. Lua’s most complex and powerful data type; tables can be as simple as associative

arrays and as complex as the basis for more advanced data structures like linked lists and
classes.

■ Userdata. A slightly more obscure data type that allows C pointers to be stored in Lua
variables for a more tight integration into the host application. Userdata pointers corre-
spond to the void * pointer type in C. I won’t be covering this data type.

■ nil. The simplest data type by far, nil’s only job is to be different from every other value
the language supports. This means it makes a good flag value, especially when you want
to mark something as uninitialized or invalid. In fact, any reference to a variable that
hasn’t been directly assigned a value will equal nil. nil is also the only concept of “false-
hood” the language supports. In other words, nil is like a more robust version of C’s
NULL. This is consistent with what you saw in the last section when you tried adding a nil
value to two integers, which is illegal in Lua. This is an important lesson: nil is false, but
it is not equal to zero in a numeric or arithmetic sense. This is why arithmetic expressions
involving nil variables don’t make sense and result in a runtime error.

LUA (AND BASIC SCRIPTING CONCEPTS)



192

If you happen to have the Lua interpreter open at the time, try using the type () function to
examine various identifiers. The type () function returns a string describing the data type of
whatever identifier is passed to it, so consider the following:

print ( type ( 256 ) ); \
print ( type ( 3.14159 ) ); \
print ( type ( "It's a trap!" ) );

Upon pressing Enter, you should see the 
following output:

number
number
string

Right off the bat, the numeric and string
types should be a snap, and even the func-
tion type is pretty simple when you think
about it. nil is easy to grasp as well, and the
Userdata type is beyond the scope of this
book so I won’t be discussing it any further.
That leaves you with tables, which is good because they deserve the most explanation.

Before moving on, however, I’d just like to quickly mention one last aspect of Lua’s data types:
coercion. Coercion is when one data type is cast, or coerced into another for the sake of executing
an expression. For example, numeric values and strings can be used interchangeably in a number
of expressions, like so:

print ( 16 + 32 );
print ( "16" + 32 );
print ( 16 + "32" );
print ( "16" + "32" );

Each of these print () calls will output the numeric value 48. This is because whenever a string
was encountered in the arithmetic expression, it was coerced into its numeric form. Lua recog-
nizes strings that can be converted meaningfully to numbers, like the previous ones. However, the
following statement would cause an error:

print ( 16 + "32" + "Alex" );

The first two values, 16 and "32", are valid. 16 is already an integer value and "32" can be coerced
into one and still make sense. When the last string value ("Alex") is reached, however, Lua will
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Although I’m sure you’ve picked up on
this already, I’d just like to make sure that
you’re clear on the print () function.
print () will print any value passed to it,
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stops.You’ll see more of this later.



193

attempt to convert it to a number and find that it has no numeric equivalent, thus stopping exe-
cution to report the error of attempting to use a string in an arithmetic expression:

error: attempt to perform arithmetic on a string value

Tables
Tables in Lua are, first and foremost, associative arrays not unlike the ones found in other script-
ing languages like Perl and PHP. Associative arrays are also comparable to the hash table struc-
ture provided in the standard libraries for languages like Java and C++.

Tables are indexed with the same syntax as a C array, and are initialized in much the same way.
For example, consider the following table declarations that mimic C string and integer arrays:

IntArray = { 16, 32, 64, 128 };
StringArray = { "Aho", "Sethi", "Ullman" };

Although you didn’t have to specify a data type for the table, or even its size, you do use the tradi-
tional C-style { … } notation for initialization. Once the tables have their values, they can be
accessed much like you’d expect, but with one major difference: the initialized values start at
index 1, not zero:

print ( IntArray [ 1 ] );
print ( StringArray [ 2 ] );

This code will produce the following output:

16
Sethi

Of course, even though an initialization set is automatically indexed from 1, it doesn’t mean
index zero can’t be used:

IntArray [ 0 ] = 8;
print ( IntArray [ 0 ], IntArray [ 1 ], IntArray [ 2 ] );

will produce the following output:

8      16       32

Although it’s important to note that index zero is perfectly valid as long as you manually give it a
value, the real lesson in the preceding example is your ability to add new elements to a table
whenever you need to. Notice that the set of values that initialized the table included only 
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indexes 1 through 4, but you can still expand the array to cover 0 through 4 by simply assigning a
value to the desired index. Lua will automatically expand the array to accommodate the new val-
ues. In fact, virtually any index you can imagine will already be accessible the moment you create
a new table. For example:

print ( IntArray [ 0 ] );
print ( IntArray [ 2 ] );
print ( IntArray [ 24 ] );
print ( IntArray [ 512 ] );

Even though indexes 24 and 512 are far from the initialization set, check out the output:

8
32
nil
nil

Neat, huh? Lua automatically created and initialized indexes 24 and 512, allowing you to access
them without any sort of out-of-bounds or access-violation errors. In this regard, table indexes are
much like typical Lua variables in that they are created only when they are first assigned (or when
you initialize them with the { … } notation), but will contain nil until then.

The next important aspect of Lua tables is that they are heterogeneous, which means that not all
indexes must contain the same type of value. For example:

MyTable [ 0 ] = 256;          -- Assign an integer to index 0
MyTable [ 1 ] = 3.14159;      -- Assign a float to index 1
MyTable [ 2 ] = "Yahtzee!";   -- Assign a string to index 2

The three indexes of this table contain three different data types, further illustrating a table’s
flexibility. In addition to being able to hold any sort of primitive value, table indexes can also
hold references to other tables, which opens the door to endless possibilities. Most obviously, this
lets you simulate multi-dimensional arrays, like so:

MultiTable = {};
MultiTable [ 0 ] = { "ABC", "DEF", "GHI" };
MultiTable [ 1 ] = { "JKL", "MNO", "PQR" };
MultiTable [ 2 ] = { "STU", "VWX", "YZ" };
print ( MultiTable [ 0 ][ 1 ] );
print ( MultiTable [ 1 ][ 2 ] );
print ( MultiTable [ 2 ][ 3 ] );
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Which will output the following:

ABC
MNO
YZ

It’s important to know exactly how things are
working under the hood when working with
tables that contain tables, however. When
working with Lua, don’t think of tables as 
values, but rather as references. Any time you
access a table index or assign a table to
another table index, you’re actually dealing
with the references Lua maintains for these
tables, not the values themselves. For example, the output of the following code snippet could
represent some serious logic errors if you aren’t aware of what’s happening:

X = {};                          -- Declare a table
X [ 0 ] = 16;                    -- Give it three indexes
X [ 1 ] = 32;
X [ 2 ] = 64;
print ( "X: ", X [ 1 ] );        -- Print out index 1
Y = {};                          -- Declare a new table
Y [ 0 ] = X;                     -- Give it one index, containing X
Y [ 0 ][ 1 ] = "String";         -- Set the index 1 of index 0 to a string
print ( "Y: ", Y [ 0 ][ 1 ] );   -- Print out index 1 of index 0 of Y
print ( "X: ", X [ 1 ] );        -- Print out index 1 of X

As you can see, the assigning of X to Y [ 0 ] didn’t copy the X table and all of its values. Rather, Y
[ 0 ] was simply given a reference to X, which means that any subsequent changes made to the
table located at Y [ 0 ] will also affect X, as can be seen in the output. This is a lot like pointers in
C, but I’ll keep the pointer analogies to a minium because this topic can be confusing enough as
it is. Refer to Figure 6.8 for an illustration

Moving on, the next major aspect of Lua tables to discuss is their associative nature. In other
words, instead of being forced to use integer indexes to index your array, you can use values of
any type. In this regard, tables work on the principal of key : value pairs, which let you associate
values with other values, called keys, for more intuitive indexing. Consider the following example:

Enemy = {};
Enemy [ "Name" ] = "Security Droid";
Enemy [ "HP" ] = 200;

LUA (AND BASIC SCRIPTING CONCEPTS)
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from 0 to 2, each of the other three-index
tables that were directly initialized at
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Lua’s style in mind. Forgetting this detail
can lead to some nasty logic errors.
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Enemy [ "Weapon" ] = "Pulse Cannon";
Enemy [ "Sprite" ] = "../gfx/enemies/security_droid.bmp";
print ( "Enemy Profile:" );
print ( "\n  Type:", Enemy [ "Name" ],

"\n    HP:", Enemy [ "HP" ],
"\nWeapon:", Enemy [ "Weapon" ] );

Which will print out the following:

Enemy Profile:

Type: Security Droid
HP: 200

Weapon: Pulse Cannon

As you can see, each of table’s elements was indexed with strings as opposed to numbers. To use
the previous terminology, "Name", "HP", "Weapon", and "Sprite" were the table’s keys. The keys were
associated with values, which appeared on the right side of the assignment operator. For instance,
"Name" was the key to the value "Security Droid". This example also introduced you to the \n
escape code for newlines, which functions just as it does in C. You’ll see the rest of Lua’s escape
codes later.

Any literal data type can be used as a key, so integers, floating-point values, and of course strings,
are all valid. Lua also provides an extra notational convenience for instances where the string key
is also a valid identifier. For example, consider the following rewrite of the previous example:

Enemy = {};
Enemy.Name = "Security Droid";
Enemy.HP = 200;
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Enemy.Weapon = "Pulse Cannon";
Enemy.Sprite = "../gfx/enemies/security_droid.bmp";
print ( "Enemy Profile:" );
print ( "\n  Type:", Enemy.Name,

"\n    HP:", Enemy.HP,
"\nWeapon:", Enemy.Weapon );

As you can see, the string keys are now being used as if they were fields of a struct-like structure.
In this case, that’s exactly what they are. Lua automatically adds these identifiers to the table,
allowing them to be accessed in this way. This technique is completely interchangeable with
string keys, so the following code:

Table = {};
Table.X = 16;
Table [ "Y" ] = 32;
print ( Table [ "X" ], Table.Y );

will output:

16    32

as if everything was declared using the same method. Internally, Lua doesn’t care, so Table [ "Key" ]
is always equivalent to Table.Key, provided that "Key" is a string containing a valid identifier.

Advanced String Features
You’ve seen how basic string syntax works in Lua, but there are a few slightly more advanced top-
ics worth covering before moving on. The first is escape sequences, which are special character
codes preceded by a backslash (\) and direct the compiler to replace certain parts of the string
before compilation instead of taking them literally. As an example of when escape sequences are
necessary, imagine wanting to use a double quote in a string, such as in the following example:

Quote = ""Welcome to the real world", she said to me, condescendingly.";

The problem is that the compiler will think the string ends immediately after the second double
quote (which is really just supposed to denote the beginning of the quotation), which is in reality
the first character in the string. Everything following this will be considered erroneous. Escape
sequences help you alleviate this problem by giving the compiler a heads-up that certain quotes
are not meant to begin or end the string, but are just characters within a larger string. The escape
sequence \" (backslash-double quote) is used to do just this. With escape sequences, you can
rewrite the previous line and compile it without problems:

Quote = "\"Welcome to the real world\", she said to me, condescendingly.";

LUA (AND BASIC SCRIPTING CONCEPTS)



198

There are a number of escape sequences supported by Lua in addition to the previous one, but
most are related to text formatting and are therefore not particularly useful when scripting
games. However, I personally find the following useful: \\ (Backslash), \' (Single Quote), and
\XXX, where XXX is a three-digit decimal value that corresponds to the ASCII code of the character
that should replace the escape sequence.

Using the \" escape sequence can be a pain, however, when dealing with strings that contain a lot
of double quotes. Because this is a possibility when scripting games (because many scripts will
contain heavy amounts of dialog that possibly require double quotes), you may want to avoid the
problem altogether by using single-quotes to enclose your strings, which Lua also supports. For
example, consider the following:

PrintQuote ( 'You run into the room. "No!" you scream, as you notice your gun is
missing.' );

The previous string is equivalent to the following line, but easier to write (and more readable):

PrintQuote ( "You run into the room. \"No!\" you scream, as you notice your gun is
missing." );

Of course, if for some reason you need to use a large number of single quotes, you can just stick
to the double-quoted string.

Lastly, Lua supports a third method of enclosing strings that is by far the most powerful.
Enclosing your string with double brackets, such as the following line, allows you to insert physi-
cal line breaks directly into the string value without causing a compile-time error:

MyString = [[This is a
multi-line
string.]];
print ( MyString );

This will produce the following output:

This is a
multi-line
string.

Expressions
Expressions in Lua are a bit more like Pascal than they are like C, in that they offer a more limit-
ed set of operators and use text mnemonics for certain operators instead of symbols. Lua’s many
operators are organized in Tables 6.1 through 6.3.
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Table 6.1  Lua Arithmetic Operators
Operator Function

+ Add

- Subtract

* Multiply

/ Divide

^ Exponent

- Unary negation

.. Concatenate (strings)

Table 6.2  Lua Relational Operators
Operator Function

== Equal

~= Not equal

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

Table 6.3  Lua Logical Operators
Operator Function

and And

or Or

not Not
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Major differences from C worth noting are as follows: the != (Not Equal) operator is replaced
with the equivalent ~= operator, and the logical operators are now mnemonics instead of symbols
(and instead of &&). These are important to remember, as it’s easy to forget details like this and
have a “C lapse”. :)

Conditional Logic
Now that you have a handle on statements, expressions, and values, you can start structuring that
code with conditional logic. Like C and indeed most high-level languages, Lua uses the tried-and-
true if statement, although its syntax is most similar to BASIC:

if <Expression> then
Block;

elseif <Expression> then
Block;

end

Unlike C, the expression does not have to be enclosed in parentheses, but you can certainly add
them if you want. Expressions can contain parentheses even when they aren’t necessary. Here’s
an example of using if:

X = 16;
Y = 32;
if X > Y then

print ( "X is greater." );
else

print ( "Y is greater." );
end

Lua does not support an analog to C’s switch construct, so you can instead use a series of elseif
clauses to simulate this (and indeed, this is done in C at times as well). For example, imagine you
have a variable called Item that keeps track of an item the player is carrying and implements its
behavior when used. Normally one might use a switch to handle each possible value, but you
have to use an if-elseif-else chain instead.

if Item == "Sword" then
-- Handle sword behavior

elseif Item == "Morning Star" then
-- Handle morning star behavior

elseif Item == "Nunchaku" then
-- Handle nunchaku behavior
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else
-- Unknown item

end

As you can see, the final else clause mimics C’s default case for switch blocks. As a gentle
reminder, remember that the logical operators in Lua follow a different syntax from C:

X = 1;
Y = nil;
if X ~= Y then

print ( "X does not equal Y." );
end
if X and Y then

print ( "Both X and Y are true." );
end
if X or Y then

print ( "Either X or Y is true." );
end
if not ( X or Y ) then

print ( "Neither X nor Y is true." );
end

Iteration
The last control structures to consider when discussing Lua are its iterative structures (in other
words, its loops). Lua supports a number of familiar loop types: while, for, and repeat. while and
for should make C programmers feel at home, and Pascal users will appreciate the inclusion of
repeat. All of the structures have a fairly predictable syntax, so take a look at all of them:

while <Expression> do
-- Block

end

for <Index> = <Start>, <Stop>, <Step> do
-- Block

end

repeat
-- Block

until <expression>
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That should all look pretty reasonable, although the exact syntax of the for loop might be a bit
confusing. Unlike C, which allows you to use entire statements (or even multiple statements) to
define the loop’s starting condition, stopping condition, and iterator, Lua allows only simple
numeric values (in this regard, it’s a lot like BASIC). The step value is also optional, and omitting
it will cause the loop to default to a step of 1. Take a look at some examples:

for X = 0, 3 do
print ( "Iteration:", X );

end

This code will produce:

Iteration:   0
Iteration:   1
Iteration:   2
Iteration:   3

As you can see, the step value was left out and the loop counting from 0 to 3 in steps of 1. Here’s
an example with the step included:

for X = 0, 7, 2 do
print ( "Iteration:", X );

end

It produces:

Iteration:   0
Iteration:   2
Iteration:   4
Iteration:   6

Before moving on, I should mention an alternative form of the for loop that you might find use-
ful. This version is specifically designed for traversing tables, and looks like this:

for <Key>, <Value> in <Table> do
-- Block

end

This form of the loop traverses through each key : value pair of Table, and sets Key and Value
appropriately at each iteration. Key and Value can then be accessed within the loop. For example:

MyTable = {};
MyTable [ "Key0" ] = "Value0";
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MyTable [ "Key1" ] = "Value1";
MyTable [ "Key2" ] = "Value2";
for MyKey, MyValue in MyTable do

print ( MyKey, MyValue );
end

produces the following output:

Key0   Value0
Key2   Value2
Key1   Value1

Functions
Functions in Lua follow a pattern similar to that of most languages, in that they’re defined with
an initial declaration line, containing an identifier and a parameter list, followed by a code block
that implements the function. Here’s an example of a simple function that adds two numbers
and returns the sum:

function Add ( X, Y )
return X + Y;

end
print ( Add ( 16, 32 ) );

The output, of course, is 48. The only real nuance regarding functions is that unlike most lan-
guages, all variables referenced or created in a function are in the global scope by default. So, for
example, imagine changing the previous code so that it looks like this:

function Add ( X, Y )
return X + Y;

end
Add ( 16, 32 );
print ( GlobalVar );

Now, instead of printing the return value of the Add () function, you print the uninitialized
GlobalVar. Not surprisingly, the output is simply nil. However, when you add another line:

function Add ( X, Y )
GlobalVar = X + Y;

end
Add ( 16, 32 );
print ( GlobalVar );

LUA (AND BASIC SCRIPTING CONCEPTS)

NOTE
Notice that in the first example for the table-
traversing form of the for loop, the values
seem to have been printed out of order.The
key : value pair "Key2",“Value2" came before
"Key1",“Value1".This is because associative
arrays don’t have the same numeric order
that integer-indexed tables do, so the order
at which elements are added is not necessari-
ly the element in which they are stored.
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You once again get the proper output of 48. This is because GlobalVar is automatically created in
the global scope, and therefore is visible even after Add () returns. To suppress this and create
local variables, the local keyword is used. So, if you simply add one instance of local to the previ-
ous example:

function Add ( X, Y )
local GlobalVar = X + Y;

end
Add ( 16, 32 );
print ( GlobalVar );

The output of the script is once again nil, as it would be in most other languages. This is because
GlobalVar is created only within the Add () function’s scope (so you should probably consider
renaming it “LocalVar”), and is therefore invisible once it returns.

The last thing to mention about functions is that they too can be assigned to variables and even
table elements. Imagine two variables called Add () and Sub (), which each perform their respec-
tive arithmetic operation:

function Add ( X, Y )
return X + Y;

end

function Sub ( X, Y )
return X - Y;

end

You could assign either of these functions to a variable called MathOp, like this:

MathOp = Add;

And could then call the Add () function indirectly by “calling” MathOp instead:

print ( MathOp ( 16, 32 ) );

The output will be 48. The interesting thing, however, is what happens when all you change is the
function that you assign to MathOp:

MathOp = Sub;
print ( MathOp ( 16, 32 ) );

Because MathOp now refers to the Sub () function, your output will be -16. As mentioned previous-
ly, this capability to “assign” functions to variables is like a somewhat simplified version of C’s
function pointers. Use it wisely, my friend.

6. INTEGRATION: USING EXISTING SCRIPTING SYSTEMS
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One last detail; because functions can be assigned to table elements, you can take advantage of
the same notational shorthands. For example:

function PrintHello ()
print ( "Hello, World!" );

end
MyTable = {};
MyTable [ "Greeting" ] = PrintHello;

At this point, the "Greeting" element of
MyTable contains a reference to PrintHello
(), which can now be called in two ways:

MyTable [ "Greeting" ] ();
MyTable.Greeting ();

Both are valid and considered equivalent as
far as Lua is concerned, but I personally
prefer the latter version because it looks
more natural.

Integrating Lua with C
Now that you understand the Lua language enough to get around, it’s time for the real fun to
begin. In a moment, you’ll return to the bouncing alien head demo and recode the majority of
its core logic with Lua as an example of true script integration. But before you go that far, you
need to first get your feet wet by getting Lua to run inside and interact with a simple console
application to make sure you understand the basics.

The first goal is decidedly simple; write one or two basic scripts, load them in a simple console
application, and print some basic output to the screen that illustrates the interactions between
the C program and Lua.

Specifically, this program illustrates the following techniques:

■ Loading Lua script files and executing them.
■ Exporting a C function so that it can be called from Lua scripts.
■ Importing Lua functions from scripts so that they can be called from C.
■ Passing parameters and returning values in a number of data types to and from both C

and Lua.
■ Reading and writing global variables in Lua scripts.

LUA (AND BASIC SCRIPTING CONCEPTS)

NOTE
Again, if you’re anything like me, a gear or
two may have started to turn when you
saw the last example.“Functions? Stored
in tables and accessible just like methods
in a class? Hmmmm…” Yes, my friends,
this is a small part of the puzzle of how
Lua can emulate object-orientation. I
won’t be covering that in this book, but it’s
certainly an interesting topic to investi-
gate. See if you can figure out the rest!
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Compiling a Lua Project
Understanding how to compile a Lua project is the first and most important thing to understand
for obvious reasons. Not surprisingly, the first step is to include lua.h in your main source file and
make sure the compiler knows where to find the lua.lib library.

In the case of Microsoft Visual C++ users, this is a simple matter of selecting Options under the
Tools menu and activating the Directories tab. Once there, set the Show Directories For pop-up
menu to Include Files. Click the new directory button (the document icon with the sparkle in the
upper-left corner) and enter the path to your Lua installation folder (which should contain
lua.h). Next, set the Show Directories For pop-up to Library Files and repeat what you did for the
include files (as long as that same directory also includes lua.lib). Figure 6.9 shows the Options
dialog box.
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The Visual C++

Options dialog box.

Once these settings are complete, make sure to physically include lua.lib in your project. I like
to put mine under a Libraries folder within the project.

Including the header file is simple enough, but there is one snag. Lua is a pure-C library. That
may not mean much these days, when popular compilers pretty much blur the difference
between C and C++ programs, but unless you’re using a pure C programming environment, your
linker will have some issues with it if you don’t explicitly mention this fact. So, make sure to
include lua.h like this:

extern "C"
{

#include <lua.h>
}
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Remember, this will work only if you properly set your path as described previously.
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NOTE
In case you’re not familiar with it, extern is a directive that informs the
linker that the identifiers (namely functions) defined within its braces
follow the conventions of another language and should be treated as
such. In this case, because most people are using the C++ linker that
ships with Microsoft Visual C++, you need to make sure it’s prepared
for a C library that uses slightly different conventions when declaring
functions and the like.

Initializing Lua
Lua works on the concept of states. A Lua state is essentially a structure that contains information
regarding a specific instance of the runtime environment. Each state can contain one script at
any time, which is loaded into memory for use. To load and execute multiple scripts concurrent-
ly, one needs only to initialize multiple states.

Think about states in the same way you’d think about two instances of the same program in
memory. Imagine starting Photoshop (if you don’t own Photoshop, imagine owning it as well).
Now imagine loading Photoshop again, thus creating two instances of the program at once. Each
instance exists in its own “space,” and is unrelated to and unaffected by the other. You can open a
photo of your dog in one instance, and while doing post-production work on a 3D rendering in
the other. Both instances of Photoshop, although essentially the same program with the same
functionality, are doing different things at the same time without any knowledge of each other.

From the perspective of the host application, a Lua state is simply a pointer to lua_State struc-
ture. Once you’ve declared such a pointer, you can call lua_open () to intialize the state. The only
parameter required by lua_open () is the stack size that this particu-
lar state will require. Don’t worry too much about this; stack size
will really only affect the state’s ability to handle excessive nesting
of function calls, so unless you’re going to be hip deep in recursive
algorithms, just set it to something like 1024 and forget about it
(even this is overkill, but memory is cheap these days so go nuts!).
In the relatively unlikely event that you run into stack-overflow
errors, just increase it. Here’s an example:

lua_State * pLuaState = lua_open ( 1024 );

NOTE
You can also pass
zero to lua_open (),
which will cause the
stack size to default
to 1024 elements.
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This example creates a new state called pLuaState that refers to an instance of the runtime envi-
ronment with a stack of 1024 elements. This state is now valid, and is capable of loading and exe-
cuting scripts.

Of course, no initialization function is complete without its corresponding shut down function.
Once you’re done with your Lua state, be sure to close it with lua_close:

lua_close ( lua_State * pLuaState );

Loading Scripts
Loading scripts is just as easy as initializing the Lua state. All that’s necessary is calling lua_dofile
() and passing it the appropriate filename of the script, as well as the state pointer you just initial-
ized. lua_dofile () has the following signature:

int lua_dofile ( lua_state * pLuaState, const char * pstrFilename );

To execute a script stored in the file "my_script.lua", you enter the following:

iErrorCode = lua_dofile ( pLuaState, "my_script.lua" );

The pLuaState instance of the runtime environment will now load, verify, and immediately exe-
cute the file. Keep in mind that lua_dofile () will load both compiled and uncompiled scripts
transparently; you can pass it either type of file and it will automatically detect and handle it
properly. However, because uncompiled scripts will need to be compiled before they can be 
executed, they will take slightly longer to load. Also, uncompiled scripts are not necessarily valid
and may contain syntactic or semantic errors that a compiler would normally not allow. In this
case, the call to lua_dofile () will not succeed, so let’s discuss its potential error codes. Refer to
Table 6.4 for a complete listing.

Once the script is loaded, it is immediately execut-
ed. This isn’t always what you want; many times,
you’ll want to load a script ahead of time and exe-
cute it later, or even better, execute different parts
of it at different times. I’ll cover this in a moment.
For now, let’s just focus on simply loading and run-
ning scripts.

You can load scripts, but how will you actually
know if they’re doing anything? You don’t have
any way to print text from the Lua script to your
console application, so even if the script works, 
you have no way to observe it. This means that
even before you write and execute a Lua script,
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NOTE
As you can see, the only shred of
compile-time error information
lua_dofile () will give you is
LUA_ERRSYNTAX, which is pretty
much one step above nothing at
all. Let this be another example of
how useful the luac compiler is,
which gives you a rundown of com-
pile-time errors in detail before-
hand. Don’t be lazy! Use it!
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you have to learn how to call C functions from Lua. Once you can do this, you just wrap a func-
tion that wraps printf () or something along those lines, and you can print the output of your
scripts to the console and actually watch it run.

As such, pretty much everything following this point deals with how Lua and C are integrated,
starting with the all-important Lua stack.

The Lua Stack
Lua communicates with C primarily through a stack structure that can be used to pass everything
from the values of global variables to function references to parameters to return values. Lua uses
this stack internally for a number of tasks, but all you care about is how you can use it to talk to
Lua scripts and interpret their responses.

Let’s first take a look at some of the generic stack-manipulation functions and macros that Lua
provides. It might not make total sense just yet as to how these are used or why, but rest assured it
will all make sense soon. You should come to understand the basics of these functions before
learning how to apply them.

Much like tables, Lua stacks are indexed starting from 1. This is important to know because the
stack does not have to be accessed in a typical stack fashion at all times. The traditional “push-
and-pop” stack interface is always available, but you can refer to specific elements of the stack
much like you do an array when necessary.

LUA (AND BASIC SCRIPTING CONCEPTS)

Table 6.4  lua_dofile () Error Codes
Code Description

0 Success.

LUA_ERRRUN An error occurred while running the script.

LUA_ERRSYNTAX A syntax error was encountered while pre-compiling the script.

LUA_ERRMEM The required memory could not be allocated.

LUA_ERRERR An error occurred with the error alert mechanism. Kind of
embarrassing, huh?. :)

LUA_ERRFILE An error occurred while attempting to open or read from the file.
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At any time, the index of the stack’s top element will be equal to stack’s overall size. This is
because Lua indexes the stack starting from 1; therefore, a stack of one element can be indexed
from 1-1, a stack of 16 elements can be indexed from 1-16, and so on. This is a stark contrast
from C and most other languages, in which arrays and other aggregate structures begin indexing
from 0. In these cases, the “top” or “last” element in the structure is always equal to the size minus
one. Figure 6.10 shows you the Lua stack visually.
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The Lua stack.

A program’s stack is a turbulent data structure; as functions are called and expressions are evalu-
ated, it grows and shrinks in an erratic pattern. Because of this, stacks are usually accessed in rela-
tive terms. For example, when a given function is active, it usually works with its own local portion
of the stack, the offset of which is usually passed by the runtime environment.

In the case of Lua, you’ll generally be accessing the stack to do one of two things: to write a C
function that your scripts can call, or to access your script’s global variables. In both cases, the
Lua stack will be presented to your program such that the indexes begin at 1. In essence, Lua
“protects” the rest of the stack that your program isn’t accessing, much like memory-protected
operating systems like Windows and Linux protect the memory of your computer from a pro-
gram if it lies outside of its address space. This makes your job a lot easier, because you can always
pretend your chunk of the stack begins at 1. Take a look at Figure 6.11, which illustrates this.
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So to sum things up, Lua will virtually always appear to portray an empty stack starting from 1
when you attempt to access it from C. That being said, let’s look at the functions that actually pro-
vide the stack interface. Lua features a rich collection of stack-related functions, but the majority
of them won’t be particularly useful for your purpose and as such, I’ll be focusing only on the
major ones.

First off, there’s lua_gettop (), which gives you the index of the top of the stack:

int lua_gettop ( lua_State * pLuaState );

As you learned when you took a look at lua_open (), each Lua state has its own stack size, and
thus, its own stack. This means all stack functions (as well as the rest of Lua’s functions for that
matter) require a pointer to a specific state. Getting back to the topic at hand, this function will
return the index of the top element int. As you learned, this is also equal to the size of the stack.

Up next is lua_stackspace (), which returns the number of stack elements still available in the
stack. So, if the stack size is 1024, and 24 bytes have been used at the time this function is called,
1000 will be returned. This function is especially important because the host application, not Lua,
is responsible for preventing stack overflow. In other words, if your program is rampantly pushing
value after value onto the stack, you run the risk of an overflow error because Lua won’t stop or
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even alert you until it’s too late. lua_stackspace () should be used in any case where large num-
bers of values will be pushed onto the stack, especially when the pushing will be done inside
loops, which are especially prone to overflow errors.

The next set of functions you will read about is one of the most important. It provides the classic
push/pop interface that stacks are usually associated with. Despite the fact that Lua is typeless, C
and C++ certainly aren’t, and as such you’ll need a number of functions for pushing different
data types:

void lua_pushnumber ( lua_State * pLuaState, double dValue );
void lua_pushstring ( lua_State * pLuaState, char * pstrValue );
void lua_pushnil ( lua_State * pLuaState );

These are three of Lua’s lua_push* () functions, but they’re the only ones you really have a need
for (the rest deal with more obscure, Lua-oriented data types). lua_pushnumber () accepts a dou-
ble-precision float value, which is a superset of all numeric data types Lua supports (integers, sin-
gle- and double-precision floating-point). This means that both ints and floats need to be passed
with this function as well. Next is lua_pushstring (), which predictably accepts a single char * that
points to a typical null-terminated string. The last function worth mentioning is lua_pushnil (),
which doesn’t require any value, as it simply pushes Lua’s nil value onto the stack (which, if you
remember, is conceptually similar to C’s NULL, except that it’s not equal to zero).

Popping values off the stack is a somewhat different story. Rather than provide a collection of
lua_pop* () functions to match the push functions, Lua simply provides a single macro called
lua_pop (), which looks like this:

lua_pop ( lua_State * pLuaState, int iElementCount );

This macro does nothing more than pops iElementCount elements off the stack. They don’t actual-
ly go anywhere when you pop them, so this function can only be used to remove the values, not
extract them. To actually receive the values and store them in C variables, you must use one of
the following functions before calling lua_pop ():

double lua_tonumber ( lua_State * pLuaState, int iIndex );
const char * lua_tostring ( lua_State * pLuaState, int iIndex );

Again, the functions should be pretty easy to understand just by looking at them. Give either
function an index into the stack, and it will return its value (but will not pop or remove that
value). In the case of numeric values, you’ll always receive a double (whether you want an integer
or not), and in the case of strings, you’ll of course be returned a char pointer. Because neither of
these functions actually removes the value after returning them, I’ll just reiterate that you need to
use lua_pop () afterwards if you actually want the value taken off the stack afterwards. Otherwise,
these functions can be used to read from anywhere in Lua’s stack. To reliably read from the top
of the stack every time with these functions, remember to use lua_gettop () to provide the index.
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Actually, because Lua doesn’t provide a particularly convenient way to directly pop a value off the
stack in the traditional context of the stack interface, let’s write some macros to do it now. Using
the existing Lua functions, you have to do three things in order to simulate a stack pop:

■ Get the index of the stack’s top element using lua_gettop ().
■ Use one of the lua_to* () functions to convert the element at the index returned in the

first step to a C variable.
■ Use lua_pop () to pop a single element off the top of the stack.

Because this would be a fairly bulky chunk of code to slap into your program every time you want
to do this, a nice little macro that wraps this all up into a single call would be great. Here’s one
that will pop integers off the stack in one fell swoop:

#define PopLuaInt( pLuaState, iDest ) \
{                                    \

iDest = ( int ) lua_tonumber ( pLuaState, lua_gettop
( pLuaState ) ); \

lua_pop ( pLuaState, 1 ); \
}

Just pass the macro a valid Lua state and an integer and it will be filled with the proper value.
Here’s a small code example (assume that pLuaState has already been created with lua_open ()):

int X, Y;
X = 0;
Y = 32;
lua_pushnumber ( pLuaState, Y );
printf ( "X: %d, Y: %d\n", X, Y );
PopLuaInt ( pLuaState, X );
printf ( "X: %d, Y: %d\n", X, Y );

The output will be:

X: 0, Y: 32
X: 32, Y: 32

Try writing similar versions of the macro for floating-point numerics and strings. Be the first kid
on your block to collect all three!

So at this point, you can do some basic querying of stack information, and you can push and pop
stack values of any data type, as well as perform random access to arbitrary stack indexes (thereby
treating it like an array). That’s pretty much everything you’ll need, but there are a few remain-
ing stack issues to discuss.

First of all, because you now have the ability to read from anywhere in the stack, you should read
a bit more about what a valid stack index is. Remember that the Lua stack always starts from 1.

LUA (AND BASIC SCRIPTING CONCEPTS)
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Because of this, 0 is never a valid index (unlike tables) and should not be used. Past that, valid
indexes run from 1 to the size of the stack. So, if you have a stack of four elements, 1, 2, 3, and 4
are all valid indexes.

One interesting facet of Lua stack access, however, is using a negative number. At first this may
seem strange, but using a negative has the effect of accessing the stack “in reverse,” so to speak.
Index 1 always points to the bottom of the stack, whereas -1 always points to the top. Going back
to the example of a four-element stack, consider the following. If index 1 points to the bottom, so
does index -4. If index 4 points to the top, so does -1. The same goes for the other elements: ele-
ment 2 can be indexed with either 2 or -3, whereas element 3 can be accessed with either 3 or -2.
Basically, you can always access the stack either relative to the top or relative to the bottom,
depending on which is most convenient. Figure 6.12 helps illustrate this concept.

Lastly, let’s take a look at a few extra functions Lua provides for determining the type of a given
stack element without removing or copying it into a variable first.

void lua_type ( lua_State * pLuaState, int iIndex );
void lua_isnil ( lua_State * pLuaState, int iIndex );
void lua_isnumber ( lua_State * pLuaState, int iIndex );
void lua_isstring ( lua_State * pLuaState, int iIndex );
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The first function, lua_type (), returns one of a number of constants referring to the type of the
element at the given index. These constants are shown with a description of their meanings in
Table 6.5.
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Table 6.5  lua_type () Return Constants
Constant Description

LUA_TNIL nil

LUA_TNUMBER Numeric: int, long, float, or double.

LUA_TSTRING String

LUA_TNONE Returned when the specified index is invalid. Nice job, slick!

The other lua_is* () functions work in the same way, but simply return 1 (true) or 0 (false) if
the specified index is compatible with the given type. So for example, calling lua_isnumber (
pLuaState, 8 ), will return 1 if the element at index 8 is numeric, and 0 otherwise. As you’ll learn
later in this section, Lua passes parameters to C functions on the stack; when writing a C function
that Lua can call, these functions can be useful when attempting to determine whether the
parameters passed are of the proper types.

Exporting C Functions to Lua
The process of making a function of the host application callable from Lua (or any scripting sys-
tem, for that matter) is called exporting. To export a function from C to Lua, you simply need to
pass a function pointer to the Lua runtime environment, as well as a string containing a name
the function should be known by inside the scripts. Lua provides a simple function for this (actu-
ally, it’s a macro), as follows:

lua_register ( lua_State * pLuaState, const char *
pstrFuncName, lua_CFunction pFunc );

Given a function name string, the actual function pointer (I’ll cover the lua_CFunction structure
in a second) and the specific Lua state to which this function should be exported, lua_register
(), will register the function, which allows scripts to refer to it just like any other function. For
example, the following script is considered valid if a C function called CFunc () is exported to the
state in which it runs:
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function MyFunc0 ( X, Y )
-- ...

end
function MyFunc1 ( Z )

-- ...
end
MyFunc0 ( 16, 32 );
MyFunc1 ( "String Parameter" );
CFunc ( 2, 4.8, "String Parameter" );

Of course, if CFunc () is not exported, this will produce a runtime error. Notice, however, that the
syntax for calling the C function is identical to any other Lua function, including parameter pass-
ing. Speaking of parameters, one detail to remember is that exported C functions do not have
well-defined signatures. You can pass any number of parameters of any primitive data type and
Lua won’t complain. It’s the C function’s responsibility to sort out the incoming parameters.

To get a feel for how this actually works in practice, let’s create that text-printing function dis-
cussed earlier, so your subsequent scripts can communicate with you through the console.

The first step, of course, is to write the function. The first attempt at a printf () wrapper might
look like this:

void PrintString ( char * pstrString )
{

printf ( pstrString );
printf ( "\n" );

}

This simple wrapper does nothing more than pass pstrString to printf () and follow it up with a
newline. This is fine as a general-purpose printf () wrapper, but it’s not going to work with Lua.
Lua requires any C-defined functions to follow a specific function signature, so it can easily main-
tain a list of function pointers. The prototype of a Lua-compatible C function must look like this:

int FuncName ( lua_State * pLuaState );

Not only is this signature quite a bit different than the PrintString () wrapper, it looks like it
would work only for a function that doesn’t require any parameters (aside from the Lua state)
and always returns an integer, doesn’t it? The reason all functions can follow this same format is
because parameters from Lua and return values to Lua are not handled in the same way as they
are in C. Both incoming parameters and outgoing results are pushed onto the Lua stack.

Because all incoming parameters are on the stack, you can use Lua’s stack interface functions to
read them. Remember, at the time your function is called, Lua will make it seem as if the stack is
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currently empty (whether it is or not), so all of your stack accessing will be relative to element
index 1. At the beginning of your C function, the stack will be entirely empty except for any
parameters that the Lua caller may have passed. Because of this, the size of the stack is always syn-
onymous with the number of parameters the caller passed, and thus, you can use lua_gettop ().

Once you know how many parameters have been passed, you can read them using Lua’s lua_to*
() functions, although you’ll need to know what data type you’re looking for ahead of time. So, if
you wrote a function whose parameter list looked like this:

( integer X, float Y, string Z )

You could read these three parameters like this:

int X = ( int ) lua_tonumber ( pLuaState, 1 );
float Y = lua_tonumber ( pLuaState, 2 );
char * Z = lua_tostring ( pLuaState, 3 );

Notice that parameter X was at index 1, Y was at index 2, and Z was at index 3. Lua always pushes
its parameters onto the stack in the order they’re passed.

Values can be returned in the opposite manner, by
pushing them onto the stack before the C function
returns. Like passed parameters, return values are
pushed onto the stack in the order in which they
should be received. Remember, Lua supports mul-
tiple assignment and thus multiple return values
from functions. If this hypothetical function were
to return three more numeric values, the code
would look something like this:

lua_pushnumber ( pLuaState, 16 );
lua_pushnumber ( pLuaState, 32 );
lua_pushnumber ( pLuaState, 64 );
return 3;

Notice that the function returns an integer value corresponding to the number of result values
the function should return to Lua (3 in this case). This is very important, as it helps Lua clean up
the stack properly afterwards, and can lead to stack corruption errors if this number is not cor-
rect. Let’s imagine this C function is exported under the name CFunc (). If it’s called from Lua in
order to return three values, the variables in the following code:

U, V, W = CFunc ( X, Y, Z );

would be filled in the same order you pushed the values. So, U would be set to 16, V to 32, and W
to 64.
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TIP
Remember, you can always use the
lua_is* () functions to validate the
data type of the passed parameters.
This is especially important because
Lua won’t force the caller of a host
API function to follow a specific
prototype, and you have no other
way of knowing for sure that the
passed parameters are valid.
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So you’re now capable of registering a C function with Lua, as well as receiving parameters and
returning results. That’s pretty much everything you need, so let’s have a go at implementing that
printf () wrapper mentioned earlier. I’ll just show you the code up front and I’ll dissect it after-
wards:

int PrintStringList ( lua_State * pLuaState )
{

// Get the number of strings
int iStringCount = lua_gettop ( pLuaState );
// Loop through each string and print it, followed by a newline
for ( int iCurrStringIndex = 1; iCurrStringIndex <=

iStringCount; ++ iCurrStringIndex )
{

// First make sure that the current parameter on the
// stack is a string
if ( ! lua_isstring ( pLuaState, 1 ) )
{

// If not, print an error
lua_error ( pLuaState, "Invalid string." );

}
else
{

// Otherwise, print a tab, the string, and finally a newline
printf ( "\t" );
printf ( lua_tostring ( pLuaState, iCurrStringIndex ) );
printf ( "\n" );
}

}
// Return zero, as this function does not return any results
return 0;

}

As you can see the function is now called PrintStringList () and accepts a variable number of
string parameters, which are then printed, indented by one tab, and followed by a newline. The
function starts with a call to lua_gettop (), which, as you remember, can be used to get the num-
ber of parameters when writing host API functions. This value is put in iStringCount, and a for
loop begins in which each string is read from the stack and then printed to the screen.
lua_isstring () is used to validate each string. If the parameter is of a non-string type, 
lua_error () is called. You haven’t seen this function before, so I’ll take a moment to explain it.
Designed for use in console applications, lua_error () accepts a Lua state and a string parameter
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and halts the current script just before printing the supplied message. Here’s the prototype, just
for reference:

void lua_error ( lua_State * pLuaState, char * pstrMssg );

Getting back on track, the rest of the
loop deals with reading the string
from the stack using lua_tostring
() and printing it to the screen (in
between the tab and newline char-
acters). The function is finished
when the loop ends, and it returns
0 because there were no results to
be returned to the Lua caller.
Notice also that the parameters
passed on the stack are not
popped off by the function; this is
handled automatically by the Lua
runtime environment.

Executing Lua Scripts
Now that you have your PrintStringList () written and exported, you’re ready to write your first
Lua script and watch it execute from within your C host. This first script will be decidedly simple;
all you need to do right now is print out a few strings to make sure everything is working right.
Once you know you have set everything up correctly, you can accomplish more complex tasks.

This first script will pretty much just do some variable assignment and pass some strings to
PrintStringList () to display the results. Let’s check it out:

-- Create a full name string
FirstName = "Alex";
LastName = "Varanese";
FullName = "Name: " .. FirstName .. " " .. LastName;

-- Now put the floating point value of pi into a string
Pi = 3.14159;
PiString = "Pi: " .. Pi;       -- Numeric values can be automatically coerced to
strings

-- Test some logic
X = 0;                         -- Try setting this to nil instead of zero

LUA (AND BASIC SCRIPTING CONCEPTS)

NOTE
When writing host API functions, it helps to be
aware that Lua will always ensure that there is at
least a minimum number of stack elements avail-
able.This number is stored in the lua.h constant
LUA_MINSTACK (which is set to 16, by default).This
means that no matter what, your function will
always have at least LUA_MINSTACK stack elements
to work with, although it’s always good practice to
make sure of this with lua_stackspace ().
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if X then
Logic = "X is true.";   -- Remember, only nil is considered false in Lua

else
Logic = "X is false.";

end

-- Now call your exported C function for printing the strings
PrintStringList ( "Random Strings:", "" ); -- The extra empty

-- string is just to
-- create a blank line

PrintStringList ( FullName, PiString, Logic );

The first part of the script, called test_0.lua, creates two string variables, FirstName and LastName,
and uses the .. string concatenation operator to combine them into FullName. The next part uses
a floating-point value to create a string containing the first few digits of pi. Notice that Lua auto-
matically casts, or coerces, the floating-point value into a valid string. Next, you create the last
string, Logic, by setting it to one of two different values depending on whether the variable X eval-
uates to true. This illustrates Lua’s definition of truth as any non-nil value.

Lastly, with all three strings ready (FullName, PiString, and Logic), you make two calls to
PrintStringList () to display them on the console provided by the host C program. Once again,
note that the syntax for calling the exported C function was typical Lua syntax, which allows your
C functions to blend seamlessly into your Lua-defined functions (even though this script didn’t
have any).

Returning to the C side of things, your host application’s main () function starts with this:

// Initialize a Lua state and set the stack size to 1024
lua_State * pLuaState = lua_open ( 1024 );

// Register your simple function with the Lua state for
// printing text strings
lua_register ( pLuaState, "PrintStringList", PrintStringList );

// Print the title
printf ( "Lua Integration Example\n\n" );

// Execute your first test script, which just prints
// random strings
printf ( "Executing Script test_0.lua:\n\n" );
lua_dofile ( pLuaState, "test_0.lua" );
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All that’s necessary to run this script is to initialize Lua with a call to lua_open (), register the
PrintStringList () function with lua_register (), and finally load and execute the script in one
fell swoop with lua_dofile (). The output of this program will look like this:

Lua Integration Example

Executing Script test_0.lua:

Random Strings:

Name: Alex Varanese
Pi: 3.14159
X is true.

Thanks to PrintStringList (), you can be sure that everything went smoothly because the results
are right there on the console. Now that you have a simple framework built up for executing Lua,
you can try your hand at a more sophisticated example.

Importing Lua Functions
You’re probably not too surprised to learn that the opposite of exporting a function from C is
importing one from Lua. Naturally, importing a function is the process of making that function
callable from C, which means that Lua can not only take advantage of C functions you’ve already
written, but your host application can capitalize on any useful functions you may have written in
your scripts.

The next script will be primarily focused on demonstrating this concept. To begin, you’re going
to write a new script, one that defines two functions. The first function will be called Exponent (),
and, given two parameters X and Y, will return X ^ Y. The second function, MultiplyString (), will
multiply a string, which basically just means repeating a string a specified number of times. In
other words, "Hello" multiplied by four produces the following:

HelloHelloHelloHello

Although these two functions are indeed simple, they prove educational; between the two of
them, they will demonstrate:

■ How a Lua function is called from C.
■ How both numeric and string parameters are passed to a Lua function from a C host.
■ How both numeric and string results can be returned to the C host from Lua functions.

Which is just about everything you need to know about function importing.
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Let’s get this new script started, which is called test_1.lua, with the Exponent () function:

-- Manually computes exponents in the form of X ^ Y
function Exponent ( X, Y )

-- First, let's just print out the parameters
PrintStringList ( "Calculating " .. X ..

" to the power of " .. Y );
-- Now manually compute the result
Exponent = 1;
if Y < 0 then

Exponent = -1;      -- Just return -1
-- for all negative exponents

elseif Y ~= 0 then
for Power = 1, Y do

Exponent = Exponent * X;
end

end
-- Return the final value to C
return Exponent;

end

To make the function more substantial, I’ve chosen to implement the exponent function with a
manual loop that multiplies 1 value by itself Y times. Of course, Lua provides a built-in exponent
operator with ^, so there’ll be no need for you to do this in practice. Regardless, it works by first
setting Exponent to 1 and immediately checking for some alternative cases. The first case is a nega-
tive power; which isn’t supported by the function. Instead, -1 is returned in all such cases. Next,
you check to make sure you aren’t raising X to the power of zero. If so, you only need to return
Exponent as is, because raising anything to zero yields 1. Lastly, you handle a valid exponent with
the loop described previously. The function concludes with the return keyword, which returns the
final exponent value to C.

You’ll notice I start the function with a call to PrintStringList () that prints a brief message. I do
this just to keep some variety going in the C/Lua interaction. Without a simple call to this func-
tion, the script would consist entirely of Lua calls, which doesn’t illustrate real-world scripting
quite as well.

The other function test_1.lua will provide is MultiplyString ():

-- "Multiplies" a string; in other words, repeats a string
-- a number of times
function MultiplyString ( String, Factor )

-- As with the above function, print out the parameters
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PrintStringList ( "Multiplying string \""
.. String .. "\" by " .. Factor );

-- Multiply the string
NewString = "";
for X = 1, Factor do

NewString = NewString .. String;
end
-- Return the multiplied string to C
return NewString;

end

This function is even simpler than Exponent. All it does is create a variable called NewString and
assign it the empty string. NewString will contain the multipled string and is what you’ll return to
C. You then enter a simple for loop which repeatedly appends String to NewString, once again
using the .. operator.

With these two functions saved in
test_1.lua, you can return to your C
host program and add the new code
necessary to test it.

The C side of things will get a little
more complicated than it’s been so far,
but it’s still nothing you can’t handle.
The first thing to understand is that
lua_dofile () will no longer immediate-
ly execute anything when test_1.lua is
loaded. This is because, unlike your pre-
vious script, there isn’t any code in the
global scope. It’s like writing a C pro-
gram without main (). Because all code
resides in functions, the Lua runtime
environment won’t run anything until those functions are called. Because the script never calls
any of these functions, in the global scope, nothing ever executes. lua_dofile () has now effec-
tively become a pure script loader, at least conceptually (it will still attempt to run the script, even
though nothing will happen).

Once the script is in memory, you can freely call any of its functions at will. Lua doesn’t have a
particularly high-level mechanism for calling functions, so you’ll have to do things fairly manually
using the stack. Fortunately, it’s still a pretty straightforward process. Have a look.

LUA (AND BASIC SCRIPTING CONCEPTS)

TIP
Remember, you can always optionally com-
pile your scripts. Generally, it’s easier to skip
the compilation step while you’re initially
coding and debugging them, but once they’re
finished, don’t forget to run them through
luac. lua_dofile () is capable of loading both
compiled and uncompiled scripts, so you
won’t have to change your C host (except to
change the filename to refer to the compiled
version, if it’s different). Recall that compiled
scripts load faster, are less error-prone, and
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In Lua, functions can be thought of as globals, just as much as global variables can be thought of
as globals. This doesn’t mean they’re any more like variables than C functions are, but they can
be referred to this way. The first thing you need to do when calling a function is push a reference
to the function onto the stack. Because functions are simply another global, you can use lua_get-
global () to do the job:

lua_getglobal ( pLuaState, "FuncName" );

Where FuncName is a string value that corresponds to the name of the function within the script.
Once the function reference is on the stack, you need to push its parameters on as well.
Parameters are pushed onto the stack in left-to-right order. If FuncName looks like this:

function FuncName ( IntParam, StringParam )

And we want to essentially call it like this:

FuncName ( 256, "Hello!" );

The parameters would be pushed onto the stack like this:

lua_pushnumber ( pLuaState, 256 );
lua_pushstring ( pLuaState, "Hello!" );

Simple, eh? Now that the function call is represented on the stack in its entirety, you deliver the
coup-de-grace by calling lua_call (), which looks like this:

lua_call ( lua_State * pLuaState, int ParamCount, int ResultCount );

This function will call whatever function was most recently pushed onto the stack, passing
ParamCount parameters and expecting ResultCount results. Remember, due to the multiple assign-
ment capabilities of Lua, functions can return multiple values. If FuncName () accepts the two
parameters listed previously and returns one result, the call to lua_call () would look like this:

lua_call ( pLuaState, 2, 1 );

Lastly, you need to know how to retrieve the result. The result (or results, depending on how
many the function returns) will be left on the stack. In your case, assuming FuncName () returned
a single integer result, you can use the following code to read it:

int iResult = ( int ) lua_tonumber ( pLuaState, 1 );
lua_pop ( pLuaState, 1 );

You use lua_tonumber () to convert the element at index 1 of the stack to a double-precision float-
ing-point value, and then cast it to an integer to store in the receiving variable. You know the
return value is at index 1 because the function only returns one value. The stack is then cleaned
up using lua_pop () to remove the return value and bring balance to the force.
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That’s everything there is to know about basic Lua function calls from the host application. Now
that you know what you’re doing, let’s go back to test_1.lua and try calling your Exponent () and
MultiplyString () functions.

printf ( "\nLoading Script test_1.lua:\n\n" );
lua_dofile ( pLuaState, "test_1.lua" );

// Call the exponent function
// Call lua_getglobal () to push the Exponent ()
// function onto the stack
lua_getglobal ( pLuaState, "Exponent" );
// Push two numeric parameters
lua_pushnumber ( pLuaState, 2 );
lua_pushnumber ( pLuaState, 13 );
// Call the function with 2 parameters and 1 result
lua_call ( pLuaState, 2, 1 );
// Pop the numeric result from the stack and print it
int iResult = ( int ) lua_tonumber ( pLuaState, 1 );
lua_pop ( pLuaState, 1 );
printf ( "\tResult: %d\n\n", iResult );

// Call the string multiplication function
// Push the MultiplyString () function onto the stack
lua_getglobal ( pLuaState, "MultiplyString" );
// Push a string parameter and the numeric factor
lua_pushstring ( pLuaState, "Location" );
lua_pushnumber ( pLuaState, 3 );
// Call the function with 2 parameters and 1 result
lua_call ( pLuaState, 2, 1 );
// Get the multiplied string and print it
const char * pstrResult;
pstrResult = lua_tostring ( pLuaState, 1 );
lua_pop ( pLuaState, 1 );
printf ( "\tResult: \"%s\"", pstrResult );

Everything should pretty much speak for itself; all I’ve done here is directly applied the tech-
nique for calling Lua functions described previously.

At this point, you’ve learned quite a bit; once you have the ability to call functions from both the
host application and the running script, along with parameters and return values, you’re pretty
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much prepared for anything. Most of the interaction between these two entities will lie in func-
tion calls. Because you’ve learned the language as well, you should be familiar enough with Lua
in general to get started with your own experiments and exploration. Of course, you still need to
get back to the bouncing alien head demo, but before that, there’s one last detail of interaction
I’d like to show you.

Manipulating Global Lua Variables from C
The last real piece of the C/Lua integration puzzle I’m going to cover is the manipulation of a
script’s global variables from C. Because globals are often used to control the program on a high
level, there are times when you can direct and manipulate the general behavior of your scripts
with nothing more than the reading and writing of globals. I personally prefer to keep everything
function-based. Rather than directly editing a global variable, I like to assign that global a pair of
“setter and getter” functions, which allow me to alter the global’s value indirectly and subsequent-
ly more safely. However, you’re ultimately the one who has to decide how your game’s scripts will
work, so here’s an extra technique for your arsenal in case you personally consider it a better way
to go.

As you’ve seen to some extent, the lua_getglobal () and lua_setglobal () functions can be used
to read and write globals indirectly through the stack. Calling lua_getglobal () causes the value
of the specified global variable to be pushed onto the stack, whereas lua_setglobal () will pop
the value off the top of the stack into the specified global. So, for example, if you wanted to set
the value of an integer global called X, you simply do the following:

lua_pushnumber ( pLuaState, 256 );  -- Push 256 onto the stack
lua_setglobal ( pLuaState, "X" );     -- Move the top stack value into X

It’s simply a matter of pushing the desired value onto the stack and using lua_setglobal () to
move it into place. Likewise, the integer value of X could be read with the following code:

lua_getglobal ( pLuaState, X );    -- Push X's value onto the stack
int X = ( int ) lua_tonumber ( pLuaState, 1 );  -- Grab the top stack value

All you need to do is push the given global’s value onto the stack and then convert the value at
that index to an integer to store in a C variable. Once again, you’re assuming that the stack is
empty at the time of the call to lua_getglobal (), which means the value will be placed at index 1.
Because this may not always be the case, be sure to use lua_gettop () in practice to get the prop-
er index of the stack’s top value. Also, remember to clear the stack off when you’re done; calls to
lua_getglobal () should generally be followed by a call to lua_pop ().

Let’s finish test_1.lua by adding some global variables to manipulate. Before the definition of
your two functions, let’s add the following:
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GlobalInt = 256;
GlobalFloat = 2.71828;
GlobalString = "I'm an obtuse man...";

This gives you three globals to work with, all of differing types. To get things started, let’s just try
reading their values and printing them from C:

// Read some global variables
printf ( "\n\tReading global variables...\n\n" );

// Read an integer global by pushing it onto the stack
lua_getglobal ( pLuaState, "GlobalInt" );
printf ( "\t\tGlobalInt: %d\n", ( int )

lua_tonumber ( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );

// Read a float global
lua_getglobal ( pLuaState, "GlobalFloat" );
printf ( "\t\tGlobalFloat: %f\n", lua_tonumber ( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );

// Read a string global
lua_getglobal ( pLuaState, "GlobalString" );
printf ( "\t\tGlobalString: \"%s\"\n", lua_tostring

( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );

Let’s expand the example just a bit to write new values to the globals. Of course, you’ll re-read
them as well to make sure the writes worked:

// Write the global variables and re-read them
printf ( "\n\tWriting and re-reading the global variables...\n\n" );

// Write and read the integer global
lua_pushnumber ( pLuaState, 512 );
lua_setglobal ( pLuaState, "GlobalInt" );
lua_getglobal ( pLuaState, "GlobalInt" );
printf ( "\t\tGlobalInt: %d\n", ( int ) lua_tonumber

( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );
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// Write and read the float global
lua_pushnumber ( pLuaState, 3.14159 );
lua_setglobal ( pLuaState, "GlobalFloat" );
lua_getglobal ( pLuaState, "GlobalFloat" );
printf ( "\t\tGlobalFloat: %f\n", lua_tonumber ( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );

// Write and read the string global
lua_pushstring ( pLuaState, "...so I'll try to be oblique." );
lua_setglobal ( pLuaState, "GlobalString" );
lua_getglobal ( pLuaState, "GlobalString" );
printf ( "\t\tGlobalString: \"%s\"\n", lua_tostring ( pLuaState, 1 ) );
lua_pop ( pLuaState, 1 );

Done and done. The last thing to add to your C host is a call to lua_close () to clean everything
up:

lua_close ( pLuaState );

Re-coding the Alien Demo in Lua
Aside from Vader, one last challenge remains. As I mentioned earlier, one of your exercises as
you learn each language will be to recode the bouncing alien head demo I showed you at the
beginning of the chapter.

Initial Evaluations
As I mentioned earlier, all you really want to do with Lua is set the initial location, velocity, and
spin direction of each sprite with the script, as well as produce each frame of the demo by mov-
ing the sprites around the screen and handling collisions.

The first thing you need to do is decide exactly what the script will be in charge of. Once you
know this, you can establish an appropriate host API— a set of functions that will give the script
the capabilities it needs to carry out its tasks.

Because your script will first be responsible for initializing the sprites, let’s break down exactly
what this entails:

■ Set the initial X, Y coordinates to a random on-screen location.
■ Set the initial X, Y velocity to random values.
■ Set the initial spin direction to a random value (0 or 1).
■ Store these values in a script-defined table, just as the original C version stored them in

an array.
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In short, you need to create a table within the script that will hold all of your bouncing alien
heads; each element of the array needs to describe its corresponding alien head in the same way
that the Alien struct did in the hardcoded version. Obviously, table manipulation is built in to
Lua, so you don’t need to provide any functionality for that from the host app. What you do need
to provide, however, is a function that can generate random numbers.

Once initialization is complete, your script won’t be called again until the main loop of the appli-
cation has begun. Once this takes place, the script will be called once per frame. At each frame,
the script will be in charge of the following tasks:

■ Blit the background image.
■ Loop through each alien in the table and draw it at its current location.
■ Blit the completed frame to the screen.
■ Update the current frame of animation when the animation timer is active.
■ Loop through each alien in the table once again to move it along its current path, and

handle collisions as they occur when the movement timer is active.

As you can see, the per-frame part of the script will be required to do a lot more things that Lua
isn’t directly capable of, so the bulk of your host API will be geared towards these needs. Now
that you know what you need, let’s lay these functions out.

The Host API
As you’ve seen, your primary requirements will be generating random numbers, blitting various
bitmapped images, and checking the status of timers. With these needs in mind, your host API
will look like this:

int HAPI_GetRandomNumber ( lua_State * pLuaState );
int HAPI_BlitBG ( lua_State * pLuaState );
int HAPI_BlitSprite ( lua_State * pLuaState );
int HAPI_BlitFrame ( lua_State * pLuaState );
int HAPI_GetTimerState ( lua_State * pLuaState );

Notice that I’ve preceded each of the function names with HAPI_ (which of course stands for
“Host API”). This ensures that your host API functions and C-only functions are kept separate.
This is just good practice in general when scripting with any language.

As for the functions, they should be fairly self-explanatory, but I’ll go over them just in case
there’s any ambiguity:

■ HAPI_GetRandomNumber () accepts two numeric parameters; minimum and maximum val-
ues that define a range from which a random number should be chosen and returned to
the caller.
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■ HAPI_BlitBG () is a simple function that causes the background image to be blitted to
the framebuffer. No parameters are necessary.

■ HAPI_BlitSprite () accepts parameters referring to an X, Y location and an index into
the array of frames of the spinning alien head animation.

■ HAPI_BlitFrame () is another simple function that blits the framebuffer to the screen.
Like HAPI_BlitBG (), no parameters are needed.

■ HAPI_GetTimerState () this function accepts a single numeric parameter containing an
index that refers to a specific timer. The state of that timer (1 for active, 0 for inactive) is
returned to the caller.

With the host API laid out, let’s take a look at the new structure of the host application.

The New Host Application
The landscape of the C side of things is quite a bit different now that you’re offloading a good
portion of the demo’s functionality to Lua. Gone is much of the original code, and in its place
you find the host API and a number of calls to the Lua system. Speaking of the host API, its one
of the biggest changes (or additions, I should say). Have a look at the definitions for a few of the
host API functions:

int HAPI_GetRandomNumber ( lua_State * pLuaState )
{

// Read in parameters
int iMin = GetIntParam ( 1 );
int iMax = GetIntParam ( 2 );
// Return a random number between iMin and iMax
ReturnNumber ( ( rand () % ( iMax + 1 - iMin ) ) + iMin );
return 1;

}

HAPI_GetRandomNumber () does its job in two phases; first the parameters are read in, and then the
result is sent out. You start by declaring two integer variables, iMin and iMax, and initialize them
with the values returned from GetIntParam (). Wait a second, “GetIntParam ()”? What was that?

Throughout the process of rewriting the alien head demo with Lua, there appeared a number of
places where macros that wrapped the calls to the actual Lua functions made things a lot cleaner.
For example, when a host API function wants to read in an integer parameter, it has to do some-
thing like this:

int iParam = ( int ) lua_tonumber ( pLuaState, iIndex );

First of all, the function lua_tonumber () itself isn’t the most intuitive name, at least in this con-
text. What the function is really doing is reading the stack element at iIndex and returning it as a
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numeric value. At least, that’s how things are working internally. All you need to worry about,
however, is that the function is returning a parameter. So right off the bat, wrapping it in a macro
that provides a more descriptive name will result in improved code readability. Second, you have
to cast the value the function returns to an int because Lua works only with floating-point
numerics. Having this cast clog up your code everywhere is just going to make things messier, so
the following macro:

#define GetIntParam( Index ) \
( int ) lua_tonumber ( g_pLuaState, Index );

just makes everything cleaner, more descriptive, and more concise. This is a trend that you’ll find
continues throughout this section, so be prepared for a few more macros along these lines.

Where were we? Oh right, HAPI_GetRandomNumber (). Anyway, once you read in the iMin and iMax
parameters, you use another macro, ReturnNumer (), to return the result of a call to the standard
C rand () function. ReturnNumer () is very similar to GetIntParam (), except that it of course auto-
mates the process of returning a numeric. Let’s look at the code:

#define ReturnNumer( Num ) \
lua_pushnumber ( g_pLuaState, Num );

Much nicer, eh? Another plus to these macros is that they save you from having to manually pass
that Lua state every time you make a Lua call as well. Of course, if you find yourself writing pro-
grams that maintain multiple states (which you most likely will, because that’s how you imple-
ment multiple scripts running at once), you’ll lose this luxury.

Overall, HAPI_GetRandomNumber () illustrates an important point when discussing host APIs,
because all it really boiled down to was a simple wrapper for rand (). You may find that a large
portion of your host API functions don’t provide any unique functionality of their own. Rather,
they’ll usually just wrap existing functions to make the same functions your C program uses acces-
sible to your scripts. Don’t worry if you find yourself doing a lot of this. At first it may seem like a
lot of extra coding for nothing, but it’s the only way to provide your scripts with the functions
they’re ultimately going to need to be useful.

Let’s check out one more host API function, and then I’ll move on:

int HAPI_BlitSprite ( lua_State * pLuaState )
{

// Read in parameters
int iIndex = GetIntParam ( 1 );
int iX = GetIntParam ( 2 );
int iY = GetIntParam ( 3 );

LUA (AND BASIC SCRIPTING CONCEPTS)



232

// Blit sprite
W_BlitImage ( g_AlienAnim [ iIndex ], iX, iY );
// Return nothing
return 0;

}

Again, you see a similar process. First you read in three integer parameters with your handy
GetIntParam () macro. You then pass those parameters directly to the Wrappuh function
W_BlitImage (), which performs the blit. Unlike HAPI_GetRandomNumber (), this function does not
return anything to Lua, hence the return 0.

Moving along, I’ve created two helper functions for initializing and shutting down Lua in its
entirety. InitLua () allows you to open the Lua state and register all of the functions in your host
API in one call:

void InitLua ()
{

// Open a new Lua state
g_pLuaState = lua_open ( LUA_STACK_SIZE );
// Register your host API with Lua
lua_register ( g_pLuaState, "GetRandomNumber",

HAPI_GetRandomNumber );
lua_register ( g_pLuaState, "BlitBG", HAPI_BlitBG );
lua_register ( g_pLuaState, "BlitSprite", HAPI_BlitSprite );
lua_register ( g_pLuaState, "BlitFrame", HAPI_BlitFrame );
lua_register ( g_pLuaState, "GetTimerState", HAPI_GetTimerState );

}

Notice that the host API functions are not exposed to Lua scripts with the HAPI_ prefix. I did this
because there are so few functions in the script (as you’ll soon see), that there’s no need to differ-
entiate. Of course, for large script projects you may find it useful to precede your function names
with HAPI_ on both the C and Lua sides of things.

LUA_STACK_SIZE is just a constant I’ve set to 1024. Nothing new.

InitLua () of course has a matching ShutDownLua (), although this function is a bit of a waste,
because it only encapsulates one line:

void ShutDownLua ()
{

// Close Lua state
lua_close ( g_pLuaState );

}
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What can I say? I’m a bit of a neat-freak, so InitLua () had to have a matching ShutDown () func-
tion, whether it was necessary or not. :) It would just seem lopsided without one!

After the call to InitLua (), you’ll have a valid Lua state and your host API will be locked and
loaded. It’s here where the scripting really begins. After all of your C-side initialization is done,
you can initialize your alien head sprites with one call:

CallLuaFunc ( "Init", 0, 0 );

That’s right, another macro has reared its head. This one, aptly entitled CallLuaFunc (), calls Lua
functions. (Honestly, sometimes I wish my function names were less descriptive—it makes the
explanations of what they mean seem so anticlimactic.) Normally, because a Lua function call
involves using lua_getglobal () to put the function reference onto the stack, and then calling
lua_call (), this macro helps you out a bit by reducing everything to a single line:

#define CallLuaFunc( FuncName, Params, Results ) \
{ \

lua_getglobal ( g_pLuaState, FuncName ); \
lua_call ( g_pLuaState, Params, Results ); \

}

Just pass it a string containing the function name, the number of parameters, and the number of
results.

Anyway, the call to the Lua script was in reference to a function called Init (), as you can see.
Because I haven’t covered the contents of the script yet, just take this on faith.

Immediately following the call to your script’s Init () function, the main loop of the demo
begins, which is now rather minimalist because its guts have been transferred to Lua:

// Start the main loop
MainLoop
{

// Start the current loop iteration
HandleLoop
{

// Let Lua handle the frame
CallLuaFunc ( "HandleFrame", 0, 0 );
// Check for the Escape key and exit if it's down
if ( W_GetKeyState ( W_KEY_ESC ) )

W_Exit ();
}

}
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Another call to CallLuaFunc (), and another script function you haven’t yet seen. This one is
called HandleFrame (), and naturally, handles the current frame by moving the sprites around.
Once again, you’ll see these two functions in the next section.

That’s it! In summary, the new host application works by first defining a series of functions that
collectively form the host API, and then initializes Lua by using lua_open () to create a Lua state
and register the host API’s functions. At this point, the Lua system is all ready to go, and the
script’s two functions are called. First Init () is called to initialize the sprites, and HandleLoop () is
called once per frame to move them around. Because you’re done with the C stuff, you can now
move on and actually see these two functions (among other things).

The Lua Script
The Lua script, which I’ve given the almost frighteningly creative filename script.lua, is the only
one you’ll need for this demo. In it, there are four main elements, as follows:

■ An area for declaring constants.
■ An area for declaring global variables.
■ The first function, Init ().
■ The second (and last) function, HandleFrame ().

As you can see, a script is structured in the same way a program is, something you’ll discover in more
and more depth as your mastery of scripting unfolds. Although scripts and programs are indeed
fundamentally and technically different things; they’re conceptually the same in most respects.

As I said, your script will consist mostly of a constant declaration section, a global variable declara-
tion section, and two functions. Notice again that there is no code in the global scope—in other
words, code that resides outside the func-
tions—because it would be automatically
executed by lua_dofile () and you don’t
necessarily want anything to be run at
that time. Rather, you’d like Lua to sim-
ply load the file into memory for you and
let it sit for you to reference later
through function calls when you need to.

Remember, loading a script involves a
decent amount of hard drive access, for-
mat validation, and possibly even an
entire compilation of the script (if your
script is still in source code form). Scripts
are no different than bitmaps or sounds
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code in the global scope, and thus no code
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in this respect; their loading phase is costly and should only be done outside of speed-critical
code (i.e., outside of your main loop). Calling lua_dofile () to execute a script on a per-frame
basis would be frame rate homicide (which is only legal in Texas).

Getting back to the topic at hand, let’s look at the script’s constant declaration section:

ALIEN_COUNT       = 12;
MIN_VEL      = 2;
MAX_VEL      = 8;
ALIEN_WIDTH      = 128;
ALIEN_HEIGHT      = 128;
HALF_ALIEN_WIDTH   = ALIEN_WIDTH / 2;
HALF_ALIEN_HEIGHT   = ALIEN_HEIGHT / 2;
ALIEN_FRAME_COUNT   = 32;
ALIEN_MAX_FRAME   = ALIEN_FRAME_COUNT - 1;
ANIM_TIMER_INDEX   = 0;
MOVE_TIMER_INDEX   = 1;

The trick here is that Lua doesn’t actually support constants. The best you can do is just pretend
that it does by declaring your constant values as global variables that are written out with typical
CONSTANT_NOTATION (like that). Lua just considers them typical globals, but at least your code will
look the way you want it to. If you compare this block of code to the original hardcoded C ver-
sion, you’ll find that I’ve pretty much just copied the constant declarations and pasted them right
into the Lua source.

Next up, let’s have a look at your global variables

Aliens = {};
CurrAnimFrame = 0;

Only two declarations needed here. First you create a table called Aliens that will keep track of all
of your bouncing heads. Next, you create a simple numeric called CurrAnimFrame, which keeps
track of the current frame of the alien head animation.

With your constants and globals out of the way, you have all the data you need. Now it’s time for
some code. Let’s have a look at the first of two functions this script will provide, Init ():

function Init ()
-- Initialize the alien sprites
-- Loop through each alien in the table and initialize it
for CurrAlienIndex = 1, ALIEN_COUNT do

-- Create a new table to hold all of the alien's fields
local CurrAlien = {};
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-- Set the X, Y location
CurrAlien.X = GetRandomNumber ( 0, 639 - ALIEN_WIDTH );
CurrAlien.Y = GetRandomNumber ( 0, 479 - ALIEN_HEIGHT );
-- Set the X, Y velocity
CurrAlien.XVel = GetRandomNumber ( MIN_VEL, MAX_VEL );
CurrAlien.YVel = GetRandomNumber ( MIN_VEL, MAX_VEL );
-- Set the spin direction
CurrAlien.SpinDir = GetRandomNumber ( 0, 2 );
-- Copy the reference to the new alien into the table
Aliens [ CurrAlienIndex ] = CurrAlien;

end
end

As you should remember, this is the function that’s called by the following line back in the host
application:

CallLuaFunc ( "Init", 0, 0 );

So, as soon as this line of code is hit, the Init () function listed previously will be run.

The function really just has one job: initialize the array of bouncing alien heads. Just like in the
original pure C version, this means giving each head a random location on-screen, a random
velocity, and a random spin direction. Naturally, this is facilitated by a for loop.

To actually store the alien head demo, you need to store a smaller table at each index of the
Aliens table. This is because there are a number of pieces of information that each head has to
keep track of. To put this another way, think of it like a multidimensional array, or an array of
structs in C. Each index of the table has another table (or rather, a reference to another table) that
holds that particular element’s information, like its X, Y location and its velocity. Check out
Figure 6.13 for a visual representation of this.

All in all this is a simple concept, but there is one snag that can really trip you up if you’re not
ready for it. As I’ve mentioned before, it’s important to think of tables in Luas references, rather
than values. Because of this, assigning a table to an element of another table in a loop, like this:

Aliens [ CurrAlienIndex ] = CurrAlien;

means that Aliens [ CurrAlienIndex ] only receives a reference to the CurrAlien table, not the val-
ues themselves. So, at the next iteration of the loop, when you put new values into CurrAlien and
assign it to the next index of Aliens, you’ll find that both the current element as well as the previ-
ous element seem to suddenly have the same values. This is due to the fact that both elements
have been given a reference to CurrAlien, so as soon as you change the values for the second ele-
ment of the table in the next iteration of the loop, the first element will seem to inexplicably
change along with it. Figure 6.14 illustrates this relationship.
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To solve this problem, you simply start the loop with this line:

local CurrAlien = {};

Assigning {} to CurrAlien forces Lua to allocate a new table and therefore provide a fresh, unused
reference. You can then fill the values of this instance of CurrAlien and freely assign it to the next
element of Aliens, without worrying about overwriting the values you set in the last iteration. It’s a
simple problem with a simple solution, but left unchecked this little detail can cause logic errors
that truly wreak havoc. :)
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The rest of the alien head initialization loop is pretty much what you would expect; each element
of CurrAlien is set to a random value, using the GetRandomNumber () function that the previously
discussed host API provides. Once this loop completes, Init () is finished and the global Aliens
table contains a record of every bouncing alien head.The script is now fully prepared to enter the
main loop, which will call HandleFrame () at each iteration. Let’s have a look at this function:

function HandleFrame ()
-- Blit the background image
BlitBG ();
-- Blit each sprite and move it along its path
for CurrAlienIndex = 1, ALIEN_COUNT do

-- Get the X, Y location
local X = Aliens [ CurrAlienIndex ].X;
local Y = Aliens [ CurrAlienIndex ].Y;
-- Get the spin direction and determine
-- the final frame for this sprite
-- based on it.
local SpinDir = Aliens [ CurrAlienIndex ].SpinDir;
if SpinDir == 1 then

FinalAnimFrame = ALIEN_MAX_FRAME - CurrAnimFrame;
else

FinalAnimFrame = CurrAnimFrame;
end
-- Blit the sprite
BlitSprite ( FinalAnimFrame, X, Y );

end
-- Blit the completed frame to the screen
BlitFrame ();
-- Increment the current frame in the animation
if GetTimerState ( ANIM_TIMER_INDEX ) == 1 then

CurrAnimFrame = CurrAnimFrame + 1;
if CurrAnimFrame >= ALIEN_FRAME_COUNT then

CurrAnimFrame = 0;
end

end
-- Move the sprites along their paths
if GetTimerState ( MOVE_TIMER_INDEX ) == 1 then

for CurrAlienIndex = 1, ALIEN_COUNT do
-- Get the X, Y location
local X = Aliens [ CurrAlienIndex ].X;
local Y = Aliens [ CurrAlienIndex ].Y;
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-- Get the X, Y velocities
local XVel = Aliens [ CurrAlienIndex ].XVel;
local YVel = Aliens [ CurrAlienIndex ].YVel;
-- Increment the paths of the aliens
X = X + XVel;
Y = Y + YVel;
Aliens [ CurrAlienIndex ].X = X;
Aliens [ CurrAlienIndex ].Y = Y;
-- Check for wall collisions
if X > 640 - HALF_ALIEN_WIDTH or X <

-HALF_ALIEN_WIDTH then
XVel = -XVel;

end
if Y > 480 - HALF_ALIEN_WIDTH or Y <

-HALF_ALIEN_WIDTH then
YVel = -YVel;

end
Aliens [ CurrAlienIndex ].XVel = XVel;
Aliens [ CurrAlienIndex ].YVel = YVel;

end
end

end

Quite a bit larger than Init (), eh? As you can see, there’s a decent amount of logic to attend to
here, so let’s knock it out piece by piece.

The first step is easy; you make a single call to BlitBG (), a host API function that slaps the back-
ground image into the framebuffer. This overwrites the last frame’s contents and gives you a fresh
slate on which to draw the new frame.

You then use a for loop to iterate through each alien in the bouncing alien head array, saving 
the X, Y location and final animation frame into local variables which are passed to host API
function BlitSprite () to put it on the screen. Notice that you don’t necessarily use the global
CurrAnimFrame as the frame passed to BlitSprite (). This is because each head has its own 
spinning direction, which may be forwards or backwards. If it’s forwards, you can use
CurrAnimFrame as-is, but you must subtract CurrAnimFrame from ALIEN_MAX_FRAME if it’s backwards.
This lets certain sprites cycle through the animation in one direction, whereas others cycle
through it the other way.

At this point, you’ve drawn the background image and each alien sprite. All that’s left to com-
plete this frame is to call BlitFrame (), another host API function, which blasts the framebuffer to
the screen. The graphical aspect of the current frame has been taken care of, but now you need
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to handle the logic. This means moving the alien heads along their paths and checking for colli-
sions, among other things.

The first thing to do after blitting the new frame to the screen is update CurrAnimFrame. You do
this by incrementing the variable, and resetting it to zero if the increment pushes it past ALIEN-
_MAX_FRAME. Of course, you want to perpetuate the animation at a fixed speed; if you incremented
CurrAnimFrame every frame, the animation might move too quickly on faster systems. So, you’ve
synchronized the speed of the animation with a timer that was created in the host application.
This timer ticks at a certain speed, which means you have to use GetTimerState () at each frame
to see whether it’s time to move the animation along. This ensures a more uniform speed across
the board, regardless of frame rate.

This takes you to the last part of the HandleFrame () function, which is the movement of each
sprite and the collision check. Like the animation, the movement of the sprites is also synched to
a timer, which means you make another call to GetTimerState (). Assuming the timer has com-
pleted another tick, you start by saving the X, Y coordinates of the sprite and the X, Y velocities to
local variables. You then add the velocities to the X, Y coordinates to find the next position along
the path the alien should move to. You put these values back into the Aliens array and then per-
form the collision check. If the new location of the sprite is above or below the extents of the
screen, you reverse the Y velocity to simulate the bounce. The same goes for violations of the hor-
izontal extents of the screen, which cause a reversal of the X velocity. Once these two checks have
been performed, the X and Y velocities are placed back into the Aliens table as well and the
movement of the sprites is complete.

You’ve now completed the script, which means the only thing left to do is sit back and watch it
take off. Check out the demo on the accompanying CD. On the surface it looks identical to the
hard-coded version, but there are two impor-
tant differences. First, you may notice a
slight speed difference. This is a valuable 
lesson—don’t forget that despite all of its
advantages, scripting is still noticably slower
than native executable code in most situa-
tions. Second, and more obviously, remem-
ber that even though you’ve compiled the
host application, the script itself can be
updated and changed as much as you want
without recompiling the executable.
Because this is the whole reason you per-
haps got into this crazy scripting business in
the first place, I suggest you take the time to
try changing the general behavior of the
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Remember, compiling your scripts with
luac is always recommended. Now that
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sion, and will handle the rest transparent-
ly. It costs you nothing, and in return you
get faster script load times (although it’s
highly unlikely that you’ll notice a differ-
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script and watch the executable change with it. As a challenge, try adding a gravity constant to
the bouncing movement of the heads; perhaps something that will slowly cause them to fall to
the ground. Once they’re all at the bottom of the screen, reverse the polarity and watch them
“fall” back up. This shouldn’t take too much effort to implement given what you’ve done so far,
and it will be a great way to experience first-hand the power scripts can have over their compiled
host applications. Maybe you can create some trig functions in the host API and use them to
move the gravity constant along a sinusoid.

Advanced Lua Topics
I’ve covered the core of the language as well as most of the details you’ll need for integration.
This should be more than sufficient for most of your game scripting needs, but if you’re anything
like me, you can’t sleep at night until you’ve learned everything. And if you’re anything like I am
tonight, you won’t sleep at all because you’re all hopped up on Red Bull and are too busy running
laps on the roof. So, allow me to discuss a few advanced topics that enhance Lua’s power but are
beyond the scope of this book:

■ Tag Methods. One of Lua’s defining features is the capability for it to extend itself. This
is implemented partially through a feature called tag methods, which are functions
defined by the script that are assigned to key points during execution of Lua code.
Because these functions are called automatically by the Lua runtime, the programmer
can use them to extend or alter the behavior of said code.

■ Complex Data Structures. Lua only directly supports the table structure, but as you’ve
seen, tables can not only contain any value, but can also contain references to other
tables as well as functions. You can probably imagine how these capabilities lend them-
selves to the construction of higher-level data structures.

■ Object-Oriented Programming. This is almost an extension of the last topic, but Lua is
capable of implementing classes and objects through clever use of tables. Remember,
tables can include function references, which gives them the capability to simulate con-
structors, destructors, and methods. Because functions can return table references as
well, constructor functions can create tables to certain specifications automatically. Oh,
the possibilities!

■ The Lua Standard Library. Lua also comes with a useful standard library, much like the
one that comes with C. This library is broken into APIs for string manipulation, I/O,
math, and more. Becoming familiar with this library can greatly expand the power and
flexibility of your scripts, so it’s definitely worth looking into. Also, in case you were won-
dering, this is why your Lua distribution comes with lualib.h and lualib.lib. These
extra files implement the standard library.
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Web Links
For more general information on Lua, as well as the Lua user community, check out the follow-
ing links. These are also great places to begin your investigation of the advanced topics described
previously:

■ The Official Lua Web Site: http://www.lua.org/. This is the official source for Lua docu-
mentation and distributions. Check here for updates on the language and system, as well
as general news.

■ lua-users.org: http://www.lua-users.org/. A gathering of a number of Lua users, offer-
ing a focused selection of content and resources.

■ lua-l: Lua Users Mailing List: http://groups.yahoo.com/group/lua-l/. The lua-l Yahoo
Group is a gathering of a number of Lua developers who discuss Lua news and ask/answer
questions. It’s a frequently evolving source of up-to-date Lua information and a good place
to familiarize yourself with the language itself and its real-world applications.

PYTHON
Lua was a good language to start with because it’s easy to use and has a reasonably familiar syn-
tax. Now that you’ve worked your way through a number of examples with the system and used it
to successfully control the bouncing alien head demo, you now have some real-life scripting expe-
rience and are ready to move onto something more advanced. Enter Python.

Python is another general-purpose scripting system with a simple but powerful object-oriented
side that’s been employed in countless projects by programmers of all kinds over the years
(including a number of commercial games). One somewhat high-profile example is Caligari’s
trueSpace, a 3D modeling, rendering and animation package that uses Python for user-end
scripting. The syntax of the language is unique in many ways, but will ultimately prove familiar
enough to most C/C++ programmers.

The Python System at a Glance
Python is available from a number of sources, two of the most popular being the ActiveState
ActivePython distribution, available free at www.activestate.com, and the Python.org distribution, also
free, at www.python.org. I went with the Python.org version, so I recommend you download that one.
Linux users will most likely already have Python available on their systems as part of their OS dis-
tribution.

You can install the Python 2.2.1 distribution by running the self-extracting installer found in the
directory mentioned previously. Mine was installed to D:\Program Files\Python22; make sure you
note where yours is installed as well. Once you’ve found it, you’re pretty much ready to get started.
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Directory Structure
When the installation is complete, check out the Python22/ directory (which should be the root of
your Python installation). In it, you’ll find the following subdirectories:

■ DLLs/. DLLs necessary for runtime support. Nothing you need to worry about.
■ Doc/. Extensive HTML-based documentation of Python and the Python system.

Definitely worth your attention.
■ include/. Header files necessary when linking your application with Python.
■ Lib/. Support scripts written in Python that provide a large code base of general func-

tionality.
■ libs/. The Python library modules to be linked with your program.
■ tcl/. A basic Tcl distribution that enables Python to use Tkinter, a Tcl/Tk wrapper that

provides a GUI-building interface. You won’t be working with this, as GUIs are beyond
the scope of the simple game scripting in this chapter.

■ Tools/. Some useful Python scripts for various tasks. Also not to be covered in this chapter.

Nothing too complicated, right? Now that you have a general idea of the roadmap, direct your
attention back to the root directory of the installation. Here you’ll find python.exe, which is a
handy interactive interpreter.

The Python Interactive Interpreter
Just like Lua, Python features an interactive interpreter that allows you to input script code line-
by-line and immediately observe the results. This interpreter should be found in your root
Python directory and is named python.exe. Go ahead and get it started. You should see this:

Python 2.2.1 (#34, Apr  9 2002, 19:34:33) [MSC 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Once you’re in, you should be looking at what
is known as the primary prompt. This consists of
three consecutive greater-than signs (>>>) and
means the interpreter is ready for you to input
code. Like the Lua interpreter, python will
attempt to execute each line as it’s entered; to
suppress this until a certain amount of lines
have been written, terminate each line with a
backslash (\) until you’re ready for the inter-
preter to function again.

PYTHON

NOTE
It’s interesting to note that out of the
three languages you work with here,
Python has the friendliest interpreter.
The other two start up and simply
shove a single-character prompt in your
face, whereas python at least provides
some basic instructions. Oh well. :)
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Also, similar to Lua, python can run entire Python scripts from text files, which is of course much
easier when you want it to execute large scripts, because it would quickly become tedious to
retype them over and over. It’s also a good way to validate your scripts; the interpreter will flag
any compile-time errors it finds in your code and provide reasonably descriptive error messages.
Python files are generally saved with the .py extension, so get in the habit of doing this as soon as
possible.

To exit python, press Ctrl+Z (which will produce “^Z” at the promt) and press Enter.

The Python Language
Python is a rich language boasting a large array of syntactic features. There are usually more than
a few ways to do something, which translates to a more flexible programming environment than
other, more restrictive languages. It also means that discussing basic Python is a more laborious
task than discussing simpler languages, like the tour of Lua. So, rather than standing around and
dissecting the situation any further, let’s just dive right in and get started with the syntax and
semantics of Python.

Comments
I talk about comments first because they’re just going to show up in every subsequent example
anyway. Python only directly supports one type of comment, denoted by a hash mark (#). Here’s
an example:

# This is a comment.

However, by taking clever advantage of Python’s syntax, you can simulate multi-line comments
like this:

""" This is
a multi-line
comment! Sorta! """

Just be aware right now that this code isn’t really a comment, it just happens to act almost exactly
like one. You’ll find out exactly what’s going on in a moment.

Variables
Like Lua, Python is typeless and thus allows any variable to be assigned any value, regardless of
the type of data it currently holds. Assignment in Python looks pretty much the way it does in
most languages, using the equals sign (=) as the operator. Here are some examples:
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Int = 16                    # Set Int to 16
Float = 3.14159             # Set Float to 3.14159
String = "Hello, world!"    # Set String to "Hello, world!"

Note the lack of semicolons. Python does allow them, but they aren’t useful in the same way they
are in Lua and are rarely seen in the Python scripts you’ll run across. As a result, I suggest you
build the habit of omitting semicolons when working with Python. Multiple lines in Python code
are instead facilitated with the now familiar backslash (/) terminator:

MyVar\
=\
"Hello!"
print MyVar

This code prints “Hello!” to the screen.

Python, like Lua, also supports multiple assignments, wherein more than one identifier is placed
on the left side of the assignment operator. For example:

X, Y, Z = U, V, W

This code sets X to the value of U, Y to the value of V, and Z to the value of W. Unlike Lua, however,
Python isn’t quite so forgiving when it comes to an unequal number of variables on either side of
the assignment. For example,

X, Y, Z = U, V      # Note that Z is not given a value

and

X, Y = U, V, W      # Note that W is not assigned anywhere

Both of these lines result in compile-time errors.

Python also supports assignment chains, like so:

X = Y = Z = 512 * 128
print X, Y, Z

When executed in the interpreter, the previous code will output the following:

65536 65536 65536

Ironically, despite support for this feature, assignments cannot appear in expressions, as you’ll see
later.

Python requires that variables be initialized before they appear on the right side of an assignment
or in an expression. Any attempt to reference an uninitialized variable will result in a runtime error.
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Data Types
Python has a rich selection of data types, even directly supporting advanced mathematical con-
cepts like complex numbers. However, your experience with Python in the context of game
scripting will be primarily limited to the following:

■ Numeric—Integer and floating-point values are directly supported, with any necessary
casting that may arise handled transparently by the runtime environment.

■ String—A simple string of characters, although Python does support a vast selection of
differing string notations and built-in functions. I’ll discuss a few of them soon.

■ Lists—Unlike numerics and strings, the Python list is an aggregate data structure like a C
array or Lua table. As you’ll see, lists share a common syntax with strings in many cases,
which proves quite useful.

Numerics can be expressed in a number of ways. You’ve already seen simple integers and floats,
like 64 and 12.3456, but you can also express them in other ways. First of all, you should learn the
difference between plain integers and long integers. Plain integers are simply strings of digits,
although they cannot exceed the range of -
2^31 to 2^31. Long integers, on the other
hand, can be of any size as long as they’re suf-
fixed with an L:

HugeNum = 12345678901234567890L

You can also express integers in other bases,
like octal and hexadecimal. These follow the
same rules as most C compilers:

Octal = 0342      # Octal numbers are prefixed with 0
Hex = 0xF2CA4     # Hex numbers are prefixed with 0x
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As you’ve probably noticed, Python features a built-in print () function.
Unlike Lua, however its contents need not be enclosed in parentheses.
Also, Python’s print () accepts a variable sized, comma-separated list
of values, all of which will be printed and delimited with single spaces.

NOTE
The L in long integers can be either
upper- or lowercase, but the uppercase
version is much more readable. I rec-
ommend using it exclusively.
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Basic Strings
As stated, Python has extensive support for strings, both in terms of their representation and the
built-in operations that can be performed on them. To get things started, consider the multiple
ways in which a Python string literal can be expressed. First off is the traditional double-quote syn-
tax we all know and love:

MyString = "Hello, world!"

This code, of course, sets "Hello, world!" to the variable MyString. Next up is single-quote notation:

MyString = 'Hello, world!'

This has the exact same effect. Right off the bat, however, one advantage to this method is that
double-quotes can be used in the string without tripping up the compiler. Unlike many lan-
guages, however, a string literal in Python can span multiple lines, as long as the backslash termi-
nator is used:

MyString = "Hello\
, \
world!"

Two important notes regarding this particular notation is that it works with both single and dou-
ble-quoted lines, and that the line breaks you see in the source will not actually translate into the
string. You’ll have to use the familiar \n (newline) code from C in order to cause a physical line
break within the string. Printing the previous code from would yield

"Hello, world!"

Another type of string, however, is the triple-quoted string. This admittedly bizarre syntax allows
line breaks to appear in a string literal without the backslash, because they’re considered charac-
ters in the string. For example:

print """I stand before
you,
a broken
string!"""

This code prints:

I stand before
you,
a broken
string!

As you can see, it’s printed to the screen just as it appeared in the code, something of a “WYSI-
WYG” approach to string literals.
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At this point it should be clear why the aforementioned technique for simulating block com-
ments works the way it does. Because Python (like many languages) allows isolated expressions to
appear outside of a larger statement like an assignment, these “comments” are really just string
literals left untouched by the compiler that don’t have any effect at runtime. Triple-quoted strings
can use both single- and double-quotes:

X = """String 0."""
Y = '''String 1.'''

String Manipulation
Once you’ve defined your strings, you can use Python’s built-in string manipulation syntax to
access them in any number of ways, smash them together, tear them apart, and just wreak havoc
in general.

String concatenation is one of the most common string operations, and Python makes it very easy
with the + operator:

print "String" + " " + "concatenation."

This code outputs:

String concatenation.

In addition, you can use the * operator for repeating, or multiplying strings, just like you did in
the Lua script:

print "Hello" + "!" * 8

This code will enthusiastically print:

Hello!!!!!!!!

Now that you can make your strings bigger,
let’s see what you can do about making them
smaller; in other words, accessing substrings and individual characters. To address the first com-
ment, strings can be accessed like arrays when individual characters need to be extracted. For
example:

MyString = "Stringlicious!"
print "Index 4 of '" + MyString + "' is:", MyString [ 4 ]

Because Python strings begin indexing at zero, like C, printing index 4 of MyString will produce:

Index 4 of 'Stringlicious!' is: n
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In addition to simple array notation, however, slice notation can also be used to easily extract sub-
strings, which has this general form:

StringName [ StartIndex : EndIndex ]

Get the idea? Here’s an example:

MyString = "Stringtastic!"
print "Slicing from index 3 to 8:", MyString [ 3 : 8 ]

Here’s its output:

Slicing from index 3 to 8: ingta

Just provide two indexes, the starting index and ending index of the slice, and the characters
between them (inclusive) will be returned as a substring.

There are also a number of shortcuts that can be performed with slice notation. Each of the
forms slice notation can assume is listed in Table 6.6.

These shorthand forms for slicing to and from the extents of the set can come in pretty handy, so
keep them in mind (the “set” being the characters of the string in this case). Figure 6.15 illus-
trates Python string slicing.

An important point to mention in regards to strings is that they cannot be changed on a sub-
string level. In other words, you can change the entire value of a string variable, by assigning it a
new string, like this:

MyString = "Hello"               # MyString contains "Hello"
MyString = "Goodbye"             # Now it contains "Goodbye"

You can also append to a string in either direction, like this:

MyString = "So I said '" + MyString + "!'"

PYTHON

Table 6.6  Slice Notation Forms
Notation Meaning

[ X : Y ] Slices from index X to index Y.

[ X : ] Slices from index X to the last index in the set.

[ : Y ] Slices from the first index of the set to index Y.

[ : ] Covers the entire set.
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At which point MyString will contain “So I said 'Goodbye!'“. What you can’t do, however, is
attempt to change individual characters or slices of a string. The compiler won’t like either of
these cases:

MyString [ 3 ] = "X"
MyString [ 0 : 2 ] = "012"

This sort of substring alteration must be simulated instead by creating a new string based on the
old one, with the desired changes taken into account.
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Figure 6.15

Python string slicing.

CAUTION
In another example of Python’s slightly more strict conventions, be
aware that indexing a string character outside of its boundaries will
cause a “string index out of range” runtime error. Oddly, however, this
does not apply to slices; slice indexes that are beyond the extents are
simply truncated, and slices that would produce a negative range (slicing
from a higher index to a lower index rather than vice-versa) are
reversed, thus correcting the problem. (I suppose this particular decision
was made because “clipping” a slice will generally yield more usable
results than forcing a stray character index to remain in the bounds of
the string. In the former case, you’re simply asking for too much of the
string; in the latter, all signs point to a more serious logic error.)
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Lastly, check out the built-in function len (), which Python provides to return the length of a
given string:

MyString = "Plaza de toros de Mardid"
print "MyString is", len ( MyString ), "characters long."

This example will output:

MyString is 24 characters long.

Lists
Lists are the main aggregate data structure in Python. Something of a cross between C’s array and
Lua’s table, lists are declared as comma-separated values that are accessible with integer indexes.
Lists are created with a square-bracket notation that looks like this:

MyList = [ 256, 3.14159, "Alex", 0xFCA ]

In the previous example, 256 resides at index 0, 3.14159 is at index 1, "Alex" is at 2, and so on.
Like Lua, Python lists are heterogeneous and can therefore contain differing data types in each
element. Unlike Lua, however, list elements can only be accessed with integer indexes, meaning
they’re more like true arrays than associative arrays or hash tables. Also, new elements cannot
simply be added on the fly, like this:

MyList [ 31 ] = "Uh-oh!"

Doing something like this in Lua is fine, but you’ll get an “index out of range” error in Python.
This is because index 31 does not exist in the list. One nice feature of lists, however, is that they
can be changed on an index or slice level after their creation, unlike strings. For example:

MyList [ 2 ] = "Varanese"

Here you’ve changed index 2, which originally contained my first name, to now contain my last
name, and Python doesn’t complain.

With these few exceptions, lists are mostly treated like strings, which means all the indexing and
slicing notation discussed in the last section applies to lists exactly. In fact, lists can even be print-
ed like strings; in other words, without an index or a slice after the identifier:

print MyList

This code outputs the following:

[256, 3.1415899999999999, 'Alex', 4042]

Note that the hex value 0xFCA was translated to its decimal equivalent when printed.
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Python provides a large assortment of built-in functions for dealing with lists. I only cover a select
few here, but be aware that there are many more. Consult the documentation that came with
your Python distribution for more information if you’re interested.

Just like strings, the len () function can be used to return the number of elements in a list.
Here’s an example:

MyList = [ "Zero", "One", "Two", "Three" ]
print "There are", len ( MyList ), "elements in MyList."

Running this script would produce the following output:

There are 4 elements in MyList.

The next group of functions I’m going to discuss can be called directly from a given list, much
like a method is called from an object of a class. In other words, they’ll follow this general form:

List.Function ( ParameterList );

Earlier I mentioned that you can’t just randomly add elements to a list. Although you still can’t
add an element to any arbitrary index, you can append new elements to the end of a list using
append (), which accepts a single parameter of any type:

MyList.append ( "Four" );
MyList.append ( "Five" );
MyList.append ( "Six" );
MyList.append ( "Seven" );
print "There are now", len ( MyList ), "elements in MyList."

This will produce:

There are now 8 elements in MyList.

As you can see, four integer elements were appended to the end of the list, giving you eight total
indexes (0-7).

In addition to appending single elements, you can append an entire separate list as well with the
extend () function. This parameter takes a single list as its parameter.

List0 = [ 0, 1, 2, 3 ]
print List0;
List1 = [ 4, 5, 6, 7 ]
print List1;
List0.extend ( List1 )
print List0

6. INTEGRATION: USING EXISTING SCRIPTING SYSTEMS
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This example produces the following output:

[0, 1, 2, 3]
[4, 5, 6, 7]
[0, 1, 2, 3, 4, 5, 6, 7]

Lastly, let’s take a look at insert (). This function allows a new element to be inserted into the list
at a specific index, pushing everything beyond that index over by one to make room.

MyList = [ "Game", "Mastery." ]
print MyList
MyList.insert ( 1, "Scripting" )
print MyList

The output for this example would be:

['Game', 'Mastery']
['Game', 'Scripting', 'Mastery']

It’s all pretty straightforward stuff, but as you can see, they make lists a great deal more flexible.

The last thing I want to mention before moving on is that lists, as you might imagine, can be nest-
ed in a number of ways. Among other things, this can be used to simulate multi-dimensional
arrays. Here’s an example:

SuperList = [ "Super0", "Super1", "Super2" ]
SubList0 = [ "Sub0", "Sub1", "Sub2" ]
SubList1 = [ "Sub0", "Sub1", "Sub2" ]
SubList2 = [ "Sub0", "Sub1", "Sub2" ]
SuperList [ 1 ] = SubList1
print SuperList
print SuperList [ 1 ]
print SuperList [ 1 ][ 1 ]

When executed, this example produces the following output:

['Super0', ['Sub0', 'Sub1', 'Sub2'], 'Super2']
['Sub0', 'Sub1', 'Sub2']
Sub1

Notice how the first line of the output shows SubList1 literally nested inside SuperList. Also notice
that there are three different levels of indexing; printing out SuperList in its entirety, printing
SubList1 in its entirety as SuperList [ 1 ], and printing out SubList [ X ] individually as
SuperList [ 1 ][ X ].
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Of course, just as you saw in Lua, the issue of references rears its ugly head again. After assigning
SubList1 to SuperList [ 1 ] in the last example, check out what happens when I make a change
to SubList 1:

print "SubList1:       ", SubList1
print "SuperList [ 1 ]:", SuperList [ 1 ]
SubList1 [ 1 ] = "XYZ";
print "SubList1:       ", SubList1
print "SuperList [ 1 ]:", SuperList [ 1 ]

Here’s the output:

SubList1:        ['Sub0', 'Sub1', 'Sub2']
SuperList [ 1 ]: ['Sub0', 'Sub1', 'Sub2']
SubList1:        ['Sub0', 'XYZ', 'Sub2']
SuperList [ 1 ]: ['Sub0', 'XYZ', 'Sub2']

Ah-ha! Changes made to SubList1 affected the contents of SuperList [ 1 ], because they’re both
pointing to the same data. As always, be very careful when dealing with references in this manner.
I am talking about logic errors you’ll have flashbacks of 20 years from now. Tread lightly, soldier!

Expressions
Python’s expressions work in a way that’s quite similar to C, Lua, and most of the other languages
you’re probably used to. Tables 6.7 through 6.10 contain the primary operators you have to work
with.
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Table 6.7  Python Arithmetic Operators
Operator Function

+ Add/concatenate (strings)

- Subtract

* Multiply/multiply (strings)

/ Divide

% Modulus

** Exponent

- Unary negation
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Table 6.8  Python Bitwise Operators
Operator Function

<< Shift left

>> Shift right

& And

^ Xor

| Or

~ Unary not

Table 6.9  Python Relational Operators
Operator Function

< Less than

> Greater than

<= Less than or equal

>= Less than or equal

!=, <> Not equal (<> is obsolete)

== Equal

Table 6.10  Python Logical Operators
Operator Function

and And

or Or

not Not
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Here are a few general-purpose notes to keep in mind when dealing with Python expressions:

■ Like Lua, Python’s logical operators are spelled out as short mnemonics, rather than
symbols. For example, logical and is and rather than &&.

■ Assignments cannot occur in expressions. Python has removed this because of its signifi-
cant probability of leading to logic errors, as it often does in C. With Python there’s no
possibility of confusing == with =, because = won’t compile if it’s found in an expression.

■ Zero is always regarded as false, whereas any nonzero value is true.
■ Strings and numerics shouldn’t appear in arithmetic expressions together. Python won’t

convert either value to the data type of the other, and a runtime error will result.

Conditional Logic
Now that you’ve had a taste of Python’s expression syntax, you can put it to use with some condi-
tional logic. Python relies on one major conditional structure. Not surprisingly, it’s the good ol’
if. Here’s an example:

Switch = "Blue"
Access = 0
print "Evaluating security..."
if Switch == "Blue":

print "Clearance Code Blue - File Access Granted."
Access = 1

elif Switch == "Green":
print "Clearance Code Green - Satellite Access Granted."
Access = 2

else:
print "Clearance Code Red - Weapons Access Granted."
Access = 3

print "...done."

The output from this example, by the way, will look like this:

Evaluating security...
Clearance Code Blue - File Access Granted.
...done.

There’s a lot to learn about Python from this example alone, so let’s take it from the top. The
first thing you see is the general form of the if statements themselves. Instead of C’s form, which
looks like this:

if ( Expression )
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Python’s form looks like this:

if Expression:

Also, else if has been replaced with elif, a more compact version of the same thing. Make sure
to note that all clauses; the initial if, the zero or more elif’s, and the optional else; all must end
with a colon (:).

The other important lesson to learn here is how a code block is denoted in Python. In C, you rely
on curly braces, so an if statement can look like any of the following and still be considered valid:

if ( X < 0 ) { X = 0; Y = 1; }

if ( X < 0 ) {
X = 0; Y = 1;
}

if ( X < 0 )
{

X = 0;
Y = 1;

}

if ( X < 0 )
{ X = 0;

Y = 1;
}

In other words, C is a highly free-form language. The placement of elements within the source
file is irrelevant as long as the order is valid. So, as long as if is followed by a parenthesized
expression, which is in turn followed by an opening curly brace, a code block, and a closing curly
brace, you can insert any configuration of arbitrary whitespace and line breaks.

Python is significantly different in this regard. Although the language overall is still relatively free-
form, it does impose some important restrictions on indentation for the purpose of code blocks,
because that’s how a code block’s nesting level and grouping is defined. There aren’t any curly
braces, no BEGIN and END pairs, just lines of code that can be grouped and nested based on how
many tabs inward they reside.

Remember, there’s no switch equivalent to be found; such a construct is instead simulated with
if…elif sequences (which is done in C at times as well).
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Here are a few more examples to help the paint dry:

X = 0
Y = 1

if X > 0:
print "X is greater than zero."

if X <= 0 or Y != 1:
print "X is less than or equal to zero."

if X or Y:
print "Between X and Y, one, the other, or both are true."

Z = "Quantum Foam"
if ( X + Y ) and Z:

print "X + Y and Z are both true."

And the output:

X is less than or equal to zero.
Between X and Y, one, the other, or both are true.
X + Y and Z are both true.

Iteration
Moving right along, the next stop on the route is iteration. Python provides two common looping
structures, while and for. Despite the Python-esque syntax changes, while operates just like its C
counterpart, so let’s have a look at it:

Iteration = 0
while Iteration < 16:

print "Loop Iteration:", Iteration
Iteration = Iteration + 1

When run, this script will produce the following:

Loop Iteration: 0
Loop Iteration: 1
Loop Iteration: 2
Loop Iteration: 3
Loop Iteration: 4
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Loop Iteration: 5
Loop Iteration: 6
Loop Iteration: 7
Loop Iteration: 8
Loop Iteration: 9
Loop Iteration: 10
Loop Iteration: 11
Loop Iteration: 12
Loop Iteration: 13
Loop Iteration: 14
Loop Iteration: 15

While I am on the topic of loops, I should cover some of the required loop-handling statements
that most languages provide. Like C, Python gives you break and continue, and they function just
like you’d expect them to. break causes the flow of the program to immediately jump to just out-
side the loop, effectively avoiding the rest of the loop’s lifespan. continue causes the current itera-
tion of the loop to terminate prematurely and the next one to begin.

Another statement worth mentioning when discussing Python loops is else.What is else doing in
a discussion of loops you ask? Well, Python allows loops to provide an else clause that is guaran-
teed to execute if the loop terminates for any reason other than a break statement. So, if a loop is
set to run 32 times, the else clause will execute after the 32nd iteration. However, if the loop pre-
maturely breaks for whatever reason, the else clause will be ignored. Here’s an example:

print "First Loop - No Break"
Iteration = 0
while Iteration < 8:

print "Loop Iteration:", Iteration
Iteration = Iteration + 1

else:
print "Else clause activated."

print
print "Second Loop - With Break"
Iteration = 0
while Iteration < 8:

print "Loop Iteration:", Iteration
Iteration = Iteration + 1
if Iteration == 3:

break;
else:

print "Else clause activated."
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And here’s the output:

First Loop - No Break
Loop Iteration: 0
Loop Iteration: 1
Loop Iteration: 2
Loop Iteration: 3
Loop Iteration: 4
Loop Iteration: 5
Loop Iteration: 6
Loop Iteration: 7
Else clause activated.

Second Loop - With Break
Loop Iteration: 0
Loop Iteration: 1
Loop Iteration: 2

Next up are for loops, which work slightly differently than they do in C. In Python, a for loop is
given just two things— an iterator variable and a list (yes, the data structure discussed earlier).
The iterator then traverses the list, one by one, executing the body of the loop each time. So, for
example:

for X in [ 0, 1, 2, 3 ]:
print X

This code produces the following output:

0
1
2
3

This may seem a bit odd to you. If you have to explicitly declare a list for every range of numbers
you want to iterate through, how on earth would you do any sort of complex or large-scale loops?
How long is it going to take to type the list declaration for a loop that needs to iterate 100,000
times? Also, what about trickier progressions such as a loop that skips every 17 numbers from 33
to 261? It all seems far too complex to be serious. Besides, any explicitly defined range can’t be
changed at runtime, which imposes yet another huge limitation.

Fortunately, Python includes a function that allows you to easily generate procedural lists (proce-
dural meaning the list is generated based on some predefined formula or procedure rather than
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a human hardcoding each value individually). For example, say you want to loop through a list
1024 times. Rather than type out all 1024 comma separated list elements, you simply do this:

for X in range ( 0, 1023 ):
print X

(You’ll have to run this yourself, my editors wouldn’t appreciate a dump of 1024 lines. :)

range () automatically generates and returns a list consisting of each digit from 0 to 1023, and
the loop works. You can also define a step, along which the iterator should progress as it moves
from one end of the range to the other. So if you want to modify the last example to count from
0 to 1023 but skip every four numbers along the way, you can do this:

for X in range ( 0, 1023, 4 ):
print X

Easy as pi. Just for reference, here’s a pseudo-prototype for the range () function:

list range ( Start, End, Step );

Remember that Step is optional, and defaults to 1.

Functions
The last piece of the puzzle in understanding the basics of the Python language is the function.
Like any good language, Python lets you create user-defined functions you can call by name, pass
parameters to, and receive values from. Here’s an example of a simple Python function for deter-
mining the maximum of two numbers:

def GetMax ( X, Y ):
print "GetMax () Parameters:", X, Y
if X > Y:

return X
else:

return Y

print GetMax ( 16, 24 )

The output for this would be:

GetMax () Parameters: 16 24
24
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This simple example uses the def keyword (short for define) to create a new function called GetMax
(). This function accepts two parameters, X and Y. As you can see, parameters need only be listed;
the typeless nature of Python means you don’t have to declare them with data types or anything
like that. As for the function body itself, it follows the same form that loops and the if construct
have. The def declaration line is terminated with a colon, and every line underneath it that com-
poses the function body is indented by one tab.

Once inside the function, parameters can be referenced just like any other local variable, and the
return keyword functions just like in C, immediately exiting the function and optionally sending a
return value back to the caller.

As you can see, functions are pretty straightforward in Python. The only real snag to worry about
is global variables. Local variables are created within the function just like any other variable, so
there’s nothing to worry about there. Globals, however, are slightly different. Globals can be refer-
enced within a function and retain their global value, but if they’re assigned a new value, that value
will reset to its original global value when the function returns. The only way to permanently alter
a global’s value from within a function is to import it into the function’s scope using the global
keyword. Here’s an example:

GlobalInt = 256
GlobalString = "Hello!"

def MyFunc ():
print "Inside MyFunc ()"
GlobalInt = 128
global GlobalString
GlobalString = "Goodbye!"
print GlobalInt, GlobalString

MyFunc ()

print
print "Outside MyFunc ()"
print GlobalInt, GlobalString

When you run the script, you’ll see this:

Inside MyFunc ()
128 Goodbye!

Outside MyFunc ()
256 Goodbye!
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When MyFunc () is entered, it gives both global variables new values. It then prints them out, and
you can see that both variables are indeed different. However, when the function returns and you
print the globals again from within their native global scope, you find that GlobalInt has seeming-
ly gone from 128, the value MyFunc () set it to, back to 256. GlobalString, on the other hand,
seems to have permanently changed from "Hello!" to "Goodbye!”. This is because it’s the only one
that was imported beforehand with global.

At this point, you’ve learned quite a bit about the basic Python language. You understand vari-
ables, data types, and expressions, as well as list structures, conditional logic, iteration, and func-
tions. Armed with this information, it’s time to set your sights on integration.

Integrating Python with C
Integrating Python with C is not particularly difficult, but there are a number of details to keep
track of along the way. This is due to the fact that the API provided by Python for interfacing its
runtime environment with a host application is somewhat fine grained. Rather than provide a
small set of features that allow you to simply and easily perform basic tasks like loading scripts,
calling functions, and so on, you’re forced to do these things “manually” by fashioning this high-
er-level logic from a sequence of lower-level calls.

Fortunately, it’s still a pretty easy job overall, and as long as you follow the next few pages closely,
you shouldn’t have any troubles. This section will cover the following topics:

■ How to load and execute Python scripts in C.
■ How to call Python functions from C, with parameters and return values.
■ How to export C functions so they can be called from within Python scripts.

Just like you did when studying Lua, you’ll first practice these skills by testing them with some
simple test scripts, and then apply them to the bouncing alien head demo that was originally
coded in C.

Compiling a Python Project
The first step in compiling a Python project is making sure that your compiler’s paths for include
and library files are set to the Python installation’s include/ and libs/ paths. You can then use the
#include directive to include the main Python header file, Python.h:

#include <Python.h>

The last step is including Python22.lib with your project. From here, you’ve done everything you
need get started with Python. At least, in theory.
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The Debug Library
In practice, there’s a slight issue with the Python.org 2.2 distribution; the python22_d.lib file is
missing, at least in its compiled form. You can download the source and build it yourself, but for
now, running any Python program will result in the following linker error:

LINK : fatal error LNK1104: cannot open file "python22_d.lib"

The reason for this error is that python22_d.lib is the debug version of the library, with extra
debug-specific features. When you compile your project in debug mode, special flags in the
Python library’s header files will attempt to use this particular .LIB file, which won’t be available
and thus result in the error. Rather than waste your time compiling anything, however, it’s a lot
easier to resolve this situation by simply forcing Python to use the non-debug version in all cases.

To do this, open up pyconfig.h in the Python installations include/ directory. Go to line 335,
which should be the first in this block of code:

#ifdef _DEBUG
#pragma comment(lib,"python22_d.lib")
#else
#pragma comment(lib,"python22.lib")
#endif
#endif /* USE_DL_EXPORT */

The first change to make is on the second line in this block. Change python22_d.lib to
python22.lib, and you should be left with this:

#ifdef _DEBUG
#pragma comment(lib,"python22.lib")
#else
#pragma comment(lib,"python22.lib")
#endif
#endif /* USE_DL_EXPORT */

The next and final change to make is right below on line 342:

#ifdef _DEBUG
#define Py_DEBUG
#endif

Just comment these three lines out entirely, so they look like this:

/*
#ifdef _DEBUG
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#define Py_DEBUG
#endif
*/

That’s everything, so save pyconfig.h with the changes and the Python library will use the non-
debug version of python22.lib in all cases. Everything should run smoothly from here on out.

Initializing Python
Within your program, the initialization and shut down of Python is quite simple. Just call
Py_Initialize () at the outset, and Py_Finalize () before shutting down. Within these two calls,
the Python system will be activated and ready
to use. Notice that there’s no “instance” of
the Python runtime environment; you sim-
ply initialize it once and use it as-is through-
out the lifespan of your program:

Py_Initialize ();
... Python application logic ...
Py_Finalize ();

With the simplest possible Python applica-
tion skeleton in place, you’re ready to get
started with an actual project. To test your
Python integration capabilities, let’s start by
writing some scripts that demonstrate com-
mon integration tasks, like loading scripts,
calling functions, and stuff like that.

Python Objects
One of the most important parts in understanding how Python integration works is understand-
ing Python objects. A Python object is a structure that represents some peice of Python-related data.
It may be an integer or string value residing somewhere within a script, a script’s function, or
even an entire script. Virtually everything you’ll do as you embed Python in your application will
involve these objects, so it’s important to comfortably understand them as soon as possible.

Python objects are just C structures, but you always deal with pointers to the objects, never the
objects themselves. Here’s a sample declaration of some Python objects:

PyObject * pMyObject;
PyObject * pMyOtherObject;

PYTHON
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actually make everything work, with a rea-
sonable level of understanding. Overall, it
should be more than enough to get you
started with game Python scripting.
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The actual objects are created by functions in the Python integration API, so you don’t have to
worry about that just yet.

Reference Counting
Python objects are vital to the overal scripting system, and as such, are often used in a number of
places at once. Because of this, you can’t safely free a Python object arbitrarily, because you have
no idea whether something else is using it. To solve this problem, Python objects have a reference
count, which keeps track of how many entities are using the object at any given time. The refer-
ence count of a non-existent or unused object is always zero, and every time a new copy of that
objects pointer is made for some new purpose, it’s the job of the code responsible to increment
the reference count.

Because of this, you’ll never explicitly free Python objects yourself. Rather, you’ll simply decre-
ment them to let the scripting system know that you’re done with them. Once an object’s refer-
ence count reaches zero, the system will know it’s safe to get rid of it. To decrement a Python
object’s reference count, we use Py_XDECREF ():

Py_XDECREF ( pMyOtherObject );
Py_XDECREF ( pMyObject );

Notice that I decrement the reference counts in the reverse of the order the objects were
declared (or more specifically, as you’ll see, the order in which they’re used). This ensures that
any possible interconnections between the objects elsewhere in the system are “untangled” in the
proper order.

So in a nutshell, Python objects will form the basis for virtually every peice of data you use to
interact with the system, and it’s important to decrement their reference counts when you’re
done using them. Figure 6.16 demonstrates the idea of Python objects and reference counts.

Loading a Script
Python scripts are loaded into C with a function called PyImport_Import (). Because it’s going to
take a bit of explanation, let’s just look at the code first:

PyObject * pName = PyString_FromString ( "test_0" );
PyObject * pModule = PyImport_Import ( pName );
if ( ! pModule )
{

printf ( "Could not open script.\n" );
return 0;

}
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Simply put, this code loads a script called test_0.py into the pModule object. What’s all this extra
junk, though? The first thing you’ll notice is that you’re creating a Python object called pName. It’s
created in a function called PyString_FromString (), which takes a C-string and creates a Python
object around it. This allows the string to be accessed and manipulated within the script, which
will be necessary in the next line down. Note also that the file extension was omitted from the
filename.

Once you’ve created the pName string object, it’s passed to PyImport_Import (), which loads the
script into memory and returns a pointer in the form of the pModule pointer. What you’ve done
here is import a module. A “module” in Python terms is a powerful grouping mechanism that
resembles the package system in Java. All you really need to know, however, is that the module
you’ve just imported contains your script.

Like Lua, any code in the global scope is automatically executed upon the loading of a script. To
test this, let’s write a simple script and run it with the previous code. Here’s test_0.py:

PYTHON
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IntVar = 256
FloatVar = 3.14159
StringVar = "Python String"

# Test out some conditional logic
X = 0
Logic = ""
if X:

Logic = "X is true"
else:

Logic = "X is false"

# Print the variables out to make sure everything is working
print "Random Stuff:"
print "\tInteger:", IntVar
print "\t  Float:", FloatVar
print "\t String: " + '"' + StringVar + '"'
print "\t  Logic: " + Logic

By saving this as test_0.py and loading it with the PyImport_Import () routine, you’ll see the fol-
lowing results printed to the console:

Random Stuff:
Integer: 256
Float: 3.14159
String: "Python String"
Logic: X is false

Calling Script-Defined Functions
Executing an entire script at load-time is fine, but real control comes from the ability to call spe-
cific functions at arbitrary times. To get things started, let’s create a new script, this one called
test_1.py, and add a function to it:

def GetMax ( X, Y ):

# Print out the command name and parameters
print "\tGetMax was called from the host with", X, "and", Y

# Perform the maximum check
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if X > Y:
return X

else:
return Y

The GetMax () function accepts two integer parameters and returns whichever value is greater.
The question is: how can this function be called from C?

The Module Dictionary

To understand the solution to this problem, you need to understand a script module’s dictionary.
The dictionary of a module is a data structure that maps all of the script’s identifiers to their
respective code or data. By searching the dictionary with a specific identifier string, a Python
object wrapping that identifier’s associated code or data will be returned. In this case, you want to
use the script’s dictionary to get a Python object containing the GetMax () function, and you’d
like to use the string "GetMax" to do so.

Fortunately, the Python/C integration API makes this pretty easy. The first thing you need to do
is declare a new Python object that will store the dictionary or the module. Here’s the code for
doing so, along with the code for loading the new test_1.py script:

// Load a more complicated script
printf ( "Loading Script test_1.py...\n\n" );
pName = PyString_FromString ( "test_1" );
pModule = PyImport_Import ( pName );
if ( ! pModule )
{

printf ( "Could not open script.\n" );
return 0;

}

// Get the script module's dictionary
PyObject * pDict = PyModule_GetDict ( pModule );

After calling PyModule_GetDict () with the pModule pointer that contains the script, pDict will
point to the module’s dictionary and give you access to all the identifier mappings you’ll ever
need. With the dictionary in hand, you can use the PyDict_GetItemString () function to return a
Python object corresponding to whatever identifier you specify. Here’s how you can get the
GetMax () function object:

PyObject * pFunc = PyDict_GetItemString ( pDict, "GetMax" );

PYTHON



270

You have the function, so now what? Now, you need to worry about parameters. You know GetMax
() accepts two of them, but how are you going to pass them? You’ll see how in just a moment,
when you learn how to call the function, but for now, you need to focus on how the parameters
are stored during this process. For this, I’ll briefly cover another Python aggregate data structure,
similar to the list, called the tuple.

Passing Parameters

Without getting into too much detail, tuples are used by Python to pass parameters around in
inter-langauge function calls. At least, that’s all you need to know about them. For the time being,
just think of tuples as a list- or array-like structure. Simply put, you need to declare a new tuple,
fill it with the parameters you want to send, and pass the tuple’s parameter to the right places.
Let’s start by creating a tuple and adding the two integer parameters GetMax () accepts, using the
PyTuple_New () function:

PyObject * pParams = PyTuple_New ( 2 );

pParams now points to a two-element tuple. Note, of course, that the code requested a tuple of two
elements because that’s the number of parameters you want to pass. To set the values of each of
the two elements, you use the PyTuple_SetItem () functions. Of course, you can only add Python
objects to the tuple, so you’ll use the PyInt_FromLong () function to convert an integer literal
value into a valid object. Check it out:

PyObject * pCurrParam;
pCurrParam = PyInt_FromLong ( 16 );
PyTuple_SetItem ( pParams, 0, pCurrParam );
pCurrParam = PyInt_FromLong ( 32 );
PyTuple_SetItem ( pParams, 1, pCurrParam );

The pCurrParam object pointer is first declared as temporary storage for each new integer object
you create. PyInt_FromLong () is then used to convert the specified integer value (16, in this case)
to a Python object, the pointer to which is stored in pCurrParam. PyTuple_SetItem () is then called.

The first parameter this function accepts is the tuple, so you pass pParams. The next is the index
into the tuple to which you’d like to add the item, so 0 is passed. Finally, pCurrParam is the actual
object whose value you’d like to add. So, this call tells the function to add pCurrParam to element
zero of the pParams tuple. The function is repeated for index one, at which point the tuple con-
tains 16 and 32. These are the parameters you’d like to send GetMax ().

Calling the Function and Receiving a Return Value

The last step is of course to call the function and grab the return value it produces. This can 
be done in two lines. The first line actually calls the function and stores the return value in a
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locally defined Python object pointer. The second call extracts the raw value from this object.
Check it out:

PyObject * pMax = PyObject_CallObject ( pFunc, pParams );
int iMax = PyInt_AsLong ( pMax );

printf ( "\tResult from call to GetMax ( 16, 32 ): %d\n\n", iMax );

PyObject_CallObject () is the call to make when invoking a script-defined function, provided you
have a Python object that wraps the desired function. Fortunately you do, so you pass pFunc. You
also pass the pParams tuple, giving the function its parameters. PyObject_CallObject () also returns
a Python object of its own, containing the return value. Because you’re expecting an integer, you
use the PyInt_AsLong () function to read it. When this code executes, you’ll see the following
results:

GetMax was called from the host with 16 and 32
Result from call to GetMax ( 16, 32 ): 32

Out of 16 and 32, the function returned 32 as the larger of the two, just as it should have.

Exporting C Functions
There’s a lot you can do with the capability to call script-defined functions. Indeed, this process
forms the very backbone of game scripting; if, at any time, the game engine can call a specific
script-defined function, it can make the script do anything it needs it to do, exactly when neces-
sary. This is only one side of the coin, however. In order to really get work done, the script needs
to be able to call C-defined functions as well.

Defining the Function

In order to to do this, you first need to properly define a host API function. To keep things sim-
ple, I’ll use the same host API function example created for the Lua demo; a function that prints
a string a specified number of times. The logic to such a function is obviously trivial, but as you’d
expect, the real issue is defining the function in such a way that it’s “compatible” with Python.
Let’s start with the code:

PyObject * RepeatString ( PyObject * pSelf, PyObject * pParams )
{

printf ( "\tRepeatString was called from Python:\n" );

char * pstrString;
int iRepCount;
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// Read in the string and integer parameters
if ( ! PyArg_ParseTuple ( pParams, "si", & pstrString, & iRepCount ) )
{

printf ( "Unable to parse parameter tuple.\n" );
exit ( 0 );

}

// Print out the string repetitions
for ( int iCurrStringRep = 0;

iCurrStringRep < iRepCount;
++ iCurrStringRep )

printf ( "\t\t%d: %s\n", iCurrStringRep, pstrString );

// Return the repetition count
return PyInt_FromLong ( iRepCount );

}

Let’s start with the function’s signature. RepeatString () accepts two parameters; a PyObject point-
er called pSelf, and a second object pointer called pParams. pSelf won’t be necessary for these
purposes, so forget about it. pParams, on the other hand, is a tuple containing the parameters that
were passed to you by the script. Naturally, this is an important one. The function also returns a
PyObject pointer, which allows the return value to be sent directly back to Python without a lot of
fuss.

Once inside the function, you’ll usually want to start by reading the parameters. Of course, this
isn’t as easy as it would be in pure C or C++, because your parameters are stuffed inside the
pParams tuple and therefore not quite as accessible. In order to read parameters passed from
Python, use the PyArg_ParseTuple () function. This function accepts a tuple pointer, a format
string, and a variable number of pointers to receive the parameter values. Of course, this deserves
a bit more explanation.

The tuple pointer parameter is simple. You first pass pParams so the function knows which tuple
to read from. The next parameter, however— the format string—isn’t quite as intuitive at first
glance. Essentially what this function does is uses a string of characters to express which parame-
ters are to be read, and in what order. In this example, PrintStuff () wants to read a string and
integer, in that order, so the string "si" is passed. If you wanted to read an integer followed by a
string, it would be "is". If you wanted to read an integer, followed by two strings and another
integer, it would be "issi". Get it?

Following the format string are the variables that will receive the parameter values. Think of this
part of the function as if it were the values you pass printf () after the string. Once again, order
matters, so you pass & pstrString, followed by & iRepCount to receive the values.
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The last order of business within a host API function (aside from the intended logic itself) is the
return value. Because you’re returning Python objects, you have to send something back. If there’s
nothing you want to return, just use PyInt_FromLong () to generate the integer value zero. In your
case, however, you’ll return the specified repetition count just for the sake of returning some-
thing. PyInt_FromLong () is still used, however.

The Host API

You have your function squared away, so the next step is defining a host API in which to store 
it. Unlike Lua, in which separate functions are registered one at a time with the Lua state with
separate function calls, the host API in Python is added in one fell swoop. In order to do this 
in a single call, you can prepare an array ahead of time that fully describes every function in the
host API.

Each element of this array is a PyMethodDef structure, which consists of a string function name, a
function pointer adhering to the prototype, some flags, and a descriptive string that defines the
function’s intended behavior. Here’s some code for declaring a host API array (known in a
Python terms as a function table):

PyMethodDef HostAPIFuncs [] =
{

{ "RepeatString", RepeatString, METH_VARARGS, NULL },
{ NULL, NULL, NULL, NULL }

};

I’m using curly brace notation to define the array within its declaration. The first PyMethodDef rep-
resents the RepeatString () function. The first field’s value is "RepeatString", which is the string
that Python will look for within your scripts in order to determine when the function is being
called. The next is RepeatString, a pointer to the function. Next up is METH_VARAGS. What this is
doing is telling Python that the function accepts a variable number of arguments. This is the best
bet for all of your functions, so just get in the habit of using it. The last parameter is set to NULL;
otherwise it would be a string describing the RepeatString () function. Because this doesn’t really
help you much, just ignore it.

You’ll also notice that a second element is defined, one in which every field is NULL. This is
because you won’t be telling Python how many functions are in this array; rather, it waits until it
hits this all-NULL “sentinel”. This is the sign to stop reading from the array.

You’re now ready to do something with the host API, but what? Oddly enough, the way to make
these functions accessible to your script is to create a new module, and add the functions to this
new module’s dictionary. This will result in an otherwise empty module with three functions,
ready to be used by the script. To create a new module, call PyImport_AddModule (), like so:
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// Create a new module to hold the host API's functions

if ( ! PyImport_AddModule ( "HostAPI" ) )
printf ( "Host API module could not be created." );

This function simply accepts a string containing the module’s desired name. In this case, name it
HostAPI. You already have the function table prepared, so add it to the module:

if ( ! Py_InitModule ( "HostAPI", HostAPIFuncs ) )
printf ( "Host API module could not be initialized." );

Py_InitModule () initializes a module by adding the function table specified in the second param-
eter to its dictionary. The HostAPI module now contains the functions defined in the HostAPIFuncs
[] array, which refers simply to RepeatString () in this example.

Calling the Host API From Python

Within the demo program, a new module called HostAPI exists with a record of the RepeatString
() function. The question now is how this function can be called. To start things off, the script
itself needs to be aware of the HostAPI module. In order to call its functions, the module needs to
be brought into the script’s scope. This is done with the import keyword. Let’s modify test_1.py to
include this at the top:

import HostAPI

import is something like the C’s preprocessor’s #include directive, but as you can see, it’s not limit-
ed to working solely with files. Although most modules imported by a Python script are stored on
the disk initially, your HostAPI module was created entirely at runtime and therefore only exists in
memory. However, because the Python library was
made aware of HostAPI’s existence with the
PyImport_AddModule () function, it knew not to
look for a HostAPI.py file when it executed the
import statement and instead simply imported
the already in-memory version.

The only snag here is that you now have to repo-
sition the time at which you load test_1.py.
Currently, you’re declaring and initiailizing the
HostAPI module after the script is loaded, which
will cause a problem with the addition of the import
keyword. Python will execute import as soon as the script is loaded, and because this is taking
place before you add your module, it won’t be able to find anything by the name of HostAPI and
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will terminate the loading process. To remedy this, remember to define any modules you’d like
your scripts to use before loading the scripts:

// Create a new module to hold the host API's functions
if ( ! PyImport_AddModule ( "HostAPI" ) )

printf ( "Host API module could not be created." );

// Create a function table to store the host API
PyMethodDef HostAPIFuncs [] =
{

{ "RepeatString", RepeatString, METH_VARARGS, NULL },
{ NULL, NULL, NULL, NULL }

};

// Initialize the host API module with your function table
if ( ! Py_InitModule ( "HostAPI", HostAPIFuncs ) )

printf ( "Host API module could not be initialized." );

// Load a more complicated script
printf ( "Loading Script test_1.py...\n\n" );
pName = PyString_FromString ( "test_1" );
pModule = PyImport_Import ( pName );
if ( ! pModule )
{

printf ( "Could not open script.\n" );
return 0;

}

Now, Python will have a record of HostAPI when test_1.py imports it, and everyone will be happy.
Moving back to the script itself, you’re now capable of calling any HostAPI function (of which
there’s still just one). To test your RepeatString () function, let’s write a new Python function
called PrintStuff () that you can call from your program to make sure everything worked:

def PrintStuff ():
# Print some stuff to show we're alive
print "\tPrintStuff was called from the host."
# Call the host API function RepeatString () and print out its return
# value
RepCount = HostAPI.RepeatString ( "String repetition", 4 )
print "\tString was printed", RepCount, "times."

PYTHON



276

Everything should look simple enough, but notice that in the call to RepeatString (), you had to
prefix it with HostAPI, the name of the module in which it resides, forming HostAPI.RepeatString
(). This is done for the same reason you prefixed the Lua host API functions in the last section
with HAPI_—to help prevent name clashes. This way, if the script already defined a function called
RepeatString (), the inclusion of the HostAPI module wouldn’t cause a problem. Python always
knows exactly which module you’re attempting to work with.

When this code is executed, you should see the following on your console:

PrintStuff was called from the host.
RepeatString was called from Python:

0: String repetition
1: String repetition
2: String repetition
3: String repetition

String was printed 4 times.

That’s it! With the capability to call Python functions from C and vice versa, you’ve established a
complete bridge between the two languages, giving you a full channel of communication. To real-
ly put this to the test, finish what you started and use your Python integration skills to recode the
bouncing alien head demo with a Python core.
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Re-coding the Alien Head Demo
You’ve hopefully become comfortable by now with the basic process of Python integration, so you
can now try something a bit more dynamic and use Python to rewrite the central logic behind
the bouncing alien head demo initially coded in C earlier in the chapter. I already covered a lot
of the general theory behind how this recoding process is laid out in the Lua section, so make
sure to check it out there if you haven’t already.

Initial Evaluations
You adequately surveyed the landscape of this particular project in the Lua section earlier. You
determined that the best part of the demo to recode was the per-frame logic; the code that moves
each alien head around and checks for collisions. This means that information about each alien
is maintained within the script. To this, the script needs to define two functions: Init (), which
initializes the alien head array before entering the main loop, and HandleFrame (), which draws
the next frame to the screen and handles the movement and collision checks for each sprite.

In order to do this, the host API of the program must expose functions for drawing sprites, back-
ground images, and blitting the back buffer to the screen. It also needs to be able to return ran-
dom numbers, the status of timers, and other such miscellany. Again, however, if you’re looking
for more specific information on how the separation between the script and the host application
will work, check out the Lua section, where I covered all of this in more depth. The organization
of a scripting project is usually language independent, unless you’re focusing on a particularly
language-specific feature. Because of this, the technique covered in the Lua provides helpful per-
spective here.

In short, the main loop of the original pure-C demo will be gutted entirely in favor of the new
Python-defined HandleFrame () function.

The Host API
The host API you’ll expose to Python will include the same set of functions covered in the Lua
version of this demo. The code to each function is rather simple and self-explanatory, so I won’t
waste the page space listing them here. You’re always encouraged to refer to the source on the
companion CD; however, the demos for this chapter can be found in Programs/Chapter 6/. What
are useful, however, are the function prototypes, listed here:

PyObject * HAPI_GetRandomNumber ( PyObject * pSelf, PyObject * pParams );
PyObject * HAPI_BlitBG ( PyObject * pSelf, PyObject * pParams );
PyObject * HAPI_BlitSprite ( PyObject * pSelf, PyObject * pParams );
PyObject * HAPI_BlitFrame ( PyObject * pSelf, PyObject * pParams );
PyObject * HAPI_GetTimerState ( PyObject * pSelf, PyObject * pParams );
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Remember, for a host API function to be compatible with Python, it must return a PyObject point-
er and accept two PyObject pointers as parameters. Also remember that you always prefix host
API functions with HAPI_ to ensure that they don’t clash with any of the other names in the pro-
gram. Within each function, parameters are extracted using a format string and the
PyArg_ParseTuple () function, as you saw earlier. Values are returned in the form of Python
objects directly through C’s native return keyword. Here’s an example of the host API function
HAPI_GetRandomNumber ():

PyObject * HAPI_GetRandomNumber ( PyObject * pSelf, PyObject * pParams )
{

// Read in parameters
int iMin,

iMax;
PyArg_ParseTuple ( pParams, "ii", & iMin, & iMax );

// Return a random number between iMin and iMax
return PyInt_FromLong ( ( rand () % ( iMax + 1 - iMin ) ) + iMin );

}

The "ii" format string is passed to PyArg_ParseTuple () to let it know that two integers need to be
read from the parameter tuple. PyInt_FromLong () is used to convert the result of your random
number calculation to a Python object on the fly, a pointer to which is returned and subsequently
passed back to the caller within the script by return.

The New Host Application
The changes made to the original C demo, which is now the host application of the Python
demo, are straightforward and relatively minimal. In addition to including the definitions for
each host API function, it’s necessary to initialize and shut down Python before entering the
main loop. Furthermore, the main loop’s body is removed and replaced with a call to HandleFrame
(), and the loop itself is preceded by a call to Init ().

Let’s start with the initialization of Python. Because this involves a call to Py_Initialize (), the ini-
tialization of the HostAPIFuncs [] array, and the creation of the HostAPI module, it’s best to wrap it
all in a single function, which I call InitPython ():

void InitPython ()
{

// Initialize Python
Py_Initialize ();
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// Store the host API function table
static PyMethodDef HostAPIFuncs [] =
{

{ "GetRandomNumber", HAPI_GetRandomNumber, METH_VARARGS, NULL },
{ "BlitBG", HAPI_BlitBG, METH_VARARGS, NULL },
{ "BlitSprite", HAPI_BlitSprite, METH_VARARGS, NULL },
{ "BlitFrame", HAPI_BlitFrame, METH_VARARGS, NULL },
{ "GetTimerState", HAPI_GetTimerState, METH_VARARGS, NULL },
{ NULL, NULL, NULL, NULL }

};

// Create the host API module
if ( ! PyImport_AddModule ( "HostAPI" ) )

W_ExitOnError ( "Could not create host API module" );

// Add the host API function table
if ( ! Py_InitModule ( "HostAPI", HostAPIFuncs ) )

W_ExitOnError ( "Could not initialize host API module" );
}

Nothing here is new, but notice that suddenly the HostAPIFuncs [] array is quite a bit larger than
it was. Despite the now considerable function list, however, remember to append the last element
with a sentinel element consisting entirely of NULL fields. This is how Py_InitModule () knows
when to stop reading from the array. Forgetting this detail will almost surely result in a crash.

Shutting down Python is of course considerably easier, but it’s more than just a call to Py_Finalize
(). In addition, you have to remember to decrement the reference count for each Python object
we initialize. Because of this, each main object used by the program is global:

PyObject * g_pName;                       // Module name (filename)
PyObject * g_pModule;                     // Module
PyObject * g_pDict;                       // Module dictionary
PyObject * g_pFunc;                       // Function

Although I haven’t showed you the code that uses these modules yet, they should all look famil-
iar; they’re just global versions of the Python objects used in the last demo for managing mod-
ules, dictionaries, and functions. The point, however, is that this allows you to decrement them in
the ShutDownPython () function you call at the end of the program:
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void ShutDownPython ()
{

// Decrement object reference counts
Py_XDECREF ( g_pFunc );
Py_XDECREF ( g_pDict );
Py_XDECREF ( g_pModule );
Py_XDECREF ( g_pName );

// Shut down Python
Py_Finalize ();

}

Whether or not you’d like to keep all of your main Python objects global in a real project is up to
you; I primarily chose to do it here because it helps illustrate the process of initialization and
shutdown more clearly.

Within the demo’s main function, after loading the necessary graphics, Python is initialized and
the script is loaded. Fortunately, most of this job is done for you by the InitPython () function:

// Initialize Python
InitPython ();

// Load your script and get a pointer to its dictionary
g_pName = PyString_FromString ( "script" );
g_pModule = PyImport_Import ( g_pName );
if ( ! g_pModule )

W_ExitOnError ( "Could not open script.\n" );
g_pDict = PyModule_GetDict ( g_pModule );

As was the case in the last demo, the script is loaded by putting its filename without the 
extension into the g_pName object with PyString_FromString () (the script will of course be saved 
as script.py). A pointer to the module itself is stored in g_pModule after the script is imported 
with PyImport_Import (), and by making sure it’s not null, you can determine whether the script
was loaded properly. You finish the loading process by storing a pointer to the script module’s
dictionary in g_pDict.

Next up, the script needs to be given a chance to initialize itself. Even though you haven’t seen
the script or its Init () function yet, here’s the code to call it from the host:

// Let the script initialize the rest

g_pFunc = PyDict_GetItemString ( g_pDict, "Init" );
PyObject_CallObject ( g_pFunc, NULL );
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Because Init () won’t take any parameters, you just pass NULL instead of a python object array
when calling PyObject_CallObject. This is a flag to the function that lets it know not to look for a
parameter list.

The last section of code implements the main loop and shuts down Python upon the loop’s ter-
mination. It starts by reusing the g_pFunc pointer from the last example as a pointer to the script-
defined HandleFrame () function:

// Get a pointer to the HandleFrame () function
g_pFunc = PyDict_GetItemString ( g_pDict, "HandleFrame" );

// Start the main loop
MainLoop
{

// Start the current loop iteration
HandleLoop
{

// Let Python handle the frame
PyObject_CallObject ( g_pFunc, NULL );

// Check for the Escape key and exit if it's down
if ( W_GetKeyState ( W_KEY_ESC ) )

W_Exit ();
}

}

// Shut down Python
ShutDownPython ();

As you can see, the main loop of the program is now considerably simpler. All that’s necessary is a
call to PyObject_CallObject () to invoke your frame-handling function, and a check to make sure
the Escape key hasn’t been pressed to terminate the demo. Again, you pass NULL in place of a
parameter list, because HandleFrame () won’t accept any parameters. Everything is tied up nicely
with a call to ShutDownPython () when the loop breaks.

The Python Script
The last piece of the puzzle is a Python script to drive everything. The script can be found in
script.py, and begins with a declaration of the constants it will need:

ALIEN_COUNT         = 12               # Number of aliens onscreen
MIN_VEL             = 2                # Minimum velocity
MAX_VEL             = 8                # Maximum velocity
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ALIEN_WIDTH         = 128              # Width of the alien sprite
ALIEN_HEIGHT        = 128              # Height of the alien sprite
HALF_ALIEN_WIDTH    = ALIEN_WIDTH / 2  # Half of the sprite width
HALF_ALIEN_HEIGHT   = ALIEN_HEIGHT / 2 # Half of the sprite height

ALIEN_FRAME_COUNT   = 32               # Number of frames in the animation
ALIEN_MAX_FRAME     = ALIEN_FRAME_COUNT - 1 # Maximum valid frame

ANIM_TIMER_INDEX    = 0                # Animation timer index
MOVE_TIMER_INDEX    = 1                # Movement timer index

Again, however, like Lua, Python doesn’t support formal constants. As a result, you simply have to
use globals that use the traditional constant naming convention to simulate them. The “con-
stants” defined here are the same ones you saw in Lua; just enough to regulate the velocity, size,
quantity, and general behavior of the bouncing sprites.

Next up are the script’s globals (or at least, the ones that aren’t pretending to be constants). All
the script needs to maintain globally is the current frame of animation and the sprite array itself,
though, so this is a decidedly short section:

Aliens = []         # Sprites
CurrAnimFrame = 0   # Current frame in the alien animation

This leaves you with the script’s functions, of which there are two. The first is Init (), which as
you saw, is called once before entering the main loop. This gives the script a chance to initialize
the sprite array. This function, therefore, is concerned primarily with giving each on-screen alien
sprite a random location, velocity, and spin direction:

def Init ():

# Import your "constants "
global ALIEN_COUNT
global ALIEN_WIDTH
global ALIEN_HEIGHT
global MIN_VEL
global MAX_VEL

# Import the Aliens list
global Aliens

# Loop through each alien of the list and initialize it
CurrAlienIndex = 0
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while CurrAlienIndex < ALIEN_COUNT:

# Set a random X, Y location
X = HostAPI.GetRandomNumber ( 0, 639 - ALIEN_WIDTH )
Y = HostAPI.GetRandomNumber ( 0, 479 - ALIEN_HEIGHT )

# Set a random X, Y velocity
XVel = HostAPI.GetRandomNumber ( MIN_VEL, MAX_VEL )
YVel = HostAPI.GetRandomNumber ( MIN_VEL, MAX_VEL )

# Set a random spin direction
SpinDir = HostAPI.GetRandomNumber ( 0, 2 )

# Add the values to a new list
CurrAlien = [ X, Y, XVel, YVel, SpinDir ]

# Nest the new alien within the alien list
Aliens.append ( CurrAlien )

# Move to the next alien
CurrAlienIndex = CurrAlienIndex + 1

Lastly, there’s the HandleFrame () function, which draws the next frame and handles the move-
ment and collisions of the alien sprites. It also updates the current animation frame global:

def HandleFrame ():

# Import your "constants"

global ALIEN_COUNT
global ANIM_TIMER_INDEX
global MOVE_TIMER_INDEX
global ALIEN_FRAME_COUNT
global ALIEN_MAX_FRAME
global HALF_ALIEN_WIDTH
global HALF_ALIEN_HEIGHT

# Import the globals

global Aliens
global CurrAnimFrame
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# Blit the background

HostAPI.BlitBG ()

# Update the current frame of animation

if HostAPI.GetTimerState ( ANIM_TIMER_INDEX ):
CurrAnimFrame = CurrAnimFrame + 1
if CurrAnimFrame > ALIEN_MAX_FRAME:

CurrAnimFrame = 0

# Loop through each alien and draw it

CurrAlienIndex = 0
while CurrAlienIndex < ALIEN_COUNT:

# Get the X, Y location

X = Aliens [ CurrAlienIndex ][ 0 ]
Y = Aliens [ CurrAlienIndex ][ 1 ]

# Get the spin direction

SpinDir = Aliens [ CurrAlienIndex ][ 4 ]

# Calculate the final animation frame

if SpinDir:
FinalAnimFrame = ALIEN_MAX_FRAME - CurrAnimFrame

else:
FinalAnimFrame = CurrAnimFrame

# Draw the alien and move to the next

HostAPI.BlitSprite ( FinalAnimFrame, X, Y )
CurrAlienIndex = CurrAlienIndex + 1

# Blit the completed frame to the screen

HostAPI.BlitFrame ()
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# Loop through each alien and move it, checking for collisions

CurrAlienIndex = 0
while CurrAlienIndex < ALIEN_COUNT:

# Get the X, Y location

X = Aliens [ CurrAlienIndex ][ 0 ]
Y = Aliens [ CurrAlienIndex ][ 1 ]

# Get the X, Y velocity

XVel = Aliens [ CurrAlienIndex ][ 2 ]
YVel = Aliens [ CurrAlienIndex ][ 3 ]

# Move the alien along its path

X = X + XVel
Y = Y + YVel

# Check for collisions

if X < 0 - HALF_ALIEN_WIDTH or X > 640 - HALF_ALIEN_WIDTH:
XVel = -XVel

if Y < 0 - HALF_ALIEN_WIDTH or Y > 480 - HALF_ALIEN_HEIGHT:
YVel = -YVel

# Update the positions

Aliens [ CurrAlienIndex ][ 0 ] = X
Aliens [ CurrAlienIndex ][ 1 ] = Y
Aliens [ CurrAlienIndex ][ 2 ] = XVel
Aliens [ CurrAlienIndex ][ 3 ] = YVel

# Move to the next alien

CurrAlienIndex = CurrAlienIndex + 1
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The logic here should speak for itself, and has been covered in the Lua section anyway. Speaking
of Lua, you’ll notice that this was one of many references to the Lua version of this demo. If you
were to compare the scripts and even the host applications of each of these demos to one anoth-
er, you’d find that they’re almost exactly alike. This is because, as I said, scripting can often be
approached in a language-independent manner.

That’s everything for the Python demo, so check it out on the CD! You can find everything cov-
ered throughout this chapter in Programs/Chapter 6/ on the accompanying CD.

Advanced Topics
As I’ve a few times stated before, Python is a large language with countless features and struc-
tures. To fully teach it would require a book of its own, but here’s a list of both miscellaneous top-
ics I just didn’t have time to mention here, as well as advanced concepts that would’ve been
beyond the scope of simple game scripting:

■ List Functions. Python provides a number of useful functions for dealing with lists. These
functions range from stack-like interfaces to sorting, and can be a godsend when writing
list-heavy code. Before reinventing the wheel, make sure Python doesn’t already have you
covered.

■ Exceptions. Python supports exceptions, an elegant method of error handling found in
languages like C++ and Java. Rather than constantly having to pass around error codes
and check the validity of handles, exceptions automatically route errors to a specialized
block of code designed just for handling them.

■ Packages. Packages are a built-in feature of the Python language, also found in Java.
Packages let you group scripts, functions, and objects in a directly supported way that
provides greater organization and promotes code reuse.

■ Object-Orientation. Even though I didn’t cover it here, Python has serious potential as
an object-oriented language. For larger games that require more meticulous organiza-
tion of entities and resources, objects become invaluable.

Web Links
Check out the following links for more information about Python:

■ Python.org: http://www.python.org/. The central hub on the net for Python develop-
ment news and resources. Lots of great documentation, up-to-date distribution down-
loads, and a lot more.

■ MacPython: http://www.cwi.nl/~jack/macpython.html. The official home of the Python
Mac port.
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■ Jython.org: http://www.jython.org/. Jython is an interesting project to port Python in its
entirety to the Java platform, opening Python scripting to a whole new set of applications
and users.

■ ActiveState: http://www.activestate.com/. Makers of the ActiveState ActivePython 
distribution.

TCL
So far this chapter has been dealing with languages that bear at least a reasonable resemblance to
C. Lua and Python, despite their obvious syntactic quirks, are still fairly similar to the more famil-
iar members of the ALGOL-family. What you’re about to embark on, however, is a journey into
the heart of a language unlike anything you’ve ever seen (assuming you’ve never seen Tcl, of
course). Tcl is a truly unique language, one whose syntax is likely to throw you through a loop at
first. Rest assured, however, that if anything, Tcl is in many ways the simplest of all three lan-
guages in this chapter. The best advice I can offer you as you’re learning is to go slowly and try
not to assume too much. New Tcl users have the tendancy to assume something works one way
just because their instinct tells them so, when it clearly works some other way upon further
inspection. So pace yourself and don’t race ahead just because you think you’ve already got it
down.

Tcl, which is actually pronounced phonetically as “Tickle” instead of the letters “T C L” like you
might assume, stands for “Tool Command Language”. It’s a small, simplistic language designed to
easily integrate with a host application and allow that host to define its own “commands” (which,
in essence, form the Host API, to use a familiar term). Its syntax is designed to be ambiguous and
flexible enough to fit applications in virtually any domain. These qualities make it a good choice
as a scripting system.

These days, Tcl is virtually never mentioned on its own. Rather, it’s been almost permanently asso-
ciated with a related utility, “Tk” (pronounced “Tee Kay”), which is a popular windowing toolkit
used to design graphical user interfaces. Tk is actually a Tcl extension—a new set of commands 
for the Tcl language that allows it to create windows, buttons, and other common GUI elements,
as well as bind each of those elements to blocks of Tcl code to give the interface functionality. 
Tcl and Tk work so well together that Tk is now a required part of any Tcl distribution, and
together the package is referred to collectively as Tcl/Tk. However, because windowing toolkits
are much less important to the subject of game scripting than the Tcl language itself, I won’t be
discussing Tk.
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ActiveStateTcl
You’ll be using the ActiveStateTcl distribution throughout the course of this chapter.
ActiveStateTcl is available for Linux, Solaris, and Windows, implementing Tcl 8.3 (the latest 
version at the time of this writing).

You can download ActiveStateTcl for free from www.activestate.com.

It’s a clean and easy-to-use package, which can be installed in Windows simply by executing the
self-extracting archive. It’s almost as easy for Linux users; just put on a Babylon 5 T-shirt, get root
access by telnetting into Pine, compile your .tar utility, hand-assemble vi, dump the resulting
machine code stream into a shell script, and chmod everything. You should be up and running in
no time. :)

Tcl is designed to be a simple language that’s easy and fast to use. As a result, the average Tcl dis-
tribution is going to be fairly similar from one to the next, so the following rundown of the con-
tents of ActiveStateTcl for Windows should at least generally apply to whatever distro you may
happen to have (although it’s recommended you follow the book’s examples with the version
supplied by ActiveState).

The Distribution at a Glance
ActiveStateTcl’s distribution will unpack itself into a single directory called TCL (or something
similar, unless you changed it at install time). I installed my copy in D:\Program Files, so every-
thing I’ll be doing from here on out will be relative to the D:\Program Files\TCL directory. This
will have ramifications when it comes time to compile your demos, so make sure you know where
Tcl has been installed on your machine.

Inside this root directory you’ll find some obligatory text files (license.terms is just information
on the distribution’s licensing agreement, and README.txt is some quick documentation with fur-
ther information on some installation details). There are also a number of subdirectories:

■ bin/. Binaries of the Tcl implementation; you’ll be interested in the executable utilities
mostly.

■ demos/. A number of demos for the various extensions ActiveStateTcl provides, many of
which focus on the Tk windowing toolkit. I’m more concenred about the pure Tcl lan-
guage itself, however—these extensions are generally for non-game related scripting
tasks and as such will be of little use to you.

■ doc/. Documentation on the entire Tcl distribution in the form of a single .chm file. The
Tcl language reference alone in this thing makes it quite useful. You should make a habit
of referring to this thing whenever you have a syntax or usage question (of course, this
book can help too.
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■ include/. The header files necessary to use both the Tcl implementation of
ActiveStateTcl, as well as the extensions it provides. You’ll find quite a bit of stuff in here,
but the only file in this folder you really need is tcl.h.

■ lib/. The compiled library (.lib) files necessary to use Tcl within your programs. Like
include/, it’s a crowded folder, but all you’ll really need is tcl83.lib. Everything else will
follow from that.

You’ll notice that some of the Tcl files you use throughout this chapter are appended with the
“83” version number. This is specific to this distro and is not necessarily what you’ll find in other
versions or distributions. If you’re having trouble finding your specific files, just look for the file-
name that overall seems closest to what you’re looking for. If it’s simply appended by what
appears to be a version number or code, it’s probably the one you want. For example, I’ll make a
number of references to tcl83.lib, but your distribution might have a file called tcl82.lib, or
maybe even just tcl.lib. As you can see, all three filenames share the common tcl*.lib form.
Just keep that in mind and you should be fine.

The tclsh Interactive Interpreter
Much like Lua, Tcl comes with an interactive interpreter that allows you to directly input code
and see the results. It’s called tclsh (which is short for “Tcl Shell,” but is pronounced “ticklish”),
so look for tclsh.exe under the bin/ directory of your ActiveStateTcl installation. Its interface is
also similar to Lua; featuring a single-character prompt:

%

It may not exactly roll out the welcome wagon, but it’s a hugely useful program. Try to keep it
open if you can as you tour the language so you can immediately test out the examples and make
sure you’re getting it down. Also, like Lua’s interpreter, ending a line with a \ (backslash) allows
it to be continued on the next line without being interpreted (until you enter a non-backslash
terminated line).

The last important feature of tclsh is that
you can immediately run and test full Tcl
script files rather than individual lines of
code by passing the script’s filename to
tclsh as the first command-line parameter.
For example:

tclsh my_script.tcl

This code executes my_script.tcl.

At any time, enter exit at the % prompt to
exit tclsh.

TCL

NOTE
In addition to tclsh, you may notice what
appears to be a similar utility called wish.
wish is another tclsh-like shell but is com-
piled with the Tk extension, allowing you to
immediately enter and execute script code
that creates and uses Tk GUIs.Again,
because Tk is beyond the scope of simple
game scripting, you won’t have a need for
it. It’s definitely fun to play with though.
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What, No Compiler?
That’s right, most pure versions of Tcl do not ship with a compiler, which means all scripts are
loaded by the game directly as human-readable source. Because you should know by now that
loading a script at runtime is not a good way to handle compile-time errors, remember to use
tclsh to attempt to execute your file beforehand; this will help weed out compile-time errors with
adequately descriptive messages, a luxury you won’t have at runtime.

Tcl Extensions
As you will soon see, Tcl is a language based primarily on the concept of commands. Although you
won’t actually see what a command is in detail until the next section, commands can be thought
of in a manner similar to a function call in C, although sometimes they’re designed to emulate
control structures like conditional branching and loops as well. All versions of Tcl support a sim-
ple set of built-in commands called the Tcl core. To expand the language’s functionality to more
specific domains, however, Tcl is designed to support extensions.

A Tcl extension is a compiled implementation of new commands that can be linked with the host
application to provide scripts with new functionality. In a lot of ways, extensions are like C
libraries; they’re a specialized group of functions that provide support for a specific domain—like
graphics and sound—that the language alone would not have otherwise provided. Tk is a good
example of an extension; when linked with your program, your Tcl scripts can use it to invoke the
GUI elements it supports.

ActiveStateTcl comes with a large number of extensions ready to use, which is why there are so
many files and subdirectories in the include/ and lib/ directories. I know I’m beginning to sound
like a broken record, but these are beyond the scope of the book and can be ignored.
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NOTE
Just to make sure you’re clear on why you’re told to ignore these exten-
sions, imagine if this was a book on general game programming in C++.
I’d start off by introducing the C++ compiler, and would walk you through
the various libraries it came with like DirectX, the Win32 API, and so on.
However, I’d be sure to mention that a lot of the libraries the compiler
may come with, such as database access APIs, are not specifically related
to game programming and can be ignored. Of course, later you may find
that your game works well with a database, and end up using the libraries
anyway, so I encourage you to investigate Tcl’s extensions on your own.
You may find more than a few game-related uses for them.
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The Tcl Language
Now that you’re familiar with the Tcl distribution, you can move on to the language. Tcl can be
difficult to get comfortable with, because there are some deceptively subtle differences in its fun-
damental nature when compared to the more conventional languages studied thus far. Ironically,
Tcl’s incredible simplicity and generic design end up making it especially confusing to some new-
comers.

Commands—The Basis of Tcl
The major difference between Tcl and traditional C-like languages is not immediately apparent,
but is by far the most important concept to understand when getting started. There is no such thing
as a statement, keyword, or construct in Tcl; every line of code is a command. Recall the discussion of
command-based languages in Chapter 3. You’ll be surprised to find that Tcl is rather similar;
instead of using keywords and constructs to form assignments, function calls, conditional logic,
and iteration, everything in the Tcl language is done through a specific command. But what exact-
ly is a command?

A Tcl command is just like the commands discussed in Chapter 3, albeit considerably more flexible
both in terms of syntax and functionality. A Tcl command is a composition of words. Just like
English, the Tcl language defines a word as a consecutive collection of characters. By “consecu-
tive” I mean that there is no internal whitespace, and it should also be noted that Tcl’s definition
of “character” literally means just about any character, including letters, digits, and special sym-
bols. Also like English, Tcl words are separated by whitespace which can consist of spaces or tabs.
Here’s an example of a Tcl command called set.

set X 256

The set command is used for setting the value of a variable
(which makes it analogous to C’s = assignment operator). In
this example, the command consisted of three words. The
first word was the name of the command itself (“set”). All
Tcl commands must obviously identify themselves, and
therefore, all Tcl commands are one or more words in
length. The first word is always the command name. After this
word, you find two more; X and 256. X is the name of the variable you want to put the value into,
and 256 is the value.

As you can most likely see, commands mirror the concept of function calls; the first word is like
the function identifier, whereas all subsequent words provide the parameters. Because of this, the
order of the words is just as important as the order of parameters when calling a function. For

TCL

CAUTION
Command names are case-
sensitive, so set is not the
same as SET, Set, or SeT.
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example, whereas the previous example would set X to the desired value, the following would
cause an error:

set 256 X

For obvious reasons, I might add. Putting X “into” 256 doesn’t make any more sense than the fol-
lowing would in C:

256 = X;

Also, like functions, commands generally return a value. Even set does this; it returns whatever
value was set to the variable in question. Because tclsh prints the output of each command you
issue, entering the previous line in the interpreter will result in this:

% set X 256
256

So, to summarize what you’ve learned so far, every line of a Tcl script is a command. Commands
are a series of whitespace-separated words, wherein the first word is always the commands name,
and the words following are the command’s parameters. Commands generally return values as
well.

This may seem odd at first, and you might find yourself asking questions like, “if every line is a
command, how can you do things like expressions, conditional logic, and loops?” To understand
the answer, you need to understand the next piece of the Tcl puzzle, substitutions.

Substitution
The next significant aspect of Tcl is that conceptually, it’s a highly recursive language. This is due
to the fact that commands can contain commands within themselves; in turn, those commands
can further contain commands, a process that can continue indefinitely. That was an awkward
sentence I know, so here’s an example to help make things a bit clearer:

set X [ expr 256 * 256 ]

Here, you almost seem to be deviating from the standard practice of defining commands as a
string of space-delimited words. This, however, is the Tcl syntax for embedding a command into
another command (the brackets are each considered single-character words of their own). In this
case, the new command expr, which evaluates expressions, was embedded into set as the third
word (or second parameter, as I prefer to say it). A more intelligent way to think about this rela-
tionship, however, is in terms of substitution. Remember, most commands produce an output of
some sort. In the case of expr, the output is obviously the result of whatever expression was fed to
it. So for example, entering the expr statement by itself into tclsh would look like this:

% expr 256 * 256
65536
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As you can see, the output of expr 256 * 256 is 65536, the product of the multiplication. When
evaluating the following command:

set X [ expr 256 * 256 ]

the Tcl interpreter takes the following steps:

1. The first word is read, informing Tcl that a set command is being issued.
2. The second word is read, which tells the set command that the variable X is the destination

of the assignment.
3. The open bracket [ is read, which informs Tcl that a new command is beginning in place of

set’s second parameter.
4. The former set operation is now on hold as the next word is read. Because you’re now deal-

ing with a new command, the word-reading process starts over after the [, and the next word
is once again treated as the command’s name. expr is read, telling Tcl that an expression
command is now being issued.

5. Tcl reads every word following expr and sends it as a separate parameter. Because of this, 256,
*, and 256 are all sent to expr separately (but in the proper order of course). expr then ana-
lyzes these incoming words and evaluates the expression they describe. In this regard, the
expr command is much like a calculator.

6. Tcl encounters the closing bracket ], and, rather than sending it as another parameter to
expr, treats it as a sign that the second, embedded command has finished, and the set com-
mand can be resumed. The result of the expr command then substitutes the original [ expr
256 * 256 ] command.

7. The output of the expr expression, 65536, is sent to set as the second parameter (or, more
specifically, the value that will be placed in X).

8. The set command is invoked, and X is assigned 65536.

One of the key points to realize here is that set never knew that [ expr 256 * 256 ] was ever one
of its parameters, because Tcl automatically evaluated the command and substituted it with what-
ever output it produced. Because of this, the following two lines are equivalent and appear identi-
cal from the perspective of the set command:

set X [ expr 256 * 256 ]
set X 65536

To further understand this, imagine that you wrote the following function in C:

int Add ( int X, int Y )
{

return X + Y;
}
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It’s just a simple function for adding two integers and returning the result. However, imagine you
called it like this:

int Sum = Add ( 16 * 16, 128 / 4 );

Both parameters in this case are not immediate integer values, but are rather expressions. Rather
than sending the string representation of these expressions to the Add () function, the runtime
environment will first evaluate them, and simply send their results as parameters. Just like the set
command, Add () will add the two values, never knowing they were the results of expressions.
Besides, Add () is defined with one line of code— hardly enough logic to properly parse and eval-
uate a mathematical expression. set is similar in this regard. The actual set command itself has
no expression parsing capabilities whatsoever, which means that it, and virtually all other com-
mands in Tcl, relies on expr to provide that.

This concept can and is taken to the extremes, so being able to understand this process quickly is
key to mastering Tcl. Here’s a slightly more complicated example, taken directly from tclsh:

% set X [ expr [ set Y 4 ] * 2 ]
8

As you can see, the commands are now nested two levels deep. Basically, X is set the result of an
expression. The expression is defined as the result of the set command multiplied by 2. Because
set returns whatever value it put into the specified variable, which was 4, this evaluates to 8, which
finally is set to X. Figure 6.17 illustrates this process graphically.
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I haven’t covered the details of expressions
yet, but this should help you understand how
complex programming can be done using a
language based entirely on commands, provid-
ed those commands can be nested within one
another.

What you see is known as command substitution.
This is a useful technique and is one of the
cornerstones of Tcl programming, but anoth-
er equally important concept is variable substi-
tution. For reasons you’ll learn about later, a
variable name alone can’t just be dropped
into an expression, like this:

set X [ expr Y / 8 ]

Attempting to run this in tclsh will yield the following:

syntax error in expression "Y / 8"

Furthermore, you can’t simply assign one variable to another, whether an expression is involved
or not. You’ll inadvertently set the variable in question to a string containing the name of the sec-
ond variable rather than its value. For example:

% set Y 256
256
% set X Y
Y

As you can see, the output of the first assignment was the numeric value 256, like you would
expect. In the second case, however, you simply set X to the string “Y”, which is not what you
intended. In order to make this work, you use the dollar-sign $ to prefix any variable whose value
should be substituted in place of its identifier. For example:

% set Y 256
256
% set X $Y
256

This clearly produces the proper value. Just as the [] notation told Tcl to replace the command
within the brackets with the command’s output, the $ tells Tcl to replace the name of the variable

TCL

NOTE
As a matter of style and convention,
commands should not be nested too
deeply. Just like extremely complex
one-line expressions are generally not
appreciated in C when they could be
written more clearly with multiple
lines,Tcl code is easier to read and
understand when a possibly huge nest
of embedded commands is broken into
multiple, simpler commands instead.
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after the dollar sign with its value. So, this too is considered identical from the perspective 
of set:

set X $Y
set X 256

Assuming Y is equal to 256, of course. Lastly, let’s see how this can be used to correct the first
example:

% set X [ expr $Y / 8 ]
32

Presto! The expression now evaluates as intended, without error, and properly assigns 32 to X.

One last thing before moving on—despite the fact that most commands return a value, and that
tclsh will always print this value immediately following the execution of the command, you can
also print values of your own to the screen using the puts (put string) command, like this:

set X "Hello, world!"
puts $X

This will print:

Hello, world!

So, in a nutshell, Tcl lives up to its name as a “command language”. Because almost everything
Tcl is capable of doing is actually credited to a specific command rather than the language itself,
Tcl on its own is a very simplistic, hollow entity. I personally find this to be a fascinating approach
to coding, as it makes for an extremely high-level language that’s just about as open-ended as it
could possibly be.

Each time Tcl is used, the host application it’s embedded in will invariably provide its own set of
specialized commands. Again, these are conceptually identical to the host API concept. However,
each instance of Tcl does indeed bring with it a small set of common commands for variable
assignment, expression parsing, and the like. These basic, common commands are known as the
Tcl core and are always present. You can almost think of them as the standard library in C, except
that you don’t need to manually include them.

At this point, as long as you’ve understood everything so far, you’re out of the woods with Tcl.
Being able to make sense of its substitution rules and the concept of a language based solely on
commands will allow you to learn and use the rest of the language with relative ease. However,
this means that if anything so far has been unclear, I strongly urge you to re-read it until it makes
sense. You’ll have significant trouble understanding anything else if you don’t already have this
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down. It’s like trying to learn trigonometry or calculus without first learning algebra—without
that basis firmly in place, you won’t get very far.

Anyway, with this initial Tcl philosophy out of the way, let’s get on to actually examining the lan-
guage (which, as I mentioned previously, is primarily just a matter of learning about the com-
mands in the Tcl core).

Comments
Comments in Tcl are almost the same as they were in Python, and are denoted with the hash
mark (#). Everything following the hash mark is considered a comment. For example:

# Set X to 256
set X 256

There’s one snag to Tcl comments, though, which is a side-effect of the way Tcl interprets a com-
mand. Remember that all Tcl scripts boil down to space-delimited words. Because of this, putting
a comment after a word will end up producing unwanted results. For example:

set X 256      # Set X to 256

At first glance, this looks just like the first example, the only difference being the comment fol-
lowing the command on the same line. Entering this in tclsh however will produce the following:

wrong # args: should be "set varName ?newValue?"

The problem is that Tcl broke the previous line into eight words, whereas in the first example,
the set line was only three words. Because of this, set was sent seven parameters instead of two:

X, 256, #, Set, X, to, 256

When set noticed it was receiving extra words beyond 256, it issued the previous error. To allevi-
ate this problem, make sure to terminate any command that will share its line with a semicolon
like this:

set X 256;     # Set X to 256

Which will work just fine. Tcl knows that the command has ended when it reaches the semicolon,
so it won’t attempt to send the comment as a parameter. This brings up another aspect of Tcl’s
syntax, however, which is that lines can optionally end with a semicolon, and that semicolons can
be used to allow more than one command on a given line. For example:

set X 256; set Y $X

Will set X and Y to 256 without any trouble. Ultimately, this means that you can make a case either
way for the use of semicolons in your Tcl scripts. On the one hand, I personally feel they’re
unnecessary because I rarely put comments on the same line as code in any language. However,
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many people do (including me, for that matter, when I’m declaring a constant or global) and will
be forced to use them in at least some cases. Because I think consistency is important, I suggest
you either don’t use semicolons at all (and therefore give all of your comments their own line),
or use them everywhere.

Variables
In Tcl, all values are stored internally as strings. Although Tcl does do its share of optimization to
make sure that clearly numeric values are not subject to constant string manipulation overhead,
you can still think of all Tcl values as conceptually being string-based. As a result, Tcl is yet anoth-
er example of a typeless scripting language; a rather ubiquitous trait—if not something of an
unofficial standard—in the world of scripting.

As you’ve seen, variables are created and initialized with the set command. This command accepts
two parameters, an identifier and a value. If the identifier doesn’t correlate to an already existing
variable, a new variable of that name will be created. Here are some examples of using set:

# Create a variable with an integer value
set IntVar 256
puts $IntVar
# Create a variable with a floating-point value
set FloatVar 3.14159
puts $FloatVar
# Create a variable with a one-word string value
set ShortStringVar Hello,
puts $ShortStringVar
# Create a variable with a longer string
set LongStringVar "Hello, world!"
puts $LongStringVar

The output of the previous code will be the following:

256
3.14159
Hello,
Hello, world!

An interesting aspect of this example is that the third variable created, ShortStringVar, is assigned
a string that isn’t in quotes. To understand this, remember that Tcl defines a word as any
sequence of characters that isn’t broken up by whitespace. Because of this, the set command is
sent that single word as the value to assign to ShortStringVar, which is of course Hello,. What this

6. INTEGRATION: USING EXISTING SCRIPTING SYSTEMS



299

tells you is that the purpose of strings in Tcl is different than other languages. The concept of a
string in Tcl is less about data and data types, and more about simply grouping words. Anything
surrounded in double quotes is interpreted by Tcl to be a single word, even if it includes spaces.
This is also the reason why assigning a variable to another variable like this:

set X Y

Only serves to assign the variable’s name (in this case, X takes on the string value “Y", as you saw
previously).

The next variable-related command worth discussing is unset, which can be used to delete 
a variable:

# Create a string variable and print it
set Ellie "They're alive."
puts $Ellie

# Delete it and try printing it again
unset Ellie
puts $Ellie

Here’s the output:

They're alive.
can't read "Ellie": no such variable

while executing
"puts $Ellie"

As you can see, the first attempt at printing the value succeeded, but when unset cleared the vari-
able from Tcl’s internal records, the second attempt resulted in an error. This shows you that Tcl
does require all variables to be created with the set command.

Next up is the incr command, which lets you add a single value to an integer variable, usually for
the purpose of incrementing it. Because of this, incr defaults to a value of 1 if only the variable
name is specified. Although incr adds whatever value you pass it, you can decrement the variable
as well by passing a negative number. Here’s an example:

# Create an integer variable and print its value
set MyInt 16
puts $MyInt

# Increment MyInt by one
incr MyInt
puts $MyInt
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# Add 15 to MyInt
incr MyInt 15
puts $MyInt

# Decrement MyInt by 24
incr MyInt -24
puts $MyInt

Here’s the example’s output:

16
17
32
8

The last variable-related command I’ll discuss here is append, which you can think of as incr for
strings. Because incr only alters the value of integer variables, you’ll get an error if you try passing
a string or float to it. append, on the other hand, let’s you append a variable number of values to a
string. Check it out:

# Create a string
set Title "Tao of"
puts $Title

# Append another string to it
append Title " the"
puts $Title

# Append two more strings to it
append Title " " "Machine"
puts $Title

This code produces the following output:

Tao of
Tao of the
Tao of the Machine

Notice that in the second call to append, two strings are passed, one of which is a space.
Remember, because Tcl words are delimited by spaces, the only way to pass whitespace to a com-
mand is to surround it with quotes. As a side note, passing a numeric variable to append will
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immediately (but permanently) change that variable into a string containing the string-represen-
tation of the number.

One thing about append is that its functionality seems redundant; after all, the following append
example:

# Append a variable using the append command
set Title "Running Down "
append Title "the Way Up"

could be written just as easily with only the set command and produce the same results:

# Append a variable using the set command and variable substitution
set Title "Running Down"
set Title "$Title the Way Up"

append, however, is more
internally efficient in cases
like this, when a string 
needs to be built up incre-
mentally. Besides—the syn-
tax is clearer this way any-
way, so you might as well just
make a habit of doing sim-
ple string concatenation
with append instead of set
with substitution.

Arrays
The next step up from variables in Tcl is the array. Tcl arrays, like Lua tables, are actually associa-
tive arrays or hash tables. They allow keys to be mapped to values in the same way a C array maps
integer indexes to values. Of course, Tcl arrays can use integer indexes in place of keys, but that’s
up to you—this is another product of Tcl treating all data as strings.

Tcl arrays are like variables in that they are created at the time of their initialization, and are ref-
erenced with the following form:

ArrayName(ElementName)

Note that a Tcl array index is surrounded in (), rather than [] like many other languages. Here’s
an example:

TCL

NOTE
One extremely important detail to master is knowing
when to use a variable name as-is (MyVar) and when to
use variable substitution ($MyVar). Use the variable
name when a command actually expects a variable’s
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append. Use variable substitution when you want the
command to receive the variable’s value instead, like
puts, or the second parameters for set, incr, and append.
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# Create an array with four indexes
set MyArray(0) 256
set MyArray(1) 512
set MyArray(2) 1024
set MyArray(3) 2048

This creates an array of four elements called MyArray and assigns values to each index. You may
notice that, in a departure from my normal coding style, there aren’t spaces around the paren-
theses and index in the array reference. Normally I’d use MyArray ( 0 ), rather than MyArray(0).
This is another example of Tcl’s separation of words with spaces. If you were to attempt to run
the following code:

set MyArray ( 0 ) 10

You’d get an error for sending too many parameters to set, because it would receive the follow-
ing five words from Tcl:

MyArray
(
0
)
10

Note that even though you’ve only been using what appear to be integer indexes so far to enu-
merate the arrays, Tcl is actually interpreting them as strings. As a result, the following two lines
of code are equally valid:

# Create an associative array
set MyArray(0) 3.14159
set MyArray(Banana) 3.14159
puts $MyArray(0)
puts $MyArray(Banana)

Here’s the output:

3.14159
3.14159

Arrays in Tcl are pretty simple, as you’ve seen so far. The only other real issue I’d like to mention
is multidimensional arrays. Tcl doesn’t support them directly, but thanks to a clever side-effect of
Tcl’s variable substitution, you can simulate them with a syntax that looks as if they were actually
part of the language. Check out the following, while keeping in mind that Tcl only supports a sin-
gle dimension:
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# Create a seemingly two-dimensional array
set MyArray(0,0) "This is 0, 0"
set MyArray(0,1) "This is 0, 1"
set MyArray(1,0) "This is 1, 0"
set MyArray(1,1) "This is 1, 1"

# Print two of its indexes
puts $MyArray(0,0)
puts $MyArray(1,1)

# Now print two more, using variables as indexes
set X 0
set Y 1
puts $MyArray($X,$Y)
set X 1
set Y 0
puts $MyArray($X,$Y)

To understand how this works, remember that Tcl allows any string to be used as an index. In this
case, the strings you chose just happened to look like the syntax for multidimensional array index-
es. Tcl just lumps indexes like “0,0” into a single string. And why shouldn’t it? There aren’t any
spaces, so it doesn’t have any reason not to. The previous array is really just a single-dimensional
associative array, in which the keys are “0,0”, “0,1”, “1,0” and “1,1”. As far as Tcl is concerned, the
keys could just as well be “Red”, “Green”, “Blue” and “Yellow”.

The real cleverness, however, is using variables to access the array. Because variable substitution
occurs before the values of parameters are passed to a given command, you can basically construct
your own variable identifier on the fly, even in the case of commands like set and append. Because
of this, you’re using variables to put together an index into an array at runtime. If X contains the
string “0”, and Y contains the string “1”, you can concatenate the two strings with a comma in
between them to create the final array index: “0,1”. Tcl, however, is still oblivious to your strategy
and considers it just another string index, as it would “Banana” constructed from “Ban”, “a”, and “na”.

Expressions
The funny thing about expressions is that Tcl has absolutely no built-in support for them whatso-
ever. This may seem like a strange statement to make for two reasons:

■ Any decent language is going to have to support expressions in order to be useful.
■ You’ve already seen examples of expressions, albeit simple ones, earlier in this chapter.

Both of these points are correct. So what gives?
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Basically, what I’m driving at is the fact that the Tcl language doesn’t support expressions in any
way. As you’ve seen, all Tcl really does is pass space-delimited words to commands and perform
substitution with the $ and [] notation. So, to provide expression-parsing support, the expr com-
mand was created. This seems like a trivial detail, but it’s very important. The only reason you’ve
been able to use expressions in the examples so far is because expr provides that functionality.

As has been demonstrated, expr is used to evaluate any expression and is generally embedded as
a parameter in other commands. It always returns the final value of whatever expression was fed
to it. Here’s an example:

# Create some variables
set X 16
set Y 256
set Z 512
# Print out an arbitrary expression that uses all three
puts [ expr ( $X * $Y ) / $Z + 2 ]

This code outputs 10.

From now on, even when I refer to “Tcl expressions,” or “expressions in Tcl,” what I am really
referring to is the expr command specifically (or any other command that provides expression
parsing functionality as well, of which there are a few). I’ll use these phrases interchangeably,
however.

The expr command supports the full set of standard operators, as you’d expect. Tables 6.11
through 6.14 list Python’s operators. Note that I’ve added a new column for the data types that
each operator supports.
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Table 6.11  Tcl Arithmetic Operators
Operator Description Supported Data Types

+ Add Integer, Float

- Subtract Integer, Float

* Multiply/Multiply Strings Integer, Float

/ Divide Integer, Float

% Modulus Integer, Float

- Unary Negation Integer, Float
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Table 6.12  Tcl Bitwise Operators
Operator Description Supported Data Types

<< Shift Left Integer

>> Shift Right Integer

& And Integer

^ Xor Integer

| Or Integer

~ Unary Not Integer

Table 6.13  Tcl Relational Operators
Operator Description Supported Data Types

< Less Than Integer, Float, String

> Greater Than Integer, Float, String

<= Less Than or Equal Integer, Float, String

>= Less Than or Equal Integer, Float, String

!= Not Equal Integer, Float, String

== Equal Integer, Float, String

Table 6.14  Python Logical Operators
Operator Description Supported Data Types

&& And Integer, Float

|| Or Integer, Float

! Not Integer, Float
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Something you can quickly ascertain from these tables is that string operands are only permitted
when using the relational operators (<, >, <=, >=, !=, ==). Something you may be wondering,
though, is why or how the data type of an operand even matters, because I’ve belabored the fact
that Tcl sees everything as strings. This may be true, and Tcl does indeed see the world in terms of
strings, but the expr command specifically is designed only to deal with numerics (except, again,
in the case of the relational operators).

Remember that there’s really no such thing as a variable when expr evaluates an expression. It,
like any other Tcl command, is just being fed a series of words that it attempts to convert to either
numbers or operators. What really happens when you try using string variables or literals, from
the perspective of expr, is that suddenly all these letters and non-operator symbols begin to
appear in the stream of incoming words. Understandably, this causes it to freak out. Consider the
following example:

# Create an integer variable
set MyInt 32768
# Create a string variable
set MyString "Ack!"
# Attempt to use the two in an expression
puts [ expr $MyInt * $MyString + 2 ]

The initial batch of words to be sent to expr looks like this:

$MyInt * $MyString + 2

This looks like a valid expression, when you ignore the contents of MyString, at least. Now let’s look
at the final stream of words after Tcl performs variable substitution, which is what expr will see:

32768 * Ack! + 2

Doesn’t make much sense, right? This should help you understand why certain data types make
sense in certain places and others don’t. It has nothing to do with Tcl specifically; it’s simply the
way the expr command was designed.

Conditional Logic
With expressions under your belt, you can move on to tackle conditional logic. At this point, after
I’ve beaten the concept of Tcl commands into your head, you should be well aware that every
line of a Tcl script is a command (or a comment), without exception. How then, is something
like an if construct implemented?

Simple—if is a command too. Except, unlike C’s if, which wraps itself around code blocks and
only allows a certain block to be executed based on the result of some expressions, if accepts the
expression and code blocks as parameters. Here’s an example:
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# Create a variable
set X 0

# Print different strings depending on its value
if { $X > 0 } {

puts "X is greater than zero."
} else {

puts "X is zero or less."
}

Which outputs:

X is zero or less.

What you’re seeing here is a command whose parameters are chunks of Tcl code. The syntax that
provides this, the {} notation, is actually a special type of string that allows line breaks and sup-
presses variable substitution. In other words, this particular type of string is much more WYSIWYG
than the double-quote style. Because line breaks can be included in the script, this allows you to
code in a much more natural, C-like fashion, as shown. Without this capability, the expression and
code for each clause would have to be passed to if in a single line. In fact, here’s another if exam-
ple that uses the same syntax as above, but looks a bit more like the command that it really is:

# Create a variable
set Y 0
# Print different strings depending on its value
if { $Y < 0 } { set Y 0 } else { set Y 1 }

The parameters passed to this command are:

{ $Y < 0 }, { set Y 0 }, else, { set Y 1 }

Also supported is the elseif clause, which can exist zero or more times in a given if structure.
Here’s an example:

set Episode 5
if { $Episode == 4 } {

puts "A New Hope"
} elseif { $Episode == 5 } {

puts "The Empire Strikes Back"
} elseif { $Episode == 6 } {

puts "Return of the Jedi"
} else {

puts "Prequel"
}
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Note also that the first parameter passed to an if command is an expression; like expr, if pro-
vides its own expression-evaluation capabilities.

Lastly, you may again be wondering why I’ve again deviated from my usual coding style by putting
the opening and closing curly-braces of each code block in unusual places. This is another syntax
imposition on behalf of Tcl. Remember, the only reason you’re getting away with these line
breaks in the first place is because {} strings allow
them. This means that the line breaks can only
occur within the braces, forcing me to make sure
that each word begins on a line where a curly-
brace string is beginning or ending as well.
Without this, the Tcl interpreter would lose 
the continuity that helps it find its way from the
beginning to the end of the command.

Iteration
Looping in Tcl is just like conditional logic; it’s yet another example of commands performing
tasks that you wouldn’t necessarily think they’re capable of. As always, you’re going to get started
with the trusted while loop:

set X 16
while { $X > 0 } {

incr X -1
puts "Iteration: $X"

}

Here’s the output:

Iteration: 15
Iteration: 14
Iteration: 13
Iteration: 12
Iteration: 11
Iteration: 10
Iteration: 9
Iteration: 8
Iteration: 7
Iteration: 6
Iteration: 5
Iteration: 4
Iteration: 3
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Iteration: 2
Iteration: 1
Iteration: 0

Almost identical to C, right? Indeed, while has been implemented in a familiar way. The com-
mand takes two parameters, an expression and a code block to execute as long as that expression
evaluates to true (which, if you remember, is defined in Tcl as any nonzero value). Here’s the
while from the previous example rewritten in a form that helps remind you that it’s just another
command like anything else:

while { $X > 0 } { incr X -1; puts "Iteration: $X" }

for follows while’s lead by following a very C-like form. The for command accepts four parame-
ters; the first three being the typical loop control statements you’d find in a C for loop—the ini-
tialization, the end case, and the iterator—with the fourth being the body of the loop. The fol-
lowing code rewrites the functionality of the while example:

for { set X 16 } { $X > 0 } { incr X -1 } {
puts "Iteration: $X"

}

Which provides the expected output, of course:

Iteration: 16
Iteration: 15
Iteration: 14
Iteration: 13
Iteration: 12
Iteration: 11
Iteration: 10
Iteration: 9
Iteration: 8
Iteration: 7
Iteration: 6
Iteration: 5
Iteration: 4
Iteration: 3
Iteration: 2
Iteration: 1

Notice how closely this code mirrors its C equivalent

for ( int X = 16; X > 0; -- X )
printf ( "Iteration: %d\n", X );
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Everything is in roughly the same place, so you should feel pretty much at home.

Lastly, just like the other two languages, Tcl gives you break and continue for obvious purposes.
break causes the loop to immediately terminate, causing program flow to resume just after the
last line of the loop. continue causes the current iteration of the loop to terminate prematurely,
causing the next one to begin immediately.

Functions (User-Defined Commands)
Tcl supports functions, but thinking of them as C functions isn’t exactly appropriate. What you’re
really going to do in this chapter is define your own new Tcl commands. Because commands are
identified with a name, are passed a list of parameters, and can return a value, they really are
identical to functions in a conceptual sense. However, calling one of these “functions” follows the
exact same syntax as calling a Tcl core command; as a result, it’s better practice to refer to the fol-
lowing as user-defined commands.

Creating a Tcl command is remarkably easy. Once again, as expected, the actual syntax for creat-
ing a command is itself a command, called proc (short for procedure, which is yet another name
you could call these things). proc accepts three parameters; a command name, a parameter list,
and a body of Tcl code. As you’d expect, once this command finishes execution, the new user-
defined command can be called by its name, passed any necessary parameters, and executed (the
Tcl environment will locate and run the code you provided in the third parameter). The result,
as with all other commands, then replaces its caller.

To get things started, let’s look at a user-
defined command example:

proc Add { X Y } {
expr $X + $Y

}
puts [ Add 32 32 ]

Which produces the output of 64. This
example creates a new command called
Add, which accepts two parameters, adds
them, and returns the sum. Note that the
second parameter to proc, after the name
Add, is a space-delimited parameter list. In
this case, it consists of { X  Y } and tells proc
that your function should accept two parameters using these names.

Because most Tcl commands return values, you probably will too at some point. Just like other
languages, this is done with the return command. return causes whatever command it’s called
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of the { X Y } parameter list is what’s
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of specifying parameter lists for use with
the proc command, but it’s not all that use-
ful in general practice—especially when
you can just use associative arrays. As a
result, I won’t be covering lists in this book.
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from to exit, and its single parameter is returned as the return value. For example, if you
changed the custom Add command to look like this:

proc Add { X Y } {
return 0
expr $X + $Y

}
puts [ Add 32 32 ]

The command would always return 0, no matter what parameters you pass it.

The last issue to discuss with custom commands is that of global variables. Unlike languages like
C, you can’t simply refer to a global from within a command. For example, attempting to do the
following will produce an error:

# Create a global variable
set GlobalVar "I'm global variable."

# Create a generic command
proc TestGlobal {} {

# Create a local variable
set LocalVar "Not me, I'm into the local scene."

# Print out both the global and local
puts $GlobalVar
puts $LocalVar

}

# Call your command
TestGlobal

The interpreter will produce an error telling you that the variable GlobalVar hasn’t been initial-
ized when you pass it to puts. This is because globals are not automatically imported into a com-
mand’s local scope. Instead, you must do so manually, using the global command like so:

# Create a global variable
set GlobalVar "I'm global variable."

# Create a generic command
proc TestGlobal {} {

# Create a local variable
set LocalVar "Not me, I'm into the local scene."
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#Import the global variable
global GlobalVar

# Print out both the global and local
puts $GlobalVar
puts $LocalVar

}

# Call your command
TestGlobal

The error will no longer occur, and the output will
look like this:

I'm global variable.
Not me, I'm into the local scene.

This works because global brings the specified global variable into the function’s local scope until
it returns.

Integrating Tcl with C
The integration of Tcl with C is rather easy, and involves much less low-level access than does Lua.
Tcl does not force you to deal with an internal stack, for example; rather, high-level functions are
provided for common operations like exporting functions, reading globals, and so on.

Just like you did with Lua, you’ll first write a few basic scripts and then move on to recode the
alien head demo. Along the way you’ll learn the following:

■ How to load and execute Tcl scripts from C.
■ How to export C functions so that they can be called as commands from Tcl scripts.
■ How to invoke both Tcl core and user-defined commands from C.
■ How to pass parameters and return values to and from both C and Tcl.
■ How to manipulate a Tcl script’s global variables.

Compiling a Tcl Project
To get things started, let’s briefly cover the details involved in compiling a Tcl application. First
and foremost, just like with Lua, make sure you have the proper paths set in your compiler. I
won’t repeat every last detail that I mentioned in the Lua section, but in a nutshell, make sure
your include file and library directories match the include/ and lib/ subdirectories of your Tcl
installation.
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Once your paths are set, include the main Tcl header:

#include <tcl.h>

Finally, physically include the tcl83.lib library with your project (remember, of course, that your
distribution’s main .LIB file might not be tcl83.lib exactly, unless you’re using ActiveStateTcl ver-
sion 8.3 like me).

At this point, you should be ready to get started.

Initializing Tcl
Just as Lua is initialized by creating a new Lua state, the Tcl library is initialized by creating a new
instance of the Tcl interpreter. Just as you must keep track of your state in Lua, Tcl requires that you
keep track of the pointer to your interpreter. To create this pointer and initialize Tcl, use the fol-
lowing code:

Tcl_Interp * pTclInterp = Tcl_CreateInterp ();
if ( ! pTclInterp )
{

printf ( "Tcl Interpreter could not be created." );
return 0;

}

As you can see, the interpreter is created with a call to Tcl_CreateInterp (), which does not
require any parameters. If the call fails, a NULL pointer will be returned.

When you’re finished with the interpreter (which will usually be at the end of your program),
you free the resources associated with it by calling Tcl_DeleteInterp (), like so:

Tcl_DeleteInterp ( pTclInterp );

You now know how to initialize Tcl, so you can lay out your plans for your first attempt at writing
a Tcl host application before trying the alien head demo. Because you should try everything at
least once, the program should:

■ Load an initial script that just prints random values on the screen, so you know every-
thing’s working.

■ Load a second script that defines its own commands but does not execute immediately.
■ Register a C function with Tcl, thereby making it accessible to the script as a command.
■ Test your importing/exporting abilities by calling a user-defined Tcl command and hav-

ing it call you back. You’ll then call a more complicated command that requires parame-
ters and returns a value.

■ Finish up by manipulating the Tcl script’s global variables, and printing the result.

Sounds like a plan, huh? Let’s get to work.
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Loading and Running Scripts
Just as in Lua, Tcl immediately attempts to execute scripts when they’re loaded. Because most of
the time, you will simply load a script once and deal with it later, the issue of code in the global
scope once again becomes significant. Any code in the global scope of the script will run upon
the script’s loading; user-defined commands, however, will not. Therefore, any functionality writ-
ten into those commands will not execute until you tell them to.

Scripts can be loaded with the Tcl_EvalFile () function (“EvalFile” being short for Evaluate File,
of course). This function accepts two parameters; a pointer to the Tcl interpreter, as well as the
filename of the script to be loaded. Here’s an example:

if ( Tcl_EvalFile ( pTclInterp, "test_0.tcl" ) == TCL_ERROR )
{

printf ( "Error executing script." );
return 0;

}

Tcl_EvalFile () will return TCL_OK if everything went as it should’ve, and will return TCL_ERROR if
the file can’t be read for some reason. This can either arise due to an I/O error, or because a
compile-time error occurred (yes, Tcl does perform a pre-compile step).

As stated before, any code in the script’s global scope will be executed immediately. Because all you
really want to do right now is make sure everything is working properly, let’s write a quick little test
script for just that purpose. Fortunately for us, the puts command is part of the Tcl core, not just
the tclsh interpreter, which means that even scripts loaded into your program can inherently write
text out to the console. In other words, you don’t have to worry about exporting C functions just
yet, like you did when integrating with Lua. Rather, you can get started immediately.

The script you’ll load will be a simple one. It creates a few variables, performs a simple if block,
and then prints the results. Let’s save it to test_0.tcl, which is the file you attempted to open in
the previous example snippet. Here’s the code:

# Create some variables of varying data types
set IntVar 256
set FloatVar 3.14159
set StringVar "Tcl String"
# Test out some conditional logic
set X 0
set Logic ""
if { $X } {

set Logic "X is true."
} else {
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set Logic "X is false."
}
# Print the variables out to make sure everything is working
puts "Random Stuff:"
puts "\tInteger: $IntVar"
puts "\t  Float: $FloatVar"
puts "\t String: \"$StringVar\""
puts "\t  Logic: $Logic"

Running the host application with the call to Tcl_EvalFile () will produce the following output:

Random Stuff:
Integer: 256
Float: 3.14159
String: "Tcl String"
Logic: X is false.

You now know everything works. With the Tcl interpreter working properly, you can move on to a
more advanced script and the concepts you’ll have to master in order to implement it.

Calling Tcl Commands from C
The first advanced task will be calling a Tcl command from C. Fortunately, this is an extremely sim-
ple process, thanks to a function called Tcl_Eval (). Tcl_Eval () evaluates a Tcl script passed as a
string, which makes it ideally suited for executing single commands from C. Here’s an example:

Tcl_Eval ( "puts \"Hello, world!\"" );

This would produce the following output when run:

Hello, world!

Because you can apparently call puts quite easily, you should be able to call your own user-
defined commands just as easily. This is how you can call specific blocks of your script at will; by
wrapping these blocks in commands and using Tcl_Eval () to invoke them.

As a simple example, let’s create a new script file called script_1.tcl. Within this file you’ll create
a user-defined command called PrintStuff, whose sole purpose is to print a line of text with puts
that tells you it’s been called. You can then load this new file with Tcl_EvalFile () and use
Tcl_Eval () to call the command. Here’s the code to PrintStuff ():

proc PrintStuff {} {
# Print some stuff to show we're alive
puts "\tPrintStuff was called from the host."

}
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Remember, the proc command is a Tcl-core command for creating your user-defined commands
(or procedures, if you want to think of them like that). Here’s the code to call it:

Tcl_Eval ( pTclInterp, "PrintStuff" );

Note that Tcl_Eval () requires you to pass the pointer to your interpreter as well as the com-
mand. When this program is run, the following will appear:

PrintStuff was called from the host.

Now that you can call Tcl commands, let’s see if you can get the script to call one of your 
functions.

Exporting C Functions as Tcl Commands
When a C function is exported to a Tcl script, it becomes a command just like anything else. This
is accomplished with the Tcl_CreateObjCommand () function, which allows you to expose a host
application function to the specified interpreter instance with the specified name.

Defining the Function
To start the example, you’re going to define a C function called RepeatString () that accepts a
single string and an integer count parameter. The string will be printed to the console the speci-
fied number of times. Here’s the function:

int RepeatString ( ClientData ClientData,
Tcl_Interp * pTclInterp,
int iParamCount,
Tcl_Obj * const pParamList [] )

{
printf ( "\tRepeatString was called from Tcl:\n" );

// Read in the string parameter
char * pstrString;
pstrString = Tcl_GetString ( pParamList [ 1 ] );

// Read in the integer parameter
int iRepCount;
Tcl_GetIntFromObj ( pTclInterp, pParamList [ 2 ], & iRepCount );

// Print out the string repetitions
for ( int iCurrStringRep = 0; iCurrStringRep < iRepCount;

++ iCurrStringRep )
printf ( "\t\t%d: %s\n", iCurrStringRep, pstrString );
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// Set the return value to an integer
Tcl_SetObjResult ( pTclInterp, Tcl_NewIntObj ( iRepCount ) );

// Return the success code to Tcl
return TCL_OK;

}

Everything should look more or less understandable at first, but the function’s signature certainly
demands some explanation. Any function exported to a Tcl interpreter is required to match this
prototype:

int RepeatString ( ClientData ClientData,
Tcl_Interp * pTclInterp,
int iParamCount,
Tcl_Obj * const pParamList [] );

ClientData can be ignored; it doesn’t apply to these purposes. pTclInterp is a pointer to the inter-
preter whose script called the function. iParamCount is the number of parameters the script
passed, and is analogous to the argc parameter often passed to a console application’s main ()
function. Lastly, pParamList [] is an array of Tcl_Obj structures, each of which contains a parame-
ter value. The size of this array is determined by iParamCount.

The prototype may seem a bit intimidating at first, but think about how much help it is—an
exported function will automatically know which script called it, and have easy and structured
access to the parameters.

Reading the Passed Parameters
Once inside the function’s definition, the next order
of business will usually be reading the parameters it
was passed. This is done with two functions;
Tcl_GetString () and Tcl_GetIntFromObj (), which
read string and integer parameters, respectively.

You have the parameters, so you can put them to use
by implementing this simple function’s logic. Using
pstrString and iRepCount, the string is printed the
specified number of times, with each iteration on 
its own line and indented by a few tabs to help it 
stick out.
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Returning Values
Lastly, values can be returned to the script using the Tcl_SetObjResult () function. This function
requires as a pointer to the Tcl interpreter in which the function’s caller is executing, and a
pointer to a Tcl_Obj structure. You can create this structure on the fly to return an integer value
with the Tcl_NewIntObj () function:

Tcl_Obj * Tcl_NewIntObj ( int intValue );

When passed an integer value, this function creates a Tcl object structure around it and returns
the pointer. If you wanted to return a string, you could use the equally simple Tcl_NewStringObj
() function:

Tcl_Obj * Tcl_NewStringObj ( char * bytes, int length );

This function is passed a pointer to a character string and an integer that specifies the string’s
length. Again, it returns a pointer to a Tcl object based on the string value.

This completes the function, so you return TCL_OK to let the Tcl interpreter know that everything
went smoothly.

Exporting the Function
As stated, your now-finished function can be called using Tcl_CreateObjCommand (), which returns
NULL in the event that the command couldn’t be registered for some reason:

if ( ! Tcl_CreateObjCommand ( pTclInterp,
"RepeatString",
RepeatString,
( ClientData ) NULL,
NULL ) )

{
printf ( "Command could not be registered with Tcl interpreter." );
return 0;

}

The first three parameters to this function are the only ones you need to be concerned with. The
first is the Tcl interpreter to which the new command should be added, so you pass pTclInterp.
The next is the name of the command, as you would like it to appear to scripts. I’ve chosen to
leave the name the same, so the string "RepeatString" is passed. Lastly, RepeatString is passed as a
function pointer. Once Tcl_CreateObjCommand () is successfully called, the function is available to
any script in the specified interpreter as a command.
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Calling the Exported Function from Tcl
The RepeatString function exported to Tcl can be called just like any other command. Let’s modi-
fy the PrintStuff command a bit to call it:

proc PrintStuff {} {

# Print some stuff to show we're alive
puts "\tPrintStuff was called from the host."

# Call the host API command RepeatString and print out its return value
set RepCount [ RepeatString "String repetition." 4 ]
puts "\tString was printed $RepCount times."

}

Upon executing this script from within your test program, the following results are printed to the
console:

PrintStuff was called from the host.
RepeatString was called from Tcl:

0: String repetition.
1: String repetition.
2: String repetition.
3: String repetition.

String was printed 4 times.

Returning Values from Tcl Commands
You have already seen how to call Tcl commands from your program, but there may come a time
when you want to call a custom Tcl command and receive a return value. As a demonstration,
you can create a Tcl command in script_1.tcl called GetMax. When passed two integer values, this
command will return the greater value:

proc GetMax { X Y } {

# Print out the command name and parameters
puts "\tGetMax was called from the host with $X, $Y."

# Perform the maximum check
if { $X > $Y } {

return $X
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} else {
return $Y

}
}

This command is called like any other, using the techniques you’ve already seen. As a test, let’s
call it with the integer values 16 and 32:

Tcl_Eval ( pTclInterp, "GetMax 16 32" );

The command will of course return 32, but how exactly will it do so? At any time, the last com-
mand’s return value can be extracted from the Tcl interpreter with the Tcl_GetObjResult () func-
tion. Just pass it a pointer to the proper interpreter instance, and it will return a Tcl_Obj structure
containing the value. You can then use the same helper functions used in the RepeatString ()
example to extract the literal value from this structure. In this case, because you want an integer,
you’ll use Tcl_GetIntFromObj ():

int iMax;
Tcl_Obj * pResultObj = Tcl_GetObjResult ( pTclInterp );
Tcl_GetIntFromObj ( pTclInterp, pResultObj, & iMax );

printf ( "\tResult from call to GetMax 16 32: %d\n\n", iMax );

With the value now in iMax, you can print it and produce the following result:

GetMax was called from the host with 16, 32.
Result from call to GetMax 16 32: 32

Manipulating Global Tcl Variables from C
The last feature worth mentioning in the interface between the host application and Tcl is the
capability to modify a script’s global variables. As an example, two global definitions will be added
to script_1.tcl:

set GlobalInt 256
set GlobalString "Look maw..."

The first step is reading these values from the script into variables defined in your program. To
do this, you need to create two Tcl_Obj structures, which is easily done with the Tcl_NewObj ()
helper function:

Tcl_Obj * pGlobalIntObj = Tcl_NewObj ();
Tcl_Obj * pGlobalStringObj = Tcl_NewObj ();
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pGlobalIntObj and pGlobalStringObj are pointers to integer and string Tcl objects, respectively.
Reading values from a Tcl script’s global variables into these structures is done with the
Tcl_GetVar2Ex () function, like this:

pGlobalIntObj = Tcl_GetVar2Ex ( pTclInterp, "GlobalInt", NULL, NULL );
pGlobalStringObj = Tcl_GetVar2Ex ( pTclInterp, "GlobalString", NULL, NULL );

As has been the case a few times before, the last two parameters this function accepts don’t con-
cern you. All that matters are the first two—the pTclInterp, which is of course a pointer to the Tcl
interpreter within which the appropriate script resides, and the name of the global you’d like to
read. You pass "GlobalInt" and "GlobalString" and the function returns the proper Tcl object
structures. You’ve already seen how values are read from Tcl objects a number of times, so the fol-
lowing should make sense:

int iGlobalInt;
Tcl_GetIntFromObj ( pTclInterp, pGlobalIntObj, & iGlobalInt );
char * pstrGlobalString = Tcl_GetString ( pGlobalStringObj );

You now have the values stored locally, so you can print them to test the process thus far:

printf ( "\tReading global varaibles...\n\n" );
printf ( "\t\tGlobalInt: %d\n", iGlobalInt );
printf ( "\t\tGlobalString: \"%s\"\n", pstrGlobalString );

Running the code as it currently stands produces the following:

Reading global varaibles...

GlobalInt: 256
GlobalString: "Look maw..."

You can modify a global variable with a single function call, but to make the demo a bit more
interesting, you’ll also read the value immediately back out after making the change. Modifying
Tcl globals is done with the Tcl_SetVar2Ex () function, an obvious compainion to the
Tcl_GetVar2Ex () used earlier. Here’s the code for modifying your global integer, GlobalInt:

Tcl_SetVar2Ex ( pTclInterp, "GlobalInt", NULL, Tcl_NewIntObj ( 512 ),
NULL );

pGlobalIntObj = Tcl_GetVar2Ex ( pTclInterp, "GlobalInt", NULL, NULL );
Tcl_GetIntFromObj ( pTclInterp, pGlobalIntObj, & iGlobalInt );
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Only the first, second, and fourth parameters matter in the context of this example. As always,
start by passing the Tcl interpeter instance you’d like to use. This is followed by the name of the
global you’re interested in, a NULL parameter, and a Tcl object structure containing the value
you’d like to update the global with. In this case, you use Tcl_NewIntObj () to create an on-the-fly
integer object with the value of 512. Notice that immediately following the call to Tcl_SetVar2Ex
() is another call to Tcl_GetVar2Ex (); this is done to re-read the updated global variable.

Modifying GlobalString isn’t much harder, and is done with the Tcl_SetVar2Ex () function as well.
Let’s start with the code:

char pstrNewString [] = "...I'm using TEH INTARWEB!";
Tcl_SetVar2Ex ( pTclInterp, "GlobalString", NULL,

Tcl_NewStringObj ( pstrNewString, strlen ( pstrNewString ) ), NULL );
pGlobalStringObj = Tcl_GetVar2Ex ( pTclInterp, "GlobalString", NULL, NULL );
pstrGlobalString = Tcl_GetString ( pGlobalStringObj );

You can start by creating a local, statically allocated string with the new global value in it.
Tcl_SetVar2Ex () is then called with the same parameters as last time, except you’re now passing a
string value with the help of the Tcl_NewStringObj () function. Because this function requires
both a string pointer and an integer length value, it made things easier to define the string locally
so you could use strlen () to automatically pass the length. Tcl_GetVar2Ex () is also called again
to retrieve the updated global’s value.

At this point you’ve updated both globals and re-read their values, so let’s print them out and
make sure everything worked:

Writing and re-reading global variables...

GlobalInt: 512
GlobalString: "...I'm using TEH INTARWEB!"

The new values are reflected, so you’re all set!

Recoding the Alien Head Demo
You’ve learned everything you need to know to smoothly interface with Tcl, so let’s finish the job
by committing your knowledge to a third and final version of the bouncing alien head demo.

Initial Evaluations
The approach to the demo isn’t any different than it was when you were using Lua; you use the
majority of the core logic (actually managing and updating the alien heads, as well as drawing
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each new frame) and rewrite it using Tcl. This will require a host API that wraps the core func-
tionality of the host that the script will need access to, and the body of the C-version of the demo
will be almost entirely gutted and replaced with calls to Tcl.

The Host API
The host API will be the same as it was in the Lua version, but here are the prototypes of the
functions anyway, for reference. Remember, of course, the strict function signature that must be
followed when creating a host API for a Tcl script. Remember also that these functions will be
thought of within the script as commands.

int HAPI_GetRandomNumber ( ClientData ClientData, Tcl_Interp * pTclInterp,
int iParamCount, Tcl_Obj * const pParamList [] );

int HAPI_BlitBG ( ClientData ClientData, Tcl_Interp * pTclInterp,
int iParamCount, Tcl_Obj * const pParamList [] );

int HAPI_BlitSprite ( ClientData ClientData, Tcl_Interp * pTclInterp,
int iParamCount, Tcl_Obj * const pParamList [] );

int HAPI_BlitFrame ( ClientData ClientData, Tcl_Interp * pTclInterp,
int iParamCount, Tcl_Obj * const pParamList [] );

int HAPI_GetTimerState ( ClientData ClientData, Tcl_Interp * pTclInterp,
int iParamCount, Tcl_Obj * const pParamList [] );

How these functions work hasn’t changed either; aside from the fact that new helper functions
are used to read parameters and return values, the logic that drives them remains unaltered.

The New Host Application
Because the intialiazation of Tcl in the demo will actually entail both the creation of a Tcl inter-
preter instance, as well as the exporting of your host API, I’ve wrapped everything in the InitTcl
() and ShutDownTcl () functions. Here’s InitTcl ():

void InitTcl ()
{

// Create a Tcl interpreter
g_pTclInterp = Tcl_CreateInterp ();

// Register the host API
Tcl_CreateObjCommand ( g_pTclInterp, "GetRandomNumber",

HAPI_GetRandomNumber, ( ClientData ) NULL, NULL );
Tcl_CreateObjCommand ( g_pTclInterp, "BlitBG", HAPI_BlitBG,

( ClientData ) NULL, NULL );
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Tcl_CreateObjCommand ( g_pTclInterp, "BlitSprite", HAPI_BlitSprite,
( ClientData ) NULL, NULL );

Tcl_CreateObjCommand ( g_pTclInterp, "BlitFrame", HAPI_BlitFrame,
( ClientData ) NULL, NULL );

Tcl_CreateObjCommand ( g_pTclInterp, "GetTimerState",
HAPI_GetTimerState, ( ClientData ) NULL, NULL );

}

g_pTclInterp is a global pointer to the Tcl interpreter, and the multiple calls to
Tcl_CreateObjCommand () build up the host API your script will need. Notice that I omitted the
HAPI_ prefix when exporting the host API; this was just an arbitrary decision that could’ve gone
either way.

As always, ShutDownTcl () really just redundantly wraps Tcl_DeleteInterp (), but I like having
orthogonal functions. :)

void ShutDownTcl ()
{

// Free the Tcl interpreter
Tcl_DeleteInterp ( g_pTclInterp );

}

Now that Tcl itself is under control, you only need to call the proper script functions on a regular
basis and your script will run. Of course, you haven’t written the script yet, but it will follow the
same format the Lua version did, which should help you follow along without immediately know-
ing the details.

The script, which I’ve named script.tcl, is loaded and initialized first, with the following code:

// Load your script
if ( Tcl_EvalFile ( g_pTclInterp, "script.tcl" ) == TCL_ERROR )

W_ExitOnError ( "Could not load script." );

// Let the script initialize the rest
Tcl_Eval ( g_pTclInterp, "Init" );

You call Tcl_EvalFile () to load the file into memory, and immediately follow up with a call to
Tcl_Eval () that runs the Init command. At this point, the script has been loaded into memory
and is initialized, so the demo can begin. From here, it’s just a matter of calling the HandleFrame
command at each frame, again by using Tcl_Eval ():

MainLoop
{
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// Start the current loop iteration
HandleLoop
{

// Let Tcl handle the frame
Tcl_Eval ( g_pTclInterp, "HandleFrame" );

// Check for the Escape key and exit if it's down
if ( W_GetKeyState ( W_KEY_ESC ) )

W_Exit ();
}

}

By running this command once per frame, the aliens will move around and be redrawn consis-
tently. This wraps up the host application, so let’s finish up by taking a look at the scripts that
implement these two commands.

The Tcl Script
The structure of the Tcl script is purposely identical to that of the Lua version covered earlier in
the chapter. I did this to help emphasize the natural similarities among scripting languages;
often, a game scripted with at least the basic functionality of one language can be ported to
another scripting language with minimal hassle.

As was the case in Lua, Tcl doesn’t support constants. You can simulate them instead with global
variables named using the traditional constant-naming convention:

set ALIEN_COUNT       12;          # Number of aliens onscreen

set MIN_VEL           2;           # Minimum velocity
set MAX_VEL           8;           # Maximum velocity

set ALIEN_WIDTH       128;         # Width of the alien sprite
set ALIEN_HEIGHT      128;         # Height of the alien sprite
set HALF_ALIEN_WIDTH  [ expr $ALIEN_WIDTH / 2 ];  # Half of the sprite

# width
set HALF_ALIEN_HEIGHT [ expr $ALIEN_HEIGHT / 2 ]; # Half of the sprite

# height

set ALIEN_FRAME_COUNT 32;          # Number of frames in the animation
set ALIEN_MAX_FRAME   [ expr $ALIEN_FRAME_COUNT - 1 ];  # Maximum valid

# frame
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set ANIM_TIMER_INDEX  0;         # Animation timer index
set MOVE_TIMER_INDEX  1;         # Movement timer index

You also need two globals: an array to hold the alien heads, and a counter to track the current
frame of the animation. Remember, Tcl’s lack of multidimensionality can be easily sidestepped by
cleverly naming indexes, so don’t worry about the necessary dimensions in the declaration:

set Aliens() 0;                  # Sprites
set CurrAnimFrame 0;             # Current frame in the alien animation

Now onto the functions. As you saw in the Tcl version of the demo’s host application, you need to
define two new commands: Init and HandleFrame. Let’s start with Init, which is called once when
the demo starts up and is in charge of initializing the script.

# Initializes the demo

proc Init {} {

# Import the constants we'll need
global ALIEN_COUNT;
global ALIEN_WIDTH;
global ALIEN_HEIGHT;
global MIN_VEL;
global MAX_VEL;

# Import the alien array
global Aliens;

# Initialize the alien sprites

# Loop through each alien in the table and initialize it
for { set CurrAlienIndex 0; } { $CurrAlienIndex < $ALIEN_COUNT }

{ incr CurrAlienIndex; } {

# Set the X, Y location
set Aliens($CurrAlienIndex,X)

[ GetRandomNumber 0 [ expr 639 - $ALIEN_WIDTH ] ];
set Aliens($CurrAlienIndex,Y)

[ GetRandomNumber 0 [ expr 479 - $ALIEN_HEIGHT ] ];
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# Set the X, Y velocity
set Aliens($CurrAlienIndex,XVel)

[ GetRandomNumber $MIN_VEL $MAX_VEL ];
set Aliens($CurrAlienIndex,YVel)

[ GetRandomNumber $MIN_VEL $MAX_VEL ];

# Set the spin direction
set Aliens($CurrAlienIndex,SpinDir) [ GetRandomNumber 0 2 ];

}
}

Remember that your “constants” are actually just typical globals, which need to be imported into
the command’s local scope with the global command. You also need to import the Aliens array, a
real global. The command then loops through each alien in the array and sets its fields. Notice,
however, that the “fields” are actually just cleverly named indexes; what you’re dealing with is a
purely one-dimensional array that actually feels two-dimensional. Because you can use the comma
in your index names, you can trick the syntax into appearing as if you’re working with multiple
dimensions. The host API command GetRandomNumber is used to fill all of the values—the X, Y
location, X, Y velocity, and the spin direction.

The next and final command is HandleFrame, which is called once per frame and is responsible for
moving the aliens around, handling their collisions with the side of the screen, and drawing and
blitting the next frame:

# Creates and blits the next frame of the demo
proc HandleFrame {} {

# Import the constants we'll need
global ALIEN_COUNT;
global ANIM_TIMER_INDEX;
global MOVE_TIMER_INDEX;
global ALIEN_FRAME_COUNT;
global ALIEN_MAX_FRAME;
global HALF_ALIEN_WIDTH;
global HALF_ALIEN_HEIGHT

# Import your globals
global Aliens;
global CurrAnimFrame;
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# Blit the background image
BlitBG;

# Increment the current frame in the animation
if { [ GetTimerState $ANIM_TIMER_INDEX ] == 1 } {

incr CurrAnimFrame;
if { $CurrAnimFrame >= $ALIEN_FRAME_COUNT } {

set CurrAnimFrame 0;
}

}

# Blit each sprite
for { set CurrAlienIndex 0; } { $CurrAlienIndex < $ALIEN_COUNT }

{ incr CurrAlienIndex; } {

# Get the X, Y location
set X $Aliens($CurrAlienIndex,X);
set Y $Aliens($CurrAlienIndex,Y);

# Get the spin direction and determine the final frame for this
# sprite based on it.
set SpinDir $Aliens($CurrAlienIndex,SpinDir);
if { $SpinDir == 1 } {

set FinalAnimFrame
[ expr $ALIEN_MAX_FRAME - $CurrAnimFrame ];

} else {
set FinalAnimFrame $CurrAnimFrame;

}

# Blit the sprite
BlitSprite $FinalAnimFrame $X $Y;

}

# Blit the completed frame to the screen
BlitFrame;

# Move the sprites along their paths
if { [ GetTimerState $MOVE_TIMER_INDEX ] == 1 } {

for { set CurrAlienIndex 0; } { $CurrAlienIndex < $ALIEN_COUNT }
{ incr CurrAlienIndex; } {
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# Get the X, Y location
set X $Aliens($CurrAlienIndex,X);
set Y $Aliens($CurrAlienIndex,Y);

# Get the X, Y velocities
set XVel $Aliens($CurrAlienIndex,XVel);
set YVel $Aliens($CurrAlienIndex,YVel);

# Increment the paths of the aliens
incr X $XVel
incr Y $YVel
set Aliens($CurrAlienIndex,X) $X
set Aliens($CurrAlienIndex,Y) $Y

# Check for wall collisions
if { $X > 640 - $HALF_ALIEN_WIDTH ||

$X < -$HALF_ALIEN_WIDTH } {
set XVel [ expr -$XVel ];

}
if { $Y > 480 - $HALF_ALIEN_HEIGHT ||

$Y < -$HALF_ALIEN_HEIGHT } {
set YVel [ expr -$YVel ];

}
set Aliens($CurrAlienIndex,XVel) $XVel
set Aliens($CurrAlienIndex,YVel) $YVel

}
}

}

This command does just what it did in the Lua and C versions of the demo. It increments the ani-
mation frame, draws each alien to the screen, moves each sprite and handles its collision with the
wall, and blits the results to the screen. There’s also nothing new here in terms of Tcl—everything
this command does has been covered elsewhere in the chapter. Remember of course, the typical
quirks— “constants” and globals must be imported into the command’s scope before use with
the global keyword, and array indexes that appear to be multidimensional are actually just single-
dimensional keys that happen to contain a comma.

That’s everything so check out the demo! You can find this and all other Chapter 6 programs in
Programs/Chapter 6/.
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Advanced Topics
As usual, I couldn’t possibly fit a full description of the language here, so there’s still plenty to
learn if you’re interested. Here are some of the semi-advanced to advanced topics to consider
pursuing as you expand your knowledge of Tcl:

■ Tk. Naturally, Tk is logical next step now that you’ve attained familiarity and comfort
with the Tcl language. Tk may not be game-related enough to make it into the book, but
most games need GUIs and some form of setup programs, and the Tk windowing toolkit
is a great way to rapidly develop such interfaces. Tcl/Tk is also a great way to rapidly and
easily develop fully graphical utilities like map editors and file-format converters.

■ Extensions. Along with Tk, Tcl supports a wide range of useful extensions that provide
countless new commands for everything from an HTTP interface to OggVorbis audio
playback. As you can imagine, there’s quite a bit of power to be drawn from these exten-
sions, much of which you might find useful in the context of game development and
scripting.

■ Lists. I’ve covered Tcl’s associative array, but the list is another aggregate data type sup-
ported by the language that is worth your time. Although it would’ve proved awkward to
use in this demo and is often considered inefficient for large datasets, understanding Tcl
lists is a valuable skill.

■ Exception Handling. Tcl provides a robust error-handling system that resembles the
exception mechanisms of languages such as C++ and Java. An understanding of how it
works can lead to more stable and cleanly designed scripts.

■ String Pattern Matching with Regular Expressions. Like other languages such as Perl, Tcl
is equipped with a powerful set of string searching and pattern matching tools based on
regular expressions. Anyone who’s using Tcl for text-heavy applications should take the
time to learn how these commands work.

Web Links
Tcl has been around for quite some time and has amassed a formidable following. Check out
these Web links to continue your exploration of the Tcl system and community:

■ Tcl Developer Xchange: http://www.scriptics.com/. A good place to get started with
Tcl/Tk, and a frequently updated source of news and event information regarding the
language and its community.
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■ ActiveState: http://www.activestate.com/. Makers of the ActiveStateTcl distribution
used throughout this chapter.

■ The Tcl’ers Wiki: http://mini.net/tcl/. A collaboratively edited Web site dedicated to
Tcl and its user community. Good source of reference material, discussions, and projects.

WHICH SCRIPTING SYSTEM SHOULD
YOU USE?
You’ve learned quite a bit about these three scripting systems in this chapter, but the real question
is which one you should use, right? Well, as I’m sure you’d expect, there’s no right or wrong answer
to this question. The fact that I chose these particular languages to demonstrate in the first place
should tell you that any of them would make a good choice, so you shouldn’t have to worry too
much about a bad decision. Furthermore, because you now understand both the details of each of
the three systems’ languages, as well as how to use their associated libraries and runtime environ-
ments, you’ll be the best judge of what they can offer to your specific game project.

I explained three scripting systems in this chapter for a number of reasons. First of all, anyone
who has intentions of designing his other own scripting system, as you certainly do, should obvi-
ously be as familiar as possible with what’s out there. Chances are, Mercedes wouldn’t make a par-
ticularly great car if they didn’t spend a significant amount of time studying their competition.
The more you know about how languages like Lua, Python, and Tcl are organized, the more
insight and understanding you’ll be able to leverage when designing one of your own.

Secondly, I wanted it to be as clear as possible to you that from one scripting system to the next,
certain things change wildly (namely, language syntax and the general features that language 
supports), whereas others stay remarkably the same (such as the basic layout of a runtime envi-
ronment or the utilities a distribution comes with). On the one hand, you’ll need to know which
parts of your scripting system should be designed with tradition and convention in mind, but it
also helps to know where you’re free to go nuts and do your own thing. You don’t want to create
a mangled train wreck of a scripting language that does everything in a wildly unorthodox way,
but you certainly want to exercise your creativity as well.

Lastly, even though the point of this book is to build a scripting system of your own, there will
always be reasons why using an existing solution is either as good a decision, or a smarter one.
Here are a few:

■ Ease of development. Building a scripting system is hard work, and lots of it. Creating a
game is a lot of hard work as well. Put these two projects together and you have double
the amount of long, difficult work ahead of you. Using an existing scripting package can
make things quite a bit easier, and that means you’ll have more energy to spend on mak-
ing your game as good as it can be. Besides, that’s what’s really important anyway.
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■ Speed of development. Aside from difficulty, building a scripting system from scratch
takes a long time. If you find yourself working on a commercial project for an estab-
lished game company, or just don’t want to spend two years from start to finish on a per-
sonal project, you may find that there simply aren’t enough hours in the day to do both.
Because game development is always the highest priority, the design and creation of a
custom scripting language may have to be sacrificed in the name of actually getting
something done.

■ Quality assurance. Scripting systems are extremely complex pieces of software, and if
there’s one thing software engineers know, it’s that bugs and complexity go hand in
hand. The more code you have to deal with, the more potential there is for large and
small bugs alike to run rampant. It’s hard enough to get a 3D engine to work right; you
shouldn’t have to battle with your scripting system’s stability issues at the same time.

■ Features. Making your own scripting system is a lot of fun, and a great learning experi-
ence, but how long is it going to take to make something that can compete with what’s
already out there? How long will you spend adding object-orientation, garbage collec-
tion, and exceptions? Sometimes, one of the existing solutions might just be plain better
than your own version.

Of course, I don’t mean to sound too negative here. To be fair, I should mention that there are
just as many reasons that you should design your own scripting system, or at least know how to do
so. Here are a few:

■ Exiting solutions are overkill. The last reason I mentioned to use someone else’s script-
ing language is that it may simply boast more features than you’re prepared to match. Of
course, this can also be its downfall, because a bloated feature set may completely over-
shadow its utility value. You may not need objects, exceptions, and other high-level lan-
guage features, and may just want a small, easy-to-use custom language. In these cases,
creating an intentionally modest scripting system of your own design may be just what
the project needes.

■ Existing languages are generic by design. Tcl in particular, for example, was designed
from the ground up to be as generic as possible, so it could be directly applied to a wide
range of domains. Everyone from game programmers to robot designers to Web applica-
tion developers can find a use for Tcl. But if you need a language designed entirely to
control a specific aspect of your own game, you may have no choice but to do it yourself.
For example, if you’re writing a game that involves a huge amount of natural language
processing, you may not really care much about mathematical functions and just want a
string-heavy language with built-in parsing and analysis routines.
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■ No one knows your game better than you. Optimization and freedom of creativity are
two things that are always on the minds of game developers. You may find that the only
way to get a scripting language small enough, fast enough, or specific enough for your
game is to build it yourself. To put it simply, scripting languages are sometimes better off
when they’re custom-tailored to one project or group of similar projects.

To sum things up, even an existing scripting system is not something to take lightly. Scripting has
a huge impact on games and game engines, so make sure you weigh all of the pros and cons
involved in the situation. It’s difficult to make a decision when so many conflicting interests are
involved, ranging from practicality and development time to creative freedom and feature sets,
but it’s a necessary evil. Good games and engines are characterized by the smart decisions made
by their creators.

SCRIPTING AN ACTUAL GAME
Oh right… one last thing. Sure, you made the bouncing alien head demo work in four languages
(C, Lua, Python, and Tcl), but you certainly couldn’t call that a game. Game scripting is a compli-
cated thing, and simply being able to load and run scripts isn’t enough. A great deal of thought
must go into the design and layout of your scripting strategy, in terms of how and where exactly
scripting will be applied, what game entities need to be scripted and when, in addition to count-
less other issues.

On the other hand, you have learned quite a bit so far. You do know how to physically invoke and
interface with a scripting system, you know how to load scripts for later use and assign them to
specific events (in this case, assigning them to run at each frame of the main loop), and you have
a good idea of what each system and language can do. You should probably be able to determine
how this information is then applied to at least a small or mid-level game on your own.

Of course, this wouldn’t be much of a book if that were my final word on the subject. You’ll ulti-
mately finish things up with a look at how scripting techniques are applied to a real game with
real issues. The beauty is that when that time comes, you’ll be able to use any language you want
to do the job—including the one you’ll develop—because the principals of game scripting are
generally language-independent.

SUMMARY
Well that was one heck of a chapter, huh? You came in naïve and headstrong, and you’ve come
out one step closer to attaining scripting mastery. You now have the theoretical knowledge and
practical experience necessary to do real game scripting in Lua, Python, and Tcl—not too shabby,
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huh? Along the way, you’ve learned a lot about how these three scripting systems work, which
means you’ll be much better prepared for the coming chapters, in which you design your own
scripting language.

ON THE CD
We built three major projects throughout the course of this chapter by recoding the original
bouncing alien head demo in three different scripting languages. All code relating to the chapter
can be found in Programs/Chapter 6/ on the accompanying CD.

■ Lua/ Contains the demos for the Lua scripting language.
■ Python/ Contains the demos for the Python scripting language.
■ Tcl/ Contains the demos for the Tcl scripting language.
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Now that you’ve learned how scripting systems are generally laid out, and even gained
some hands-on experience with a few of the existing solutions, you’re finally on the verge

of getting started with the design and construction of your own scripting engine.

As you’ve learned, the high-level language is quite possibly the most important—or more specifi-
cally, the most pivotal—element in the entire system. The reason for this is simple; because it pro-
vides the human readable, high-level interface, it’s the primary reason you’re embarking on this
project in the first place. Equally important is the fact that the underlying elements of the system,
such as the low-level language and virtual machine, can be better designed in their own right
when the high-level language they’ll ultimately be accommodating is taken into account. This is
analogous to the foundation for a building. The foundation under a house will support houses
and other small, house-like buildings, but will hardly support skyscrapers or blimp hangars.

For these reasons and more, your first step is to design the language you’re going to build the sys-
tem around. As I’ve alluded to frequently in the chapters leading up to this point, the ultimate
goal will be a high-level language that resembles commonly used existing languages like C, C++,
Java, and so on. This is beneficial as it saves you the trouble of “switching gears” when you go
from working on engine code written in C to script code, for example. More generally, though,
C-style languages have been refined and tweaked for decades now, so they’re definitely trusted
syntaxes and layouts that you can safely capitalize on to help you design a good language that will
be appropriate for game scripting. It’s not always necessary to reinvent the wheel, and you should
keep this in mind over the course of the chapter.

The point to all this is that you need to be sure about what you’re doing here. A badly or hastily
designed language will have negative and long-lasting repercussions, and will hamper your
progress later. Like I said, you’ll be much better prepared when designing other aspects of your
scripting system when the language itself has been sorted out, so the information presented in
this chapter is important.

In this chapter, we’re going to:

■ Learn about the different types of languages we can base our scripting system around.
■ See how the necessity of a high-level language manifests itself, and watch its step-by-step

evolution.
■ Define the XtremeScript language and discuss its design goals.
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GENERAL TYPES OF LANGUAGES
Programming languages, like people, for example, come in a wide variety of shapes and sizes.
Also like people, certain languages are better at doing certain things than others. Some lan-
guages have broad and far-reaching applications, and seem to do pretty much everything well.
Other languages are narrow and focused, being applicable to only a small handful of situations,
but are totally unmatched in those particular fields. The area in which a given language is prima-
rily intended for use is called its domain.

The beauty of a project like the scripting system you’re about to begin building is that it gives you
a chance to create your own language—something I’m sure every decent programmer has fanta-
sized about once or twice. If you’ve ever found yourself wishing your language of choice could do
this or that, your day has finally come! We’re going to outline a language of our own design from
the ground up, so it’ll naturally be our job to decide exactly what its features are.

To start things off, you’re going to have a look at a few basic models for scripting languages. As
you move from one to the next, I’ll note the increasing level of complexity that each one pres-
ents. Although none of the following language styles are “right” or “wrong” in general, it’s obvi-
ous that certain games require more power and precision than others. Remember that the script-
ing requirements of a Pac-Man clone will probably differ considerably from that of a first person
shooter.

Assembly-Style Languages
The first type of language we’re going to cover is what I like to call “assembly-style” languages, so
named because they’re designed after native assembly languages, such as Intel 80X86. As was
briefly covered in the first chapter, assembly languages work on the principal of instructions and
operands. Instructions, just like the ones currently running on the computer I’m writing this book
with, are executed sequentially (one at a time) by the virtual machine. Each instruction specifies

GENERAL TYPES OF LANGUAGES

NOTE
Sun’s Java Virtual Machine (JVM) can technically support any number of
languages, as long as they’re compiled down to JVM bytecode. However,
because the system was designed primarily for Java, that’s the language
that “fits” best with it and can best take advantage of its facilities.This
should be your aim with XtremeScript as well; a language and runtime
environment designed with each other in mind.
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a small, simple operation like moving the value of a variable around or performing arithmetic.
Operands further describe instructions; like the parameters of a function, they tell the virtual
machine exactly which data or values the instruction should operate on.

Let’s start with an example. Say you’re writing a script that maintains three variables: X, Y, and Z.
Just to test this language, all you’re going to do is move these variables’ values around and per-
form some basic arithmetic. A script that does these things might look like this:

Move        X, 16
Move        Y, 32
Move        Z, 64
Add         Y, Z
Sub         Y, X
Move        X, Y

You can start off with a Move instruction, which “moves” the value of 16 into X. This is analogous to
the assignment operator in most programming languages. In other words, the first line of code in
the previous example is equivalent to this in C:

X = 16;

Get it? This first instruction in the script is followed by two more Moves; the first to assign 32 to Y,
and the second to assign 64 to Z. Once the three variables are initialized, you can add Y and Z
together with (surprise) the Add instruction, and then subtract (Sub) X from Y. The results of both
of these instructions are placed into Y, so they’re equivalent to the following lines in C:

Y += Z;
Y -= X;

Lastly, you can move the value of Y into X with a final Move instruction, which wraps everything up.

Assembly-style languages are good primarily because they’re so easy to compile. Despite the obvi-
ous simplicity of the example you just looked at, assembly-style languages generally don’t get
much more complicated than that, and believe it or not, just about anything you can do in C can
be done with a language like this. As you’ve already seen, assignment of values to variables, as well
as arithmetic, is easy using the instruction/operand paradigm. To flesh out the language, you’d
add some additional math instructions, for things like subtraction, multiplication, division, and so
on. You might be wondering, however, how conditional logic and looping is handled. The answer
to this is almost as simple as what you’ve seen so far. Both loops and branching are facilitated with
line labels and jump instructions. Line labels, just like the ones you’re allegedly not supposed to
use in C, mark a specific instruction for later reference. Jump instructions are used to route the
flow of the program, to change the otherwise purely sequential execution of instructions.

7. DESIGNING A PROCEDURAL SCRIPTING LANGUAGE



339

This makes endless loops very easy to code. Consider the following:

Move       X, 0
Label:

Add        X, 1
Jump       Label

This simple code snippet will set a variable called X to zero, and then increment it infinitely. As
soon as the virtual machine hits the Jump instruction, it will jump back to the instruction immedi-
ately following Label, which just happens to be Add. The jump will then be encountered again,
and the process will repeat indefinitely. To help guide this otherwise mischievous block of code,
you’re going to need the ability to compare certain values to other values, and use the result of
that comparison as the criteria for whether to make the jump. This is how the familiar if con-
struct works in C, the only difference being that you’re doing everything manually. A more
refined attempt at the previous loop might look like this:

Move       X, 0
Label:

Add        X, 1
JL         X, 10, Label

You’ll notice that Jump has become JL. JL is an acronym for “Jump if Less than.” The instruction
also works with three operands now, as opposed to the single one that Jump used. The first two are
the operands for the comparison. Basically, you compare X to 10, and if it’s less than, you jump
back to Label, which is the start of the loop, and increment it again. As you can see, the loop will
now politely stop when X reaches the desired value (10, in this case). This is just like the while
loop in C, so the previous code could be rewritten in C like this:

X = 0;
while ( X < 10 )
{

++ X;
}

You should now begin to understand why it is that assembly-style languages, despite their appar-
ent simplicity, can be used to do just about anything C can do. What you should also begin to
notice, however, is that it takes quite a bit more work to do the simple things that C usually lets
you take for granted. For this reason, assembly-style languages are simply too low-level for the sort
of scripting system we want to create. Besides, as you learned in Chapter 5, the script compiler is
going to convert a higher-level language down to an assembly language like this anyway. You have
to build an assembly language no matter what, so you might as well focus your real efforts on the
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high-level language that will sit on top of it. As I mentioned previously, however, the one real
advantage to a language like this is that it’s really quite easy to compile. As you can probably
imagine, code that looks like this:

X = Y * Z + ( Q / 10.5 ) + P - 2

Is considerably harder for a compiler to parse and understand than something simpler (albeit
longer) like this:

Mov        X, Y
Mul        Y, Z
Div        Q, 10.5
Add        Y, Q
Sub        P, 2
Add        Y, P

If this sort of language still interests you, however, don’t worry. Starting in the next chapter,
you’re going to design and implement an assembly language of your own, as well as its respective
assembler, which will come in quite handy later on in the development of your scripting system.
Until then, however, you can use it by itself to do the kind of low-level scripting seen here. So,
you’re going to learn exactly how this sort of language works either way.

In a nutshell, here are the pros and cons of building a scripting system around a language like
this.

Pros:

■ Very simple to compile.
■ Relatively easy to use for basic stuff, due to its simplistic and fine-grained syntax.

Cons:

■ Low-level syntax forces you to think in terms of small, single instructions. Complex
expressions and conditional operations become tedious to code when you can’t describe
them with the high-level constructs of a language like C.

Upping the Ante
One of the biggest problems with the sort of language discussed previously is its lack of flexibility.
The programmer is forced to reduce high-level things like complex arithmetic and Boolean
expressions to a series of individual instructions, which is counter-intuitive and tedious at times.
Most people don’t mind having to do this when writing pure assembly language, as the speed-
boost and reduced footprint certainly make it worthwhile. But having to do the same to script a
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game is just silly, at least from the
perspective of the script coder.
Scripts are usually slow compared to
true, compiled machine code
whether they’re in the form of an
assembly-style language or a higher
level language, so you might as well
make them easier to use.

The first thing to add, then, is support for more complex expressions. This in itself is a rather
large step. Code that can properly recognize and translate an expression like this:

Mov        X, Y * Q / ( Z + X ^ 2 ) + 3.14159 % 256

is definitely more complicated to write than code that can understand the same expression after
the coder has gone to the trouble of reducing it to its constituent instructions.

You can’t really add expressions alone, though; a few existing language constructs need to change
along with their addition in order to truly exploit the power of this new feature. For example,
conditional expressions are currently evaluated in a manner much like the way arithmetic is han-
dled. Only two operands can be compared at once, causing a jump to a location elsewhere in the
script if the comparison evaluates to true. This means that even with support for full expressions,
you can still only compare two things at once. To change this, you could simply alter the jump
instructions to accept two operands instead of four. In other words, instead of the jump if less than
or equal instruction (for example) looking like this:

JLE        X, Y, Label

This code jumps to Label if X is less than or equal to Y. You could simply reduce all jump instruc-
tions to a single, all-purpose conditional jump that looks like this:

Jmp        Expression, Label

Now you can do things like this:

Jmp        X > Y && Y * 2 < Z, MyLabel

Which makes everything much more convenient. However, as long as you’re going this far, you
might as well cut to the chase and create the familiar if statement we’re all used to. Take the fol-
lowing random block of code for instance:

Jmp        X > Y && Z < Q, TrueBlock
FalseBlock:

; Handle false condition here
Mov        Z, X
Sub        Q, Y
Jmp        SkipTrueBlock

GENERAL TYPES OF LANGUAGES
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TrueBlock:
; Handle true condition here
Add        X, Y
Mul        Z, 2
Mov        Y, Z

SkipTrueBlock:

It works, and it works much better thanks to the ability to code Boolean expressions directly into
scripts, but it’s a bit backwards, and it’s still too low level. First of all, you still have to use labels
and jumps to route the flow of execution depending on the outcome of the comparison. In lan-
guages like C, you can use code blocks to group the true and false condition handling blocks,
which are much cleaner. Second, the general layout of assembly-style languages forces you to put
the false condition block above the true block, unless you want to invert all of your Boolean
expressions. This is totally backwards from what you’re probably used to, so it’s yet another exam-
ple of the counter-intuitive nature of this style of language. You can kill two birds with one lan-
guage enhancement by adding support for the if construct. The block of code you saw previous-
ly can now be rewritten like this:

if ( X > Y && Z < Q )
{

; Handle true condition here
Add        X, Y
Mul        Z, 2
Mov        Y, Z

}
else
{

; Handle false condition here
Mov        Z, X
Sub        Q, Y

}

Again, much nicer, eh? It’s so much nicer, in fact, that you should probably do the same thing for
loops. Currently, loops are handled with the same jump instruction set you were using to emulate
the if construct before you added it. For example, consider this code block, which initializes a
variable called X to zero, and then increments it as long as it’s less than Y:

Mov        X, 0
LoopStart:

Inc        X
Jmp        X < Y, LoopStart
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Looks like the same problem, huh? You’re being forced to emulate the nice, tidy organization of
code blocks with labels and jumps, and the expression that you evaluate at each iteration of the
loop to determine whether you should keep going is below the loop body, which is backwards
from the while loop in C. Once again, these are things that the language should be doing for
you. Adding a while construct of your own lets you rewrite the previous code in a much more ele-
gant fashion:

Mov        X, 0
while ( X < Y )
{

Inc        X
}

Now that you’ve got a language that supports if and while, along with the complex type of
expressions that these constructs demand, you’ve taken some major steps towards designing a C-
style language, and have seen its direct advantages over the more primitive, albeit easier to com-
pile, assembly-style languages. In fact, you’re actually almost there; one thing I haven’t mentioned
until now is that “instructions” as we know them are virtually useless at this point. There’s no
need for the Mov instruction, as well as its similar arithmetic instructions, now that you have
expression support. I mean, why go to the trouble of writing this:

Mov        X, Y + Z * Q

When you can just write this:

X = Y + Z * Q;

The latter approach certainly looks more natural from the perspective of a C programmer. And
because if and while have replaced the need for the Jmp instructions and the line labels it works
with, you no longer need them either. So what are you left with? A language that looks like this:

X = Y;
if ( X < Z )

X = Z;
else

Z = X;
while ( Z < Q * 2 )
{

Z = Z + X;
X = X - 1;

}

Which is C, more or less. Granted, you still don’t know how to actually code a compiler capable
of handling this, but you’ve learned first-hand why these language constructs are necessary, work-

GENERAL TYPES OF LANGUAGES
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ing your way up from what is virtually the simplest type of language you could implement. Now
that you know exactly why you should aim for a language like this, let’s have a look at some of the
more complex language features.

FUNCTIONS
What if you wanted to add trigonometry to your expressions? In other words, what if you wanted
to do something like this:

Theta = 180;
X = Cos ( Theta ) / Sin ( Theta );

You could hardcode the trig functions
directly into your compiler, so that it
replaces Cos ( X ) and Sin ( X ) with a
specialized instruction for evaluating
cosines, but a better approach is to sim-
ply allow scripts to define their own
functions.

Functions open up possibilities for a
whole new style of programming by
introducing the concept of scope. This lan-
guage as it stands forces every line of code to reside in the same scope. In other words, every 
variable defined in the script is available everywhere else. When code is broken into functions,
however, scripts take on a much more hierarchical form and allow data to be fenced off and
exclusively accessible in its own particular area. Variables defined in a function are available only
within that function, and therefore, the function’s code and data is properly encapsulated. See
Figure 7.1.

Recursion also becomes possible with functions. Recursion is a form of problem-solving that
involves defining the problem in terms of itself. Recursive algorithms are usually implemented in
C (or C-style languages, as your language is quickly becoming) by defining a function that calls
itself. Take the following block of code for instance:

function Fibonacci ( X )
{

if ( X <= 1 )
return X;

else
return Fibonacci ( X - 1 ) + Fibonacci ( X - 2 );

}
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NOTE
As you should certainly know, functions basi-
cally take simple code blocks to the next
level by assigning them names and allowing
them to be jumped to from anywhere in the
program, as well as giving them the ability to
receive parameters.The process of jumping
to a function based on its name is called a
function call, and is really the high-level evo-
lution of the jump instructions and line labels
from the early version of your language.
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This function of course computes the Fibonacci Sequence, a sequence defined such that each ele-
ment X is defined as the sum of the previous two elements (in other words, X - 1 and X - 2). The
Fibonacci Sequence is a common example of basic recursive algorithms. For example, here are
the first few terms from the sequence:

1,1,2,3,5,8,13,…

In general, functions change the way you
code because they allow you to break
scripts into specialized blocks of codes that
work with one another via function calls.
Functions promote code reuse, because
you can write code once, assign it a logical
name of some sort, and refer to it as many
times as you want simply by using its name.

This also opens up the possibility of creat-
ing a standard library of functions that are
commonly used among all scripts. For
example, if you’re scripting a game that
employs a complex algorithm for leveling-up

FUNCTIONS

Figure 7.1

Functions create a two-

level scope hierarchy:

script scope and func-

tion scope.

TIP
While it’s true that script-defined functions
are vital, there are definite advantages to
writing functions in C that the script can
call by name.This allows functions to be
written that run much faster than script-
defined functions, and are capable of lower-
level or more specialized tasks. Of course,
a far more flexible method is simply defin-
ing C functions in the host API.We’ll talk
about this later on.
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players, you may want to write that algorithm once in a function, and then call that function
whenever you need to level-up a player from any subsequent scripts. C programmers are certainly
familiar with the concept of a standard library, so you should be able to imagine the possibilities
as they would relate to games, once a game project gets complicated enough. Figure 7.2 illus-
trates this concept.

7. DESIGNING A PROCEDURAL SCRIPTING LANGUAGE

Figure 7.2

Using a standard

library.

In general, functions (which are also known as procedures) turn your language into a procedural
language, meaning a language whose programs are defined largely as collections of interrelated
functions as opposed to a single, flat block of code. Languages like C and Pascal are procedural
languages, so you should understand why you’re aiming for something along those lines. They’re
easy to use and well accepted languages that are well suited to scripting a wide variety of games
with plenty of flexibility and power.

Object-Oriented Programming
To round out this discussion, let’s take a look at object-oriented programming, or OOP. As you may
know, objects take the concept of functions a step further by merging code and data into a single
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structure. Generally speaking, objects manage both a set of data known as the properties that
describe a given entity (such as an enemy in your game) as well as a group of functions known as
methods that operate specifically on that data and implement the entity’s behavior and functionali-
ty (see Figure 7.3).

FUNCTIONS

Figure 7.3

Objects combine data

and code into single

entities.

Object-oriented programs are very different from their procedural cousins. Rather than being a
collection of functions that call and return values to each other, object-oriented programs are col-
lections of objects, and can therefore be thought of as systems of interconnected entities that can
communicate with each other by sending messages, as illustrated in Figure 7.4. Messaging in OOP-
terminology really just refers to the process of one object calling the function of another object to
get it to do something or return some value. In this regard, OOP programs are still somewhat
procedural, but the real focus of these programs is that they’re simply collections of nearly
autonomous entities that fully define their own data and behavior.

An OOP program at runtime is very similar in a lot of ways to the real world, in the sense that it’s
composed of an underlying environment and a “population” of entities that live, function, and
die within that environment. But I’m getting too philosophical; let’s get back on track.

To bring this all back to the topic of game scripting, let’s talk about how objects can be used to
better control a game. If you think about it, objects are really a natural part of game program-
ming as well as scripting. After all, games are also usually composed of an environment (the level,
arena, game world, or whatever) that is inhabited by a number of autonomous entities that inter-
act with each other (such as the player, enemies, power ups, weapons, and so on). With this in
mind, an OOP-based scripting language seems almost ideal, because scripts can literally map the
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entities in a game to physical objects and therefore control them and their behavior in a very
intuitive and lifelike manner. For example, UnrealScript, the scripting language used for the
Unreal series of games, is based entirely around this concept.

However, OOP-based languages are not only far more complex to design than their procedural
counterparts, they’re also much more difficult to implement both in terms of compilers and run-
time environments. I’ll be passing on the OOP paradigm in this book, focusing instead on a
purely procedural language. Don’t worry about it, however; procedural code is still extremely
powerful and can even emulate the functionality of OOP languages to varying degrees. As you’ll
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Figure 7.4

Objects communicate

with each other via

messages at runtime.

NOTE
It’s a common misconception that object-oriented programming is just a
matter of grouping code and functions together, when it is in fact much
more. OOP brings with it not just the basic structure of objects, but also
an endless collection of complex design patterns, which are basically ways
to model common problems with objects in highly structured ways. If you
were going to take the OOP route, it’d be best to go all-out and really do
it right. Unfortunately, there’d hardly be room in a single book for both a
full treatment of compiler design in addition to enough OOP info to
make the design of an object-oriented language feasible.
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see in the following sections, you’ll have no shortage of flexibility when you actually start script-
ing. Regardless, OOP is still something important to keep in mind.

XtremeScript Language Overview
XtremeScript is the name of the scripting system you’re going to build, but more importantly, it’s
the name of the language the system is based around. As a result, I’ll usually be referring to the
language specifically when I use the term, unless it’s clearly in a different context. I just mention
it because there’s some potential for confusion. With that out of the way, let’s see what’s up with
this language.

Design Goals
XtremeScript should be a C-like language for the reasons you’ve already seen. It helps you main-
tain the same state of mind you’ll be in while working on the host application’s game engine,
because it will most likely be written in C or C++.

As you’ve also learned, the language must be truly procedural, which means that the structure of
its programs (er, scripts) are based on functions rather than simply being one flat block of code.
The procedural nature of this language will help you organize your thoughts better through
encapsulation and the possibility of code reuse by grouping commonly used actions and algo-
rithms into functions.

Going back to the C-style issue, the first order of business is
syntax. For two important reasons, the syntax of the lan-
guage should be a direct copy of C whenever possible. First
of all, this is practically what will designate your language as
“C-style” to begin with, because the look and feel of a lan-
guage is almost as important as its feature set. Second, the
layout of the C language has been in worldwide use for
decades, which means you get a tried-and-tested syntax with-
out having to spend months or years coming up with it
yourself.

C syntax brings up a few issues, however. First of all, how far
is too far? You certainly want to emulate the look, feel, and
even functionality of C, but a full implementation of the
entire C language would not only take considerably longer to complete, it would be total overkill
for the scripting needs of more than a few games anyway. As a result, you’ll trim a 
few features here and there in the interest of getting this done some time before the next 
geological age.

FUNCTIONS

NOTE
C-syntax is extremely pop-
ular, and has been used as
the basis for most new lan-
guages. C++, Java,
JavaScript, C# and many
other newer languages all
use the familiar C-syntax
as the basis for their struc-
ture.As you can see, all the
cool kids are doing it.
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You already know of some fairly serious differences from C, for example, like the fact that the lan-
guage will be typeless and have built-in support for strings. These are more along the lines of
additions to the language, however, as opposed to removals. The real differences will be in the
form of features that will not be supported, such as pointers. Pointers not only add a whole new
level of complexity to the compiler and runtime environment, but they also have little relevance
in the scripting of many games. Any sort of
aggregate data manipulation, for example,
will be done with arrays, and there proba-
bly won’t be much need for the dynamic
allocation of memory. In general, pointers
will not be necessary within XtremeScript
and would bring about too many complex-
ities to justify implementing.

Other, smaller differences will exist as well.
For example, there will be no support for
structures or unions. These again add a
significant level of complexity to the com-
pilation process, and the vast majority of
their functionality can be emulated with
arrays, which will be supported. In the following pages, you’ll take a look at a complete language
specification for XtremeScript; anything that isn’t mentioned there will not be supported.

To continue in your efforts to simulate C, you’ll even go so far as to add a basic preprocessor. The
C preprocessor is so widely and heavily used that it’s become a part of the language itself, and
XtremeScript will reflect that. The basic preprocessor will duplicate the functionality of the C
preprocessor’s most popular and commonly used features.

Lastly, the language overall needs to feel as free-form
and flexible as possible. This means that things like
whitespace, capitalization, and coding style idiosyn-
crasies like indenting and placement of curly brackets
should not factor into the compiler’s understanding of
source code. You, along with anyone else who ends up
using your scripting system, should feel just as comfort-
able and at-home as you would in Microsoft Visual C++.
A compiler intelligent enough to keep these things in
check is definitely going to be more work, but it will be
one of the most invaluable additions to the language.
Trust me on that.
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NOTE
Pointers are usually only necessary when
dealing with complex and dynamic data
structures, which the majority of your
game scripting needs won’t involve.
Scripting is by its very nature more simplis-
tic than “true” programming most of the
time, so this loss isn’t too big a deal. Even
Java doesn’t support pointers (although it
does mimic a lot of their functionality with
references, but that’s another matter).

NOTE
Many people don’t know this,
but the same preprocessor
used by C has been used in
many other programs aside
from C compilers themselves,
and in this regard, is a separate
entity of its own. Its file inclu-
sion and macro expansion facil-
ities have proven equally useful
in text editors, for example.
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Syntax and Features
Fortunately, I’ve done the (somewhat) hard part already and put together a full language specifi-
cation for you to work from. As I said, it’s a clear derivative of C, which gives it a familiar syntax
and most of its popular features. There are a number of cutbacks here and there, in addition to a
few small additions or modifications, but I think it’s enough to make you feel comfortable using
it. Without further ado, take your first look at your future language, XtremeScript.

Data Structures
Data structures in XtremeScript are simple, as only single variables and one-dimensional arrays
are supported. There are no classes, structs, unions or other aggregate structures built-in,
although many of them can be simulated due to the typeless nature of the language. Because
XtremeScript is typeless, an array can be easily “transformed” into a general purpose structure
similar to C’s struct by treating each array index as a field, which works well because the
XtremeScript array allows any data type to be stored at any index.

Variables
First up are of course variables. As I’ve mentioned a number of times, XtremeScript variables are
typeless, which means they can hold any data type at any time. Because of this, however, there’s
no need for type-specific declaration statements, such as this:

int MyInt = 16;
float MyFloat = 3.14156;
string MyString = "Hello, world!";

Instead, variables of all types are declared with the var keyword, so the previous code would actu-
ally look like this:

var MyInt = 16;
var MyFloat = 3.14156;
var MyString = "Hello, world!";

Although variables can’t be declared with any specific type, they can always use them.
XtremeScript supports Boolean, integer, floating-point, and string values, so a variable called X
can be assigned any of the following values at any time:

X = true;     // Boolean (true and false are built-in XtremeScript keywords)
X = 16;       // Integer
X = 3.14159;   // Floating-Point
X = "Hello!";  // String

FUNCTIONS
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Makes things easier, huh? The only restriction is that vari-
ables must be declared before using them, which con-
trasts with a number of other scripting languages that
don’t force you to do this. The reason I’ve chosen to
enforce this policy is that positively evil logic errors can be
the result of simple variable typos, such as the following:

MyValue = 256;
if ( MyVolue )

print ( "MyValue is nonzero." );
else

print ( "MyValue is zero." );

As you can see, MyValue has accidentally been written as MyVolue in the if statement, which could
go unnoticed for who knows how long, causing strange results (in this case, it will always be treat-
ed as zero, no matter what value you think it should have). Let me tell you from experience:
identifying typo logic errors is like find your car keys—you’ll end up derailing your entire sched-
ule trying to find them, you’ll tear everything apart in the process, and in the end you’ll just end
up feeling like an idiot when you find out that you left them in the ignition the whole time.

Lastly, even though it was briefly mentioned in a previous code example, the Boolean data type is
directly supported with the true and false keywords, which can be used in expressions just like
any other value. For example:

Flag = true;
if ( Flag )
{

// Do something
Flag = false;

}

Of course, I haven’t mentioned if statements yet, but this code should be self-explanatory any-
way.

Strings
First and foremost, strings should be considered just another data type in the context of this lan-
guage, because there’s no such thing as a “string variable”; rather, it’s one of the many types that
any given variable can hold if it wants to. However, strings have one important difference from
the other types, which is that they can be accessed both as variables and arrays. For example, if
you have two variables X and Y, you can manipulate them like this:
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NOTE
Internally, Boolean values will
be represented as integers,
wherein true is equal to one
and false is equal to zero.



353

X = "Hello";     // Set X to a greeting
Y = "Goodbye";   // Set Y to the opposite
X = Y;           // Now X and Y both contain "Hello"

Which is the same way you’d deal with other data types, such as integers and Booleans. However,
in the event that you need to access individual characters or substrings from variables, you can
also use array notation:

X = "ABC";
Y = "DEF";
Y = X [ 1 ];      // Y now equals "B"

Which provides a more precise interface with string data. Remember that also like arrays, charac-
ter data begins at index 0, so the "A" character in X from the previous example resides at index 0,
whereas "B" and "C" can be found at 1 and 2.

Remember, pretty much any string-processing function can be derived from this simple ability to
access characters based on an index.

Arrays
Arrays are the last member of the XtremeScript data structures family. They’re declared in a man-
ner very similar to C, which simply involves putting a bracket pair ([]) after an otherwise normal
variable declaration to denote the array’s dimensions. For example, a 16-element array called
MyArray can be declared like this:

var MyArray [ 16 ];

Like I said, it’s just like C. The only difference to keep in mind is that XtremeScript does not sup-
port the { … } notation for initializing array elements at the time of the declaration. Also, unlike
many other script languages, variables cannot be used as arrays unless they’re specifically
declared as such, and writing past the boundaries of an array is just as dangerous as it is in a lan-
guage like C. For example, this is not allowed, as it is in many other scripting languages:

var X;
X [ 3 ] = "Hello!";   // Not allowed, X was never declared as an array

The following of course, is fine:

var X [ 16 ];
X [ 3 ] = "Hello!";   // No problem, X was declared as an array

FUNCTIONS
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Remember, even though more complex structures like C’s struct aren’t supported, you can simu-
late them with relative ease simply by using different elements of the array. For example, imagine
that you wanted to port a structure like this from C++:

struct MyStruct
{

bool X;
int Y;
float Z;

}

MyStruct Foo;

Foo.X = true;
Foo.Y = 32;
Foo.Z = 3.14159;     // I've really got a thing for pi, don't I?

It’s simply a matter of declaring a
three-element array and mapping
each index to the appropriate field.
Sure it’s not quite as intuitive, but it
works and the end result the same:

var Foo [ 3 ];

Foo [ 0 ] = true;
Foo [ 1 ] = 32;
Foo [ 2 ] = 3.14159;

Operators and Expressions
As you’ve learned in this chapter, expressions are an invaluable feature in any language, so you
want to make sure XtremeScript doesn’t fall short in this category. Let’s just dive right in and
look at the operators that the language provides.

Arithmetic
Arithmetic functions are the basis for most assignment expressions. XtremeScript supports the
usual lineup, listed in Table 7.1:

7. DESIGNING A PROCEDURAL SCRIPTING LANGUAGE

NOTE
Yes, structs are extremely useful, and would defi-
nitely have their application in game scripting.
However, a decent amount of complexity would
accompany their inclusion in the compiler, so in
the interest of keeping things as simple as possi-
ble, they’ve been left out. However, by the end of
the book you should be capable of adding them
yourself if you find their absence unacceptable.
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Notice that unlike C, this language
provides a built-in exponent operator
using the familiar caret (^). Also, as is
the case with C, the increment (++)
and decrement (--) operators come
in both pre- and post- forms, so both
of the following are legal:

X ++;
++ X;

FUNCTIONS

Table 7.1  XtremeScript Arithmetic Operators
Operator Description

+ Addition (Binary)

- Subtraction (Binary)

$ String Concatenation (Binary)

* Multiplication (Binary)

/ Division (Binary)

% Modulus (Binary)

^ Exponent (Binary)

++ Increment (Unary)

-- Decrement (Unary)

+= Addition assignment (Binary)

-= Subtraction assignment (Binary)

*= Multiplication assignment (Binary)

/= Division assignment (Binary)

%= Modulus assignment (Binary)

^= Exponent assignment (Binary)

NOTE
By the way, just in case you’ve forgotten, binary
operators are those that take two operands,
with one on each side of the operator. Examples
are addition and subtraction, which are always in
the form X + Y and X - Y. Unary operators
accept only a single operand, which can be on
either side depending on the definition of the
operator. Increment, for example, which can
take the form ++ X, is a unary operator.
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Bitwise
Bitwise operations are generally used for manipulating the individual bits of integer variables.
XtremeScript’s bitwise operators are listed in Table 7.2:

In another slight divergence from C, notice that the exclusive or operator is no longer the caret. I
swapped that with the exponent operator. It is now the hash mark (#) instead.
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Table 7.2  XtremeScript Bitwise Operators
Operator Description

& And (Binary)

| Or (Binary)

# XOr (Binary)

~ Not (Unary)

<< Shift left (Binary)

>> Shift right (Binary)

&= And assignment (Binary)

|= Or assignment (Binary)

#= XOr assignment (Binary)

<<= Shift left assignment (Binary)

>>= Shift right assignment (Binary)

Logical and Relational
The last group of operators to mention are the logical and relational operators. Logical operators
are used to implement Boolean logic in expressions, whereas relational operators define the rela-
tionship between entities (greater than, less than, etc.). XtremeScript’s logical and relational oper-
ators are listed in Tables 7.3 and 7.4, respectively.
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Precedence
Lastly, let’s quickly touch on
operator precedence. Precedence
is a set of rules that determines
the order in which operators are
evaluated. For example, recall
the PEMDAS mnemonic from
school, which taught us that, for
example, multiplication (M) is
evaluated before subtraction (S).
So, 8 - 4 * 2 is equal to zero,

FUNCTIONS

Table 7.3  XtremeScript Logical Operators
Operator Description

&& And (Binary)

|| Or (Binary)

! Not (Unary)

== Equal (Binary)

!= Not Equal (Binary)

Table 7.4  XtremeScript Relational Operators
Operator Description

< Less Than (Binary)

> Greater Than (Binary)

<= Less Than or Equal (Binary)

>= Less Than or Equal (Binary)

NOTE
According to my editors, they’ve never heard of
PEMDAS, so I’ll explain it a bit in case you’re con-
fused too. My high school (in Northern California)
math classes used the PEMDAS mnemonic to help
us remember operator precedence. PEMDAS stood
for “Please excuse my dear Aunt Sally”, and, more
specifically,“Parenthesis, Exponents, Multiplication,
Division,Addition, Subtraction”. Popular derivatives
involve Aunt Sally being executed and exfoliated. I
leave it up to the reader to decide her fate.
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because 4 * 2 is evaluated first, the result of which is then subtracted from 8. If subtraction had
higher precedence, the answer would be 8, because 8 - 4 would be multiplied by 2.

XtremeScript operators follow pretty much the same precedence rules as other languages like C
and Java, as illustrated in Table 7.5 (operators are listed in order of decreasing precedence, from
left to right and top to bottom).
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Table 7.5  XtremeScript Operator Precedence
Operator Type Precedence

Arithmetic (* / + - ++ -- % ^ $)

Bitwise (& | # ~ << >>)

Assignment (= += -= *= /= &= |= #= ~= %= ^= <<= >>=)

Logical/Relational (&& || == != < > <= >=)

Unary Operators (- !)

Code Blocks
Code blocks are a common part of C-style languages, as they group the code that’s used by struc-
tures like if, while, and so on. Like C, code blocks don’t need to be surrounded by curly brackets
if they contain only one line of code (the exception to this rule is function notation; even single-
line functions must be enclosed in brackets).

Control Structures
Control structures allow the flow of the program to be altered and controlled based on the evalu-
ation of Boolean expressions. They include loops like while and for and conditional structures
like if and switch. Let’s look at the conditional/branching structures first.
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Branching
First up is if, which works just like most other
languages. It accepts a single Boolean expres-
sion and can route program flow to both a true
or false block, with the help of the optional else
keyword:

if ( Expression )
{

// True
}
else
{

// False
}

Iteration
XtremeScript supports two simple methods for iteration. First up is the while loop, which looks
like this:

while ( Expression )
{

// Loop body
}

The while loop is often considered the most fundamental form of iteration in C-style languages,
so it’s technically all you’ll need for most purposes. However, the for loop is equally popular, and
often a more convenient way to think about looping, so let’s include it as well:

for ( Initializer; Terminating-Condition; Iterator )
{

// Loop body
}
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NOTE
It’s worth noting that although many
languages support a built-in elseif key-
word, there’s not really any need to do
so.The if-else-else if structure can
be assembled simply by placing an else
and an if together on the same line
without putting curly brackets around
the else block.
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The funny thing about the for loop is that it’s really just another way to write a while loop.
Consider the following code example:

for ( X = 0; X < 16; ++ X )
{

Print ( X );
}

This code could be just as easily written as while loop, and behave in the exact same way:

X = 0;
while ( X < 16 )
{

Print ( X );
++ X;

}

Nifty, huh? You might be able to capitalize on this fact later on when implementing the language.
For now, though, just remember that the while loop is all you’d technically need, but that the for
loop is more than convenient enough to justify its inclusion.

Lastly, you should include two other commonly used C keywords: break and continue. As you can
see, break causes the current line of execution to exit the loop and “break” out of it, just like in a
case block. continue causes the loop to unconditionally jump to the next iteration without finish-
ing the current one.
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NOTE
Technically, the while loop is limited by the fact that it will not always
iterate at least once; something the do…while loop allows.The only dif-
ference with this new loop is that it starts with do instead of while, and
the conditional expression is evaluated after the loop iterates, meaning
it will always run at least once.The do…while loop is uncommon how-
ever, so I’ve chosen not to worry about it. Keep in mind, though, that
it’d be an easy addition, so if you do really feel like you need it, you
shouldn’t have much trouble doing it yourself.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



361

Functions
Functions are an important part of XtremeScript, and are the very reason why you call it a proce-
dural language to begin with. You’ll notice a small amount of deviation from C syntax, when deal-
ing with XtremeScript functions, however, so take note of those details.

Functions are declared with the func keyword, unlike C functions, which are declared with the
data type of their return value, or void. For example, a function that adds two integers and
returns the result in C would look like this:

int Add ( int X, int Y )
{

return X + Y;
}

In XtremeScript, it’d look like this:

func Add ( X, Y )
{

return X + Y;
}

Because XtremeScript is typeless, there’s no such thing as “return type”. Rather, all functions can
optionally return any value, so you simply declare them with function. Next, notice that the name
of each parameter is simply an identifier. Again, because the language is typeless, there’s no data
type to declare them with. Usually you use the var keyword to declare variables, but there’s no
real need in the case of parameter lists because preceding each parameter with var in all cases
would be redundant. Notice, though, that at least return works in XtremeScript just as it does in
C.

The last issue to discuss with functions is how the compiler will gather function declaration infor-
mation. In C, functions can be used only in the order they were declared. In other words, imag-
ine the following:

void Func0 ()
{

Func1 ();
}

void Func1 ()
{

// Do something
}

FUNCTIONS
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This would cause a compile-time error because at the time Func1 () is called in Func0 (), Func1 ()
hasn’t been defined yet and the compiler has no evidence that it ever will be. C++ solves this
problem with function prototypes, which are basically declarations of the function that precede its
actual definition and look like this:

void Func0 ();
void Func1 ();

void Func0 ()
{

Func1 ();
}

void Func1 ()
{

// Do something
}

Function prototypes are basically a promise to the compiler that a definition exists somewhere, so
it will allow calls to the function to be made at any time. I personally don’t like this approach and
think it’s redundant, though. I don’t like having to change my function prototype in two places
whenever I modify its name or parameter list. So, the XtremeScript compiler will simply work in
multiple passes; the first pass, for
example, might simply scan
through the file and build a
list of functions. The second
pass, which will actually per-
form the compilation, will
refer to this table and there-
fore safely allow any function
to be called from anywhere. I
know this is getting a bit tech-
nical for a simple language
overview, but it affects how
code is written so I’ve includ-
ed it. Naturally, we’ll cover all
of this in far greater detail
later on, so just accept it 
for now.

7. DESIGNING A PROCEDURAL SCRIPTING LANGUAGE

TIP
I won’t be covering it directly in this book, but a useful
addition to your own implementation of the language
would be an inline keyword for inlining functions. Inline
functions work like macros defined with the preproces-
sor’s #define keyword—their function calls are replaced
with the function’s code itself.This saves the overhead
of physically calling the function (which we’ll learn more
about starting in the next chapter). Of course, in the
context of scripting the affect of inlining may be com-
pletely unnoticeable, but it’s always a nice option when
writing performance-critical sections of code.
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Escape Sequences
One important but often unnoticed addition to a language is the escape sequence. Escape
sequences allow, most notably, double quotes to be used within string literal values without con-
fusing the compiler. XtremeScript’s escape sequence syntax is familiar, although we’ll only be
implementing two: \" for escaping double-quotes, and \\, for escaping the backslash itself (in
other words, for using the backslash without invoking an escape sequence on the character that
immediately follows it).

Comments
As you’ve probably noticed by now, XtremeScript will of course support the double-slash (//)
comments that C++ popularized. However, C-style block comments will be included as well. All
told, the two XtremeScript comment types will look like this:

//    This is a single line comment

/*
This is a
block comment.

*/

Single line comments simply cause every character after the double slashes to be treated as white-
space and thus ignored. Block comments work in a similar manner, but can of course span multi-
ple lines. In addition, they’re especially flexible in that they can be embedded in a line of code
without affecting the code on either side. For example, the following line of code:

var MyVar /* Comment */ = 32;

Will appear to the compiler as though the comment were never there, like this:

var MyVar = 32;

The Preprocessor
As I mentioned, you’ll even include a small preprocessor in the language to make things as easy
as possible. Just as in C, the syntax for preprocessor directives will be the hash mark (#) followed
by the directive itself.

The first and most obvious directive will be #include, which will allow external files to be dumped
into the file containing the directive at compile-time, and looks like this:

#include "D:\Code\MyFile.xs"

FUNCTIONS
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Note the use of quotation marks. The XtremeScript compiler won’t contain any default path
information, so the greater-than/less-than symbol syntax used in C won’t be included.

We’ll also include a watered-down version of #define, which will be useful for declaring constants:

#define THIS_IS_A_CONSTANT 32
var X = THIS_IS_A_CONSTANT;

I say watered-down because this will be the only use of this directive. It will not support multi-line
macros or parameters.

Reserved Word List
As a final note, let’s just review everything by taking a look at the following simple list of each
reserved word in the XtremeScript language as presented by Table 7.6

7. DESIGNING A PROCEDURAL SCRIPTING LANGUAGE

Table 7.6  XtremeScript Operator Precedence
Operator Type Order Precedence

var/var [] Declares variables and arrays.

true Built-in true constant.

false Built-in false constant.

if Used for conditional logic.

else Used to specify else clauses.

break Breaks the current loop.

continue Forces the next iteration of the current loop to begin 
immediately.

for Used for looping logic; another form of the while loop.

while Used for looping logic.

func Declares functions.

return Immediately returns from the current function.
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SUMMARY
This chapter has been a relatively easy one due to its largely theoretical nature, and I hope it’s
been fun (or at least interesting), because designing the language itself is usually the most enjoy-
able and creative part of creating a scripting system (in my opinion). More importantly, however,
I hope that you’ve learned that creating a language even as simple as XtremeScript is not a trivial
matter and should not be taken lightly. As you’ll soon learn, the design of this language will have
a pivotal effect on everything else you do in the process of building your scripting system, and
you’ll see first-hand how important the planning you’ve done in this chapter really is.

All stern warnings aside, however, creating languages can be a genuinely creative and even artistic
process. Although the engineering aspect of a language’s design, layout, and functionality is obvi-
ously important, its look and feel should not be understated. For matters of simplicity and accessi-
bility, I’ve chosen to model XtremeScript mostly after a watered-down subset of C, but don’t for-
get that when designing a scripting system of your own, you really do have the ability to create
anything you want.

So with the language specification finished and in hand, let’s finally get started on actually imple-
menting this thing!

SUMMARY
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In the last chapter, we finally sat down and designed the language you’re ultimately going to
implement later in the book. This was the first major step towards building your own script-

ing system, and it was a truly important one. Obviously, a scripting system hinges on the design of
the language around which it’s based; failing to take the design of this language into heavy con-
sideration would be like designing and building a house without giving any thought to whom
might end up living there, what they’ll do with the place, and the things they’ll need to do them.

As you’ve learned, however, high-level languages like the one you laid out aren’t actually execut-
ed at runtime. Just like C or C++, they’re compiled to an assembly language. This assembly ver-
sion of the program can then be easily translated to executable bytecode, capable of running
inside a virtual machine. In other words, assembly is like the middleman between your high-level
script and the runtime environment with which it will be executed. This makes the design of the
assembly language nearly as crucial as the design of the HLL (High Level Language).

In this chapter, you’re going to

■ Learn what exactly assembly language is, how it works, and why it’s important.
■ Learn how algorithms and techniques that normally apply to high-level languages can be

replicated in assembly.
■ Lay out the assembly language that the assembler you’ll design and implement in the

next chapter will understand.

WHAT IS ASSEMBLY LANGUAGE?
I’ve asked this question a number of times already, but here’s the final answer: Assembly language
is code that is directly understood by a hardware processor or virtual machine. It consists of small,
fine-grained instructions that are almost analogous to the commands in a command-based lan-
guage. Because of this, assembly is characterized by its rigid syntax and general inability to per-
form more than one major task per line of code.

Assembly language is necessary because processors, real and virtual alike, aren’t designed to think
on a large scale. When you play a video game, for example, the processor has no idea what’s
going on; it’s simply shoveling instructions through its circuitry as fast as it possibly can. It’d be
sorta like walking down the street, bent over in such a way that your face is only a foot or two off
the ground. Your field of vision would be so narrow that you’d only be able to tell what was
immediately around you, and would therefore have a hard time with large-scale strategies. If all
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you can see is the 2 foot x 2 foot surrounding area, it’d be hard to execute a plan like “walk to
the center of the park.” However, if someone broke it down into simple instructions, like “take
four steps forward, and then take two steps right (to avoid the tree), and then take another 10
steps forward, turn 90 degrees, and stop” you’d find it to be just as easy as anything else. You
wouldn’t have much idea of where this plan would ultimately take you, but you’d have no trouble
executing it.

This distinction is what separates machinery from intelligence. However, it’s also what makes
processors so fast. Because they have to focus only on one tiny operation at almost any given
time, they’re capable of running extremely quickly and with very low overhead. For this reason,
assembly language programs are generally smaller and faster than their counterparts written in a
HLL (although this is changing rapidly and is not nearly as true as it once was, thanks to
advances made in optimizing compilers).

Assembly language is usually optional, however. Even when programming extremely compact sys-
tems like the Gameboy Advance, you still have the alternative of writing your code in C and hav-
ing a compiler handle the messy business of assembly for you. Of course, no matter how abstract-
ed and friendly the compiler is, there’s always an assembly language under there somewhere.
This is the burden of writing your own scripting system; you personally have to create and 
understand all of the mundane and technical low-level details you normally take for granted
when coding.

WHY ASSEMBLY NOW?
You may be wondering why I’m covering assembly language at this point in the book, when I
haven’t really gone into much detail regarding the high-level language of the scripting system
(aside from the last chapter). At first it seems like it’d be more intuitive to learn how to compile
high-level code, and then learn how low-level code works after that, right? The problem is, doing
so would be like building a house without a foundation. High-level code must be compiled down
to assembly, which means without coverage of low-level languages now you’d be able to write only
about 50% of your compiler.

Furthermore, it’s quite possible to create a functional and useful scripting system that’s based
entirely on an assembly-style language, instead of a high-level one. These sort of scripting systems
are easy and fast to create, are very powerful, and are fairly easy to use as well. By starting with
low-level code now, you can have an initial version of your scripting system up and running within
a few chapters. Once you have an assembly-based scripting language fully implemented, you’ll
either be able to get started with game scripting right away with it, or you can continue and add
the high-level compiler. This order of events lets you move at your own pace and develop as
much of the system as you want or need.

WHY ASSEMBLY NOW?
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Besides, high-level code compilation is a large and complicated task and is orders of magnitude
more difficult than the assembly of low-level code. It’ll be nice to see a working version of your
system early on to give you the motivation to push through such a difficult subject later.

HOW ASSEMBLY WORKS
Assembly language is often perceived by newcomers as awkward to use, esoteric, and generally
difficult. Of course, most people say the same thing about computer programming in general, so
it’s probably not a good idea to believe the nay-sayers. Assembly is different than high-level cod-
ing to be sure; but it’s just as easy as anything else if you learn it the right way. With that in mind,
let’s discuss each of the major facets of assembly-language programming.

Instructions
As stated previously, assembly languages are collections of instructions. An instruction is usually a
short, single-word or abbreviation that corresponds to a simple action the CPU (or virtual
machine) is capable of performing. For example, any CPU is going to be doing a lot of memory
movement; taking values from one area of memory and putting them in another. This is done in
Intel 80X86 assembly language by perhaps one of the most infamous instructions, Mov (short for
Move). Mov can be thought of like a low-level version of C’s assignment operator “="; it’ll transfer
the contents of a source into a destination. For example, the following line in C:

MyVar0 = MyVar1;

Might be compiled down to this:

Mov    MyVar0, MyVar1

Essentially, this line of code is saying “move MyVar1 into MyVar0” (this also brings up the issue of
assembly language variables, but I’ll get to that in a moment).

The collection of instructions a given assembly language offers is called its instruction set, and is
responsible for providing its users with the capability to reproduce any high-level coding con-
struct, from an if block to a function to a while loop, using only these lower-level instructions.
Because of this, instructions can range from moving memory around, like the Mov instruction
you’ve just seen, to performing simple arithmetic and bitwise operations, comparing values, or
transferring the flow of execution to another instruction based on some conditional logic.

Operands
Instructions on their own aren’t very useful, however. What gives them their true power are
operands, which are passed to instructions, causing them to perform more specific actions. You

8. ASSEMBLY LANGUAGE PRIMER
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saw operands in the Mov example. Mov is a general-purpose instruction for moving memory from
one area to another. Without operands, you’d have no way to tell Mov what to move, or where to
move it. Imagine a Mov instruction that simply looked like this:

Mov

Doesn’t make much sense, does it? Mov does require operands, of course—two of them to be
exact—the destination of the move, and the source of the data to put there. Operands are concep-
tually the same as the operands you passed to the commands in the command-based language
developed in Chapters 3 and 4, as illustrated in Figure 8.1.

HOW ASSEMBLY WORKS

Figure 8.1

Operands are to

instructions as parame-

ters are to functions.

In fact, command-based languages and assembly languages are very similar in a lot of ways.
Commands mirror instructions almost exactly, as do their operands. To use the analogy once
again, instructions are like function calls. The instruction itself is like the function name, which
specifies the action to be performed. The operands are like its parameters.

Expressions
To really get a feel for how instructions and operands relate to one another, let’s look at how
assembly languages manage expressions. Remember, this sort of thing isn’t possible in assembly:

Mov    X, ( Y + Z ) * 2 / W

So what do you do if you need to represent an expression like this? You need to break it up into
its constituent operations, using different assembly instructions to perform each one. For exam-
ple, let’s break down the expression ( Y + Z ) * 2 / W:

■ Because parentheses override the order of operations, Y and Z are added first.
■ The sum of Y and Z is then multiplied by 2.
■ The product of the multiplication is then divided by W.
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So, this means you need to perform three arithmetic instructions: an addition, a multiplication,
and a division. The result of these three operations will be the same as the single expression list-
ed previously. You can then put this value in X and your task will be complete.

Here’s one question though: step two says you have to multiply the sum of Y and Z by 2. How do
you do this? Because assembly doesn’t support any form of expression, you certainly can’t do this:

Mul    Y + Z, 2

Besides, where is the sum going to go? “Y + Z” isn’t a valid destination for the result. Y + Z is
undoubtedly an expression (and by the way, Mul, short for Multiply, is an instruction that multi-
ples the first operand by the second). Even though the sum isn’t the final result of the expres-
sion, you still need to save it in some variable, at least temporarily. Consider the following:

Mov     Temp, Y
Add     Temp, Z
Mul     Temp, 2

Temp is used to store the sum of Y and Z, which is then multiplied separately by 2. This also intro-
duced another new instruction: Add (which isn’t short for anything! Ha!) is used to add the sec-
ond operand to the first. In this case, Z was added to Temp, which already contained Y, to create
the sum of the two. With temporary variables, the expression becomes trivial to implement.
Here’s the whole thing:

Mov    Temp, Y    ; Move Y into Temp
Add    Temp, Z    ; Add Z to Temp
Mul    Temp, 2    ; Multiply ( Y + Z ) times 2
Div    Temp, W    ; Divide the result by W, producing the final value

Two things first of all; yes, assembly lan-
guages generally use the semicolon to
denote comments, which are single-line com-
ments only. Second, the Div instruction, as
you probably surmised, divides the first
operand by the second (although in this
case, as in the case of Mul, I haven’t followed
Intel 80X86 syntax exactly). To wrap things
up, check out Figure 8.2. It illustrates the
process of reducing a C-like expression to
instructions.

8. ASSEMBLY LANGUAGE PRIMER
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While it’s true that a pure assembly lan-
guage has no support for expressions,
many modern assemblers, called macro
assemblers, are capable of interpreting
full expressions and automatically gen-
erating the proper instructions for
them.While this definitely blurs the line
between compilers and assemblers, it
can really come in handy.
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So, using only a handful of instructions (Mov, Add, Mul, and Div), you’ve managed to recreate the
majority of the expression parsing abilities of C using assembly. Granted, it’s a far less intuitive
way to code, but once you get some practice and experience it becomes second nature.

Jump Instructions
Normally, assembly language executes in a sequential fashion from the first instruction to the
last—just like a C program runs from the first statement to the last. However, the flow of execu-
tion in assembly can be controlled and re-routed by using instructions that strongly mimic C’s
goto. Although computer science teachers generally frown on goto’s use, it provides the very back-
bone of assembly language programming. These instructions are known as jump instructions,
because they allow the flow of execution to “jump” from one instruction to another, thereby dis-
rupting the otherwise sequential execution.

Jumps are key to understanding the concept of looping and iteration in assembly language. If a
piece of code needs to be iterated more than once, you can use a jump instruction to move the
flow of execution back to the start of the code that needs to be looped, thereby causing it to exe-
cute again. Imagine the following infinite loop in C:

while ( 1 )
{

// ...
// ...
// ...

}

HOW ASSEMBLY WORKS

Figure 8.2

A C-style expression

being reduced to

instructions.
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You can refer to the “top” of this block of code as the while line, whereas the “bottom” of the
block is the closing bracket (}). Everything in between represents the actual loop itself. So, to
rewrite this loop in assembly-like terms, consider the following:

LoopStart:
; ...
; ...
; ...

Jmp LoopStart

Just like in C, you can define line labels in assembly. The Jmp instruction seen in the last line
(short for Jump) is known as an unconditional jump; or in other words, an instruction that always
causes the flow of execution to move to the specified line label. Note that while ( 1 ) is also
“unconditional”; there is no condition under which that expression will ever fail (and if 1 ever
does evaluate to false, we’re all in a lot of trouble and will have much bigger problems to worry
about anyway). In both cases, this is what makes the loops infinite. Check out Figure 8.3 to see
this graphically.

8. ASSEMBLY LANGUAGE PRIMER

Figure 8.3

Using Jmp to form an

infinite loop.

As a final note, consider rewriting this code in another form of C, but one that looks much more
like the assembly version:

LoopStart:
// ...
// ...
// ...

goto LoopStart;
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Here, the code is almost identical,
right? As you can see, assembly
doesn’t have to be all that differ-
ent. In a lot of ways it strongly par-
allels C (which, in fact, was one of
C’s original design goals back in
the ultra old-school K&R days).

Conditional Logic
Of course, unconditional jumps are about as useful as infinite loops are in C, so you need a more
intelligent way to move the flow of code around. In C, you do this with the if construct; if allows
you to branch to different parts of the program based on the outcome of a Boolean expression.
This would be nice to do in assembly too, but expressions aren’t an available luxury. Instead, you
get the next best thing; comparison instructions and conditional jumping instructions. These two
classes of instructions come together to simulate the full functionality of a C if statement, albeit
in a significantly different way.

To understand how this works, first think about what an if statement really does. Consider the
following code block:

if ( X > Y )
// True case

else
// False case

What this is basically saying is, “execute the true case if X is greater than Y, and execute the false
case if the X is not greater than Y.” This basically boils down to two fundamental operations; the
comparison of X and Y, and the jump to the proper clause based on the result of that comparison.
Figure 8.4 illustrates this process.

These two concepts are present in virtually all decision making. For example, imagine that you’re
standing in the lobby of an office building, and want to get into the elevator. Now imagine that
there are two doors on the facing wall—one door that reads “Janitor Closet”, and another that
reads “To Elevators”. Your brain will read the text written on both doors and compare it to what it’s
looking for. If one of the comparisons evaluates to truth, or equality, you’ll jump (or walk, if
you’re a normal person), towards the proper door. In this case, “To Elevators” will result in equal-
ity when compared to what you’re brain is looking for (a door that leads to an elevator).

Returning to the if example, the code will first compare X to Y, and then execute one of two sup-
plied code blocks based on the outcome. This means that in order to simulate this functionality

HOW ASSEMBLY WORKS

NOTE
“K&R” is a term referring to the earliest versions of
C, as initially created by Dennis Ritchie and Brian
Kernighan. Many aspects of C have drastically
changed from those days, hence the special term
used to denote them.
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in assembly, you first need an instruction that facilitates comparisons. In the case of Intel 80X86
assembly, this instruction is called Cmp (short for Compare). Here’s an example:

Cmp    X, Y

This instruction will compare the two values, just like you need. The question, though, is where
does the result of the comparison go? For now, let’s not worry about that. Instead, let’s move on
to the jump instructions you’ll need to complete the assembly-version of the if construct.
Because the original jump was unconditional, meaning it would cause the flow of instructions to
change under all circumstances, it won’t work here. What you need is a conditional jump; a type of
jump instruction that will jump only in certain cases. In this case specifically, you should jump
only if X is greater than Y. Here’s an example:

Cmp    X, Y
JG     LineLabel

The new instruction here is called JG, which stands for Jump if Greater Than. JG will cause the
flow of execution to jump to LineLabel only if the result of the last comparison was “greater than”.
JG doesn’t actually care about the operands you compared themselves; it doesn’t even know X and
Y exist; all it cares about is that the first thing passed to Cmp was greater than the second thing,
which Cmp has already determined. These two instructions, when coupled, provide the complete
comparison/jump concept. Let’s now take a look at how the code for each case (true and false)
is actually executed.

8. ASSEMBLY LANGUAGE PRIMER

Figure 8.4

The if block employs

both a comparison
and a jump to imple-

ment decision making.
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When performing conditional logic in assembly, there are basically two ways to go about it. Both
methods involve marking blocks of code with line labels, but the exact placement of the code
blocks and labels differs. Here’s the first approach (check out Figure 8.5 to see it graphically):

Cmp    X, Y
JG     TrueCase
; Execute false case
Jmp    SkipTrueCase

TrueCase:
; Execute true case

SkipTrueCase:
; The "if construct" is complete,
; so the program continues.

HOW ASSEMBLY WORKS

Figure 8.5

The comparison and

jump of an assembly

language if

implementation.

In this case, you first compare X to Y and perform the jump if greater than (JG) instruction.
Naturally, you’ll use this to make a jump to the true case (because you jump only if the condition
was true, and in this case it was), which begins at the TrueCase line label. TrueCase continues
onward until it reaches the SkipTrueCase line label. This label is simply there to mark the end of
the true case block; it doesn’t actually do anything, so execution of the program keeps moving,
uninterrupted. If the comparison evaluates to false, however, you don’t jump at all. This is
because JG is only given one line label, and therefore can only change the flow of execution if the
condition was true. If it’s false, you keep on executing instructions beginning right after JG.
Because of this, you need to put the false case directly under the conditional jump. However,
because the false case is now above the true case, the sequential order of execution of assembly
instructions will inadvertently cause the true case to be executed afterwards too, which isn’t what
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you want. Because of this, you need to put an unconditional jump (Jmp) after the false case to
skip past the true case. This ensures that no matter what, only one of the two cases will be execut-
ed based on the outcome of the comparison.

This approach works well, but there is one little gripe; the code blocks are upside down, at least
compared to their usual configuration in C. C and C++ programmers are used to the idea of the
true block coming before the false block, and you should do that in your assembly language cod-
ing as well. Here’s an example of how to modify the previous code example to swap the blocks
around:

Cmp    X, Y
JLE    FalseCase
; Execute true case
Jmp    SkipFalseCase

FalseCase:
; Execute false case

SkipFalseCase:
; The "if construct" is complete,
; so the program continues.

As you can see, the true and false blocks are now in the proper order, but you’re forced to make
the opposite of the comparison you made earlier (note that JLE means Jump if Less than or
Equal, which is the opposite of JG). Because you want the true case to come before the false case,
you must rewrite the comparison so that it doesn’t jump if true, instead of the other way around.
In retrospect, I don’t think the C-style placement of the true and false blocks is worth the
reversed logic, however, and generally do my assembly coding in the style of the original exam-
ple.

In either case, however, you should now understand how basic conditional logic works in assem-
bly. Of course, there’s a bit more to it than this; most notably, you need a lot more jump instruc-
tions in order to properly handle any situation. Examples of other jumps the Intel 80X86 is capa-
ble of making include JE (Jump if Equal), JNE (Jump if Not Equal), and JGE (Jump if Greater
than or Equal).

Iteration
Conditional logic isn’t all jump instructions are capable of. Looping is just as important in low-
level languages as it is in high-level ones, and the jumps are an invaluable part of how iteration is
implemented in assembly language programs (or scripts, as in this case).

Recall the infinite loop example, which showed you how jump instructions and line labels form
the “top” and “bottom” of a loop’s code block. Here it is again:

8. ASSEMBLY LANGUAGE PRIMER

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



381

LoopStart:
; ...
; ...
; ...

Jmp LoopStart

Here, the loop executes exactly from the declaration of the LoopStart label, all the way down to
the Jmp, before moving back to the label and reiterating. Once again, however, this loop would
run indefinitely and therefore be of little use to you. Fortunately, however, you learned how con-
ditional logic works in the last example. And, if you really analyze a for or while loop in C, you’ll
find that all finite loops involve conditional logic of some form (which is what makes them finite
in the first place).

Take a while loop for example. A while loop has two major components—a Boolean expression and
a code block. At each iteration of the loop, the expression is evaluated. If it evaluates to true, the
code block is executed and the process repeats. Presumably, the code block (or some outside force)
will eventually do something that causes the expression to evaluate to false, at which point the loop
terminates and the program resumes its sequential execution. Take a look at the code:

while ( Expression )
{

// ...;
// ...;
// ...;

}

This means that in order to simulate this in assembly, you’ll once again use the Cmp instruction, as
well as a conditional jump instruction, to create the logic that will cause the loop to terminate at
the proper time. As an example, let’s attempt to reduce the following C loop to assembly:

int X = 16;           // Set X to 16
while ( X > 0 )       // Loop as long as X is greater than zero

X -= 2;          // Decrement X by 2 at each iteration

Here, the “code block” is decidedly simple; a single line that decrements X by 2. The loop logic
itself is designed to run as long as X is greater than zero, which will be around eight iterations
because X starts out as 16. Look at the assembly equivalent:

Mov    X, 16      // Set X to 16
LoopStart:            // Provide a label to jump back to

Sub    X, 2       // Subtract 2 from X
Cmp    X, 0           // Compare X to zero
JG LoopStart          // If it's greater, reiterate the loop
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Once again you’re introduced to another instruction, Sub, which Subtracts the second operand
from the first. As for the code itself, the example starts by Moving 16 into X, which implements the
assignment statement in the C version. You then create a line label to denote the top of the loop
block; this is what you’ll jump back to at each iteration. Following the label is the loop body itself,
which, as in the C version, is simply a matter of decrementing X by 2. Lastly, you implement the
loop termination logic itself by comparing X to zero and only reiterating the loop if it’s greater.
Check out Figure 8.6, which illustrates the basic structure of an assembly loop.
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The one difference between these two pieces of code, however, is that the loop behaves slightly
differently in the assembly version. One of the major points of C’s while loop is that it loops only
if the expression is true; because of this, if the expression (for whatever reason) is false when the
loop first begins, the loop will never execute. This is a stark contrast from your version, which will
always execute at least once because the expression isn’t checked until the loop body is finished.
This is a problem that can be solved either by rethinking your loop logic to allow at least one iter-
ation in all cases, or by rearranging the code block order like you did in the first conditional logic
example in the last section.

As for for loops, remember that they’re just another way of writing while loops. For example, con-
sider the following:

for ( int X = 0; X < 16; ++ X )
{

printf ( "Iteration %d", X );
}

This could just as well be written using while, like so:

int X = 0;
while ( X < 16 )
{

printf ( "Iteration %d", X );
++ X;

}
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And because you’ve already man-
aged to translate a while loop to
assembly (albeit a slightly reversed
one), you can certainly manage
for loops as well.

You’ve made a lot of progress so
far; understanding how expres-
sions, conditional logic, and itera-
tion work in assembly is a huge
step forward. Now, let’s dig a bit
deeper and see how assembly will
actually interact with the virtual machine.

Mnemonics versus Opcodes
In a nutshell, instructions represent the CPU’s capabilities. Virtually anything the hardware is
capable of doing is represented by an instruction. However, because it’d be silly to design a CPU
that had to physically parse and interpret strings in order to read instructions, even short ones
like “Mov” and “Cmp”, the CPU won’t literally see code like this:

Mov     X, Y
Add     X, Z
Div     Z, 2

Even though the previous example is written in assembly language, this still isn’t the final step in
creating an executable script. Remember, strings are handled by computers in a far less efficient
manner than numeric data. The whole concept of digital computing is based on the processing
of numbers, which is why binary data is, by nature, both faster and more compact than text-
based/ASCII data.

I’ve mentioned before that assembly language is the lowest level language you can code in. This
is true, but there is still another step that must be taken before your assembly code can be read
by the VM. This step is performed by a program called an assembler, which, as you saw in Chapter
5, is to assembly what a compiler is to high-level code. An assembler takes human readable assem-
bly source code and converts it directly into machine code. Machine code is a nearly exact, one-to-
one conversion of assembly language. It describes programs in terms of the same instructions
with the same operands in the same order. The only difference is that assembly is the text-based,
human readable version, and machine code is expressed entirely with numbers.

To understand this concept of conversion better, think back to when you were a kid. If you were
anything like me, you spent a lot of time sneaking around with your friends, on various deadly
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but noble missions to harass the girls of the neighborhood. Now neighborhood spying is risky
business, and requires a secure method of communication in order to properly get orders to field
agents without enemy forces intercepting the message. Because of this, we had to devise what is
without a doubt the most foolproof, airtight method of encryption man has ever dared to dream
of: letter to number conversion.

In a nutshell, this brilliant scheme (which I’ll probably end up selling to the Department of
Defense, so forget I mentioned this) involves assigning each letter of the alphabet a number. A
becomes 0, B becomes 1, C becomes 2, and so on. A message like the following:

"Lisa is sitting on her steps with a book. This is clearly a vile attempt to thwart
our glorious mission. Mobilize all forces immediately. Use of deadly force (E.G.,
water balloons) is authorized. Godspeed."

could be encrypted by translating each letter to its numeric equivalent according to the code.
The result is a string of numbers that expresses the exact same message while at the same time
shedding its human readability (sort of). The code of course worked. Despite its simplicity, no
one could crack it. However, it worked a bit too well, because not a lot of eight year olds have the
patience to spend the 20 minutes it usually took to get through a few numerically encoded sen-
tences, so we’d generally just get bored and go inside to play Nintendo. I think the nation truly
owes a debt of gratitude to me and my friends for never pursuing careers with the CIA.

Getting back on track, my tale of nostalgia was intended to show you that the difference between
assembly language and machine code is (usually) a purely cosmetic one. The data itself is the
same in either case; the only difference is how it’s expressed.

For example, take the following snippet of assembly:

Mov     X, Y
Add     X, Z
Div     Z, 2

If the goal is to reduce this code to a form that can be expressed entirely through numeric data,
the first order of business should be assigning each instruction a unique integer code. Let’s say
Mov is assigned 0, Add is assigned 1, and Div is assigned 4 (assuming Sub and Mul take the 2 and 3
slots). The first attempt to reduce this to machine code will transform it into this:

0      X, Y
1      X, Z
4      Z, 2

Not too shabby. This is already a more efficient version because you’ve eliminated at least one
third of the string processing required to read it. In fact, this is how things are really done—every
assembler on earth really just boils down to a program that reads in instructions and maps them
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to numeric codes. Of course, these numeric codes have a name—they’re called opcodes. “Opcode”
is an abbreviation of Operation Code. This makes pretty good sense, because each numeric code
corresponds to a specific operation, as you’ve seen. These are important terms, however, and a
lot of people screw them up. Instructions can come in two forms; the numeric opcode that you’ve
just seen, which is read by the VM, and the string-based mnemonic, which is the actual instruction
name you’ve been using so far.

The remaining strings are mostly in the form of variable identifiers and literal values. Because the
only literal value is 2 (the second operand of the Div instruction), which is already a number, you
can leave it as-is. That means your next task is to reduce the variable names to numbers as well.
Fortunately, this is easy too and follows a form very similar to the conversion of mnemonics to
opcodes.

When virtually any language is compiled, whether it’s assembly, C, or XtremeScript, the number
of variables it contains is already known. New variables aren’t created at runtime, which means
that you have a fixed, known number of variables at compile-time. You can use this fact to help
eliminate those names and replace them numerically. For example, the code snippet you’ve been
working with in this example so far has three variables: X, Y and Z. Because the computer obvious-
ly doesn’t care what the actual name of the variable is, as long as it can uniquely identify it, you
can assign each variable a number, or index, as well. So, if X becomes 0, Y becomes 1, and Z
becomes 2, you can further reduce the code to this:

0      0, 1
1      0, 2
4      2, 2

Cool, huh? You now have a version of your original code that, while retaining all of its original
information, is now in an almost purely numeric code. There is one problem left, however, and
that’s all the spacing and commas. Because they, like instruction mnemonics and variable identi-
fiers, exist only to enhance the script’s readability, they too can be scrapped. Come to think of it,
there’s no need for line breaks either. In fact, this data shouldn’t be expressed through text at all!
All you really need is a stream of digits and you’re done. Here’s the previous code, condensed
onto a single line with all extraneous spacing and commas removed:

001102422

As you can see, 001 represents the first instruction (Mov X, Y), 102 is the second instruction (Add
X, Z), and 422 is the last (Div Z, 2). This final numeric string is the machine code, or bytecode as
it’s often called in the context of virtual machines. This isn’t a perfect example of how an assem-
bler works, but it’s close enough and the concept should be clear. You’ll put these techniques to
real use in the next chapter, in which you construct an assembler for the assembly language you’ll
be designing shortly.
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RISC versus CISC
So, now you understand how assembly language programming basically works and you have a
good idea of the overall process of converting assembly to machine code. Throughout the last
few pages you’ve had a lot of interaction with various instructions, from the arithmetic instruc-
tions (Add and Mul) to the conditional branching family (Cmp, JG, and so on). You now understand
how these instructions work and how to reduce common C constructs to them, but where did
they come from? Who decided what instructions would be available in the first place?

Because an instruction set is indicative of what a given CPU can do, deciding what instructions
the set will offer is obviously an extremely important step in the design of such a machine. No
matter what, there are always a number of basic instructions that virtually any processor, virtual
machine, or runtime environment will offer. These are the basics: arithmetic, bit operations, com-
parisons, jumps, and so on and so forth. These are a lot like the basic elements of the program-
ming languages you studied in the last chapter. Lua, Python, and Tcl may have strong differences
between one another, but they all share a common “boiler plate” of syntax for describing condi-
tional logic, iteration, and functions (among other things).

Beyond this basic set of bare-minimum functionality, however, is the possibility to add more fea-
tures and instructions, in an attempt to make the instruction set easier to use, more powerful, or
both. This is where the design of an instruction set splits into two starkly contrasting schools of
thought—RISC and CISC.

Let’s start with RISC first, which is an acronym for Reduced Instruction Set Computing. RISC is a
design methodology based on creating large instruction sets with many fine-grained instructions.
Each instruction is assigned a small, simplistic task rather than a particularly complex one.
Complex tasks are up to the programmer, as he or she must manually fashion more complicated
algorithms and operations by combining many small instructions.

CISC, of course, is just the opposite. It stands for Complex Instruction Set Computing, and is
based on the idea of a smaller instruction set, wherein each instruction does more. Programming
tends to be easier for a CISC CPU, because more is done for you by each instruction and there-
fore, you have less to do yourself.

In the case of physical computing, the advantages of RISC over CISC are subtle but significant.
First and foremost, the digital circuitry of a CPU must traverse a “list”, so to speak, of hardwired
instructions. These are the actual hardware implementations of instructions like Mov and Add. It
doesn’t take a PhD of computer science to know that a shorter list can be traversed faster than a
longer one, so signals will be able to reach the proper instruction in a set of 100 faster than they
can in a list of 2000 (see Figure 8.7). Furthermore, there is an overhead with executing an
instruction just as there’s an overhead involved in calling a function. If a CISC processor can per-
form a task in one instruction that a RISC would need to execute four instructions to match, the
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CISC system has reduced the overhead of instruction processing by a factor of four (despite the
fact that the instruction itself will take longer to execute and be more complex on the CISC
processor).

Electrical engineering is an interesting subject, but you’re here to build a virtual machine for a
scripting system, so let’s shift the focus back to software. In a virtual context, CISC makes even
more sense. This is true for a simple reason— scripting languages are always slower than natively
compiled ones. Obviously, because even a compiled bytecode script has an entire layer of soft-
ware abstraction between it and the physical CPU, everything it does will take longer than it
would if it was written in C or C++. Because of this, a simple but vital rule to follow when design-
ing the runtime environment for a scripting system is to do as much as is humanly possible in C. In
other words, make sure to give your language all the luxuries and extra functions it needs.
Anything you don’t provide as a C implementation will have to be written manually in the other
(slower) scripting language.

The moral of the story is that anything you can do in C should be done in C. The less the script-
ing language does, the better (or the faster, I should say). Even though conceptually speaking,
scripting is a more intelligent way to code certain game functionality and logic due to its flexible
nature, the reality is that performance is any game programmer’s number one concern. The goal
then, should be to strike a happy medium between a flexible language and as much hardcoded C
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as possible. You shouldn’t do so much in C that you end up restricting the freedom of the scripts,
because that’d defeat the whole purpose of this project, but you must remember that scripting
involves significant overhead and should be minimized wherever possible.

Orthogonal Instruction Sets
In addition to the RISC versus CISC decision when designing an instruction set, another issue
worth consideration is orthogonality. An instruction set is considered orthogonal when it’s “evenly
balanced”, so to speak. What this means essentially is that, for example, an instruction for addi-
tion has a corresponding instruction for subtraction. Technically, subtraction can be defined as
addition with negative numbers. You don’t absolutely need a subtraction instruction to survive, but
it makes things easier because you don’t have to worry about constantly negating everything you
want to subtract for use with an add instruction. In other words, it’s the measure of how “com-
plete” the instruction set is in terms of instructions that would logically seem to come in a group
or pair, even if it’s merely for convenience or completeness.

Orthnogonality can also extend to the functionality of certain instructions as opposed to the oth-
ers they’re logically grouped with. For example, the Intel 80X86 isn’t totally orthogonal in its
implementation of the basic arithmetic instructions, because of the difference in how the Add and
Sub instructions work as opposed to Mul and Div. Add and Sub accept two operands, and add or
subtract one from the other. Mul and Div, however, only accept a single operand and either multi-
ply or divide its value by another value that’s already been stored in a previously specified location
(the AX register, to be technical, but I haven’t discussed registers yet so don’t worry if that doesn’t
make sense). This irregular design of such closely related instructions can be jarring to the pro-
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grammer, so it’s one of a few subtle details you’ll be ironing out in the design of your own assem-
bly language.

Registers
Before moving on, I’d like to address the issue of registers. Those of you who have some assembly
experience might be wondering if the virtual machine of a scripting system has any sort of analog
to a real CPU’s register set. Before answering that, allow me to briefly explain what registers are
to bring the unenlightened up to speed.

Simply put, registers are very fast, very compact storage locations that reside directly on the CPU.
Unlike memory, which must travel across the data bus to reach the processor, and is also subject
to the complexities and overhead of general memory access, registers are immediately available
and provide a significant speed advantage. Assembly language programmers and compilers alike
value registers quite highly; given their speed and
limited numbers, they’re a rare but precious
commodity.

Without going into too much more detail, you
can understand how important register usage
is. As for their relevance to the XtremeScript
Virtual Machine, however, registers are essen-
tially useless. Remember, your entire virtual
machine will exist in the same memory address
space; no single part of it is any faster or more
efficient than any other. As a result, the memo-
ry model within the XVM will be a simple,
stack-based scheme with some additional ran-
dom access capabilities. Defining a special
group of “registers” would accomplish noth-
ing, as they’d provide no practical advantage
over anything else.

The Stack
At this point you’ve learned how to do a lot with assembly, at least conceptually. In fact, you
understand almost all of the major conversions between the structures and facilities of high-level
languages to low-level ones, like expressions, branches, and loops. What I haven’t discussed yet
are functions, however. For this, you’ll need to understand the concept of a runtime stack.
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Most runtime environments, whether they’re virtual or physical machines, provide some sort of a
runtime stack (also known simply as a stack). The stack, due to its inherent ability to grow and
shrink, as well as the rigid and predictable order in which data is pushed on and popped off,
make it the ideal data structure for managing frequently changing data—namely, the turbulent
behavior of function calls.

As your typical high-level program runs, it’s constantly making function calls. These functions
tend to call other functions. Recursive functions even call themselves. Altogether, functions and
the calls to and between them “pile up” as their nesting grows deeper and deeper, and eventually
unravel themselves. Luckily for you, this is exactly how a stack works.

To understand this better, first think about how a function is called in the first place. If you envi-
sion your compiled script as a simple array of instructions, with each instruction having a unique
and sequential index, the actual location of a given instruction or block of instructions can be
expressed as one of those indices. So, in order to call a function, you need to know the index of
the function’s first instruction in the array, known as the function’s entry point. You then need to
branch to this instruction, at which point the function will begin executing. This sounds like a
typical jump instruction, right?

So far, so good. From here, the runtime environment will start executing the function’s code just
like it would anything else. But wait—how will the runtime environment know when the function
is finished? Furthermore, even if it does know where the function ends, how will it know how to
get back to the instruction that called it? After all, functions have to return the flow of execution
to their callers. You can’t just use a jump instruction to move back to the index of the instruction
that called you, because you don’t know where that is. Besides, functions can be called from any-
where in the code, which means you can’t have a hardcoded jump back to a specific instruction.
This would allow you to call the function from only that one place. See Figure 8.9.

Let’s solve the second problem first. Once you know a function is over, how do you get back?
Unfortunately, I’m asking this question at the wrong time. I should’ve planned for this before
jumping to the function in the first place, which would’ve made things much easier. So, let’s go
back in time a few nanoseconds to the point at which you make the call and think for a moment.
In order for the function you’re about to invoke to know how to find its way back to you, you
need to give it the index of the instruction that’s actually making the call. Just as the function’s
entry point is defined as the index of its first instruction, the return address is defined as the index
of the function that it needs to return when it’s done. So, before you make the call to the func-
tion, you need to push the return address onto the stack. That way, the function just has to pop
the top value off the stack to determine where it’s going when it returns.

Before moving on, I’ll quickly introduce the instructions most CPUs provide for accessing the
stack. As you might guess, they’re called Push and Pop. Push accepts a single value and pushes it
onto the stack. Pop accepts a single memory reference and pops the top stack value into it. The
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stack itself is a global structure, meaning it’s available to all parts of the program. That’s why you
can push something on before calling a function and still access it from within that function.
Figure 8.10 shows general stack use in assembly.

Getting back on track, you don’t need to “mark” the end of the function. Instead, you can just
end it with another jump—one that jumps back to the return address. In fact, there are usually
two instructions specifically designed just for this task: Call and Ret.

Call is a lot like Jmp in the sense that it causes the flow of execution to branch to another instruc-
tion. However, in addition to simply making an unconditional jump, it also pushes the current
instruction index (which is its own index, as well as the return address) plus one onto the stack. It
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adds one to its own address to make sure the function returns to the following instruction, not
itself; otherwise you’d have an infinite loop on your hands. Ret, on the other hand, is a bit differ-
ent. It also performs an unconditional jump, but you don’t have to pass it a label. Instead, it
jumps to whatever address it finds on the top of the stack. In other words, Ret pops the value off
the top of the stack and uses it as the return address, expecting it to take it back to the caller. And
if all goes well, it does. Together, Call and Ret expand on the simplistic jump instructions to pro-
vide a structured method for implementing functions.

And here’s the best part to all of this—because you’ve used a stack to store return addresses,
which grows and shrinks while automatically
preserving the order of its elements, the
function calls are inherently capable of
nesting and recursion. If a new function is
called from within a previously called func-
tion, the stack just grows higher. It grows
and grows with each nested call, until final-
ly the last call returns. Then, it slowly begins
to shrink again, as each return address is
subsequently popped back off. Because the
functions were called in a sequential order,
which was intrinsically preserved by the
stack, they can return in the opposite of
that order and be confident that the return
addresses will always be the right ones.
Figure 8.11 illustrates this concept.

Stack Frames/Activation Records
Everything seems peachy so far, but there’s one important issue I haven’t yet discussed— parame-
ters and return values. You’ve figured out how to use the stack to facilitate basic function calls,
but functions usually want to pass data to and from one another. This will undoubtedly compli-
cate things, but fortunately it’s still a pretty straightforward process.

When a function passes parameters to another function, it’s basically a way of sending informa-
tion, which is something you’ve already done. Currently, your implementation of functions is
capable of sending the return address to the function it calls, which is kind of like sending a sin-
gle parameter at all times, right? So, as you might already be thinking, you can pass parameters in
the exact same way—by pushing them onto the stack along with the return address.

When a function is called, its parameters are first pushed in a given order; either left-to-right or
right-to-left. It doesn’t matter which way you do it, as long as the function you’re calling is expect-
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ing whichever method you choose. Following the parameters, the return address is pushed, as
already discussed. The function is then invoked, and execution begins at its entry point. As the
function executes, it will of course refer to these parameters you’ve sent it, which means it’ll need
to read the stack. Rather than pop the values off, however, it’ll instead access the stack in a more
arbitrary way; each parameter’s identifier is actually just a symbol that represents an offset into the
stack. So for example, if you have a function whose prototype looks like this:

Func MyFunc ( X, Y, Z );

it receives three parameters. If these parameters are pushed onto the stack, they can be accessed
relative to the top of the stack. If the data you push onto the stack before the function is called is
in this order:

Parameter X
Parameter Y
Parameter Z
Return Address
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it’ll be found in the reverse order if you move from the top of the stack down. The return
address will be at the top, with everything else following it, so it’ll look like this:

Return Address
Parameter Z
Parameter Y
Parameter X

This means that return address is at the top of the stack, Z is at the top of the stack minus 1, Y is
at the top of the stack minus 2, and X is at the top of the stack minus 3. These are relative stack
indices, and are used heavily within the code for a function. Remember, because of the way a stack
works, the order in which you push
parameters on means they’ll be
accessed in the opposite order. So, if the
caller pushes them in X, Y, Z order, the
function has to deal with them in Z, Y, X
order. This is why I make a distinction
between left-to-right and right-to-left
parameter passing; you should decide
whether you want the functions or the
callers to be able to deal with parame-
ters in their formally declared order.

Of course, when the function returns,
there will be three stack elements that
need to be popped back off (corre-
sponding to the three variables you
pushed on before the call). Normally,
this would be the responsibility of the
caller (because they put them there to begin with), but it’s quite a hassle to have to follow every
function call with a series of Pop instructions. As a result, the Ret instruction usually lets you pass a
single parameter corresponding to how many stack elements you’d like it to automatically pop
off. So, the three-parameter function would be with the following instruction:

Ret    3    ; Clean our 3 parameters off the stack

As you’ll see, you will design your own assembly language to support this automatic stack cleanup,
but in an even easier way.

We can pass parameters now, so what about return values? If parameters can be passed on the
stack, return values can too, right? Well, it’d certainly be possible if your stack was laid out differ-
ently, but unfortunately the current implementation wouldn’t support it. Why? Because the only
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way to a pass return value on the stack would involve the function pushing it with the intention of
the caller popping it back off. Unfortunately, you’d push this value after the parameters and
return address, meaning the return value would now be above everything else, on the top of the
stack. The problem is that once the Ret instruction is executed, it’ll attempt to restore the stack to
the way it was before the function was called by popping the parameters and return address off.
Inadvertently, this would end up prematurely popping the return value, and worse, only popping
off parts of the parameter list and therefore leaving a corrupted stack for the caller to deal with.

So if the stack is out, what can you do? Aside from the stack, there aren’t any storage locations
that persist between function calls, which means there isn’t really any common space the caller
and function can share for such a purpose. To solve this problem let’s look at what the 80X86
does.

The 80X86, unlike your culminating virtual machine, has a number of general-purpose registers.
These registers provide storage locations that are always accessible from all parts of assembly lan-
guage program, regardless of scope. Therefore, in order to return a value from a function to its
caller, one merely has to put that value into a specific register, allowing the caller to read from it
once the function returns. On the Intel platform, it’s convention to use the accumulator AX (or
EAX on 32-bit platforms) register for just this task (even compilers output code that follows this).
So, a simple Mov instruction would be used to fill AX with the proper value, and the return value
would be set. The caller then grabs the value of AX, and the process is complete. The only prob-
lem is that I’ve already stated that your VM will not include registers. This is true, at least in the
case of general-purpose registers, but you will have to bend this rule just a bit in order to add a
single register for this specific purpose of transporting return values.

The implementation of stacks is now somewhat more complex; rather than simply assigning a
return address to each function as it’s represented on the stack, you also have to make room for
parameters. Things are no longer a matter of a simple push onto the stack; rather, they’re begin-
ning to take on the feel of a full data structure. You now have an implementation of function
calls such that each time a call is made, a structure is set up to preserve the return address, passed
parameters, and more information, as you’ll see in the next section. This structure is known as a
stack frame, or sometimes as an activation record. In essence, it’s a structure designed to maintain
the information for a given function. Figure 8.12 shows the concept of stack frames graphically.

Local Variables and Scope
So you can call functions and pass parameters via the stack, as well as return values with a specific
register. What about the code of a function itself? Naturally, the code resides in a single place and
is more or less unrelated to the stack. However, there is the matter of local variables to discuss.

Let’s start by imagining a recursive function. Because this function will be calling itself over and
over, you’ll quickly reach a point where multiple instances of this function exist at once; for
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example, the function might be nested into itself six levels deep and thus have six stack frames
on the stack. The code for the function is not repeated anywhere, because it doesn’t change from
one instance to the next. However, the data the function acts upon (namely, its locally defined
variables) does change from one instance to another quite significantly. This is where a function’s
stack frame must expand considerably.

You’re already storing a return address and the passed parameters, but it’s time to make room for
a whole lot more. Each instance of a function needs to have its own variables, and because you’ve
already seen that the stack is the only intelligent way to manage the nested nature of function
calls, it means that the reasonable place to store local variables themselves is on the stack as well.
So now a stack frame is essentially the location at which all data for a given function resides.
Check out Figure 8.13 for a more in-depth look at stack frames.

In fact, because the average program spends the vast majority of its time in functions (or even all
of its time, in the case of languages like C which always start with main ()), this means you’ve
decided on where to store virtually all of the script’s data. All that’s left are global variables and
code that resides in the global scope (outside of functions). This, however, can be stack-based as
well; data that resides in the global scope can be stored at the bottom of the stack. Therefore,
only parameters and local variables are accessed relative to the top of the stack, with negative
indices like -1, -2, -3 and so on, globals are relative to the bottom of the stack, with indices like 0,
1 and 2 (remember, negative stack indices are relative to the top of the stack, whereas positive are
relative to the bottom).

8. ASSEMBLY LANGUAGE PRIMER
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All in all, this section is meant to show you how important the stack is when discussing runtime
environments. Your language won’t support dynamically allocated data, which means that the
only structure you need to store an entire script’s variables and arrays is a single runtime stack (in
addition to a single register for returning values from functions to callers). In addition, it will
manage the tracking and order of function calls, as well as provide a place for intermediate values
during expression parsing. What this should tell you is that with few exceptions, the concept of
“variables” in general is just a way of attaching symbolic names to what are really just stack indices
relative to the current stack frame.

In a lot of ways, the runtime stack is the heart of it all.

INTRODUCING XVM ASSEMBLY
So where does this leave you? You’re at a point now where you understand quite a bit about
assembly language, so you might as well get started by laying out the low-level environment of our
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XtremeScript system. You’ll get started on that in this chapter by designing the assembly language
of the XtremeScript virtual machine, which I like to call XVM Assembly.

XVM Assembly is what your scripts will ultimately be reduced to when you run them through the
XtremeScript compiler that you’ll develop later on in this book. For now, however, it’ll be your
first real scripting language, because within the next few chapters you’ll actually reach a point
where it becomes useable.

Because of this, you should design XVM Assembly to be useable by human coders. This will allow
you to test the system in its early stages by writing pure-assembly scripts in place of higher-level
ones. Of course, at the same time, the language must also be conducive to the compiler, so you’ll
need enough instructions to reduce a C-style language to it.

Initial Evaluations
Let’s get started by analyzing exactly what the language needs to do. Fortunately, you spent the
last chapter creating the high-level language that XVM Assembly will need to support, so you’ve
got your requirements pretty well cut out for you.

First of all, XtremeScript is typeless, and has direct support for integers, floats, and strings (it also
supports Booleans but let’s treat true and false internally as the integer values 1 and 0, respec-
tively). You could make the assembly language more strongly typed, letting it sort out the various
storage requirements and casting necessary to manage each of these three data types in an effi-
cient way, but that’d be an unnecessary hindrance to performance. There’s no need to manually
manage the different data types in terms of their actual binary representation in memory when
you can just get C to do the majority of the work for you. So, you can make your assembly lan-
guage typeless too. This means that even in the low-level code you can directly refer to integers,
floats, and strings, without worrying about how it’s all implemented. You can leave that all up to
the runtime environment, which of course will be pure C and very fast. Code like the following
will not be uncommon in XVM Assembly (although you certainly wouldn’t find anything like this
on a real CPU!):

Mov    MyInt, 16384
Mov    MyFloat, 123.456
Mov    MyString, "The terrible secret of space!"

As long as I’m on the subject of data, I should also cover XtremeScript arrays. This is another
case where you could go one of two ways. On the one hand, you could provide assembly lan-
guage scripts with the ability to request dynamically allocated memory from the runtime environ-
ment and use that to facilitate the translation of high-level arrays to low-level data structures, but
as you’ll see in the section on designing the XVM, you’re better off not allowing dynamic alloca-
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tion. Therefore, even the assembler must statically allocate arrays, and should therefore have
array functionality built-in. So, in addition to variable references like this:

Mov    X, Y

XVM Assembly will also directly support array indexing like this:

Mov    X, MyArray [ Y ]

I’ll talk about how to declare arrays a bit later.

The last real issue regarding data is how various instructions will interpret different data types.
For example, Div is used to divide numeric values, so what happens if you try to divide 64 by a
string? You have three basic choices in a situation like this:

■ Halt the script and produce a runtime error.
■ Convert data to and from data types intelligently. For example, dividing by the string

value “128” would convert the string temporarily to the integer value 128.
■ Silently nullify any bad data types. In other words, passing a numeric when a string was

expected will convert the number temporarily to an empty string. Likewise, passing a
string when a numeric was expected will temporarily replace the string with the integer
value zero.

This is more an issue for the virtual machine design phase, but it will still have something of an
effect on how you design the language itself. For now, let’s defer the decision on exactly how data
types will be managed until later, but definitely agree that you’ll go with one of the second two
choices. Rather than forcibly stop the coder from passing incorrect data types as operands to
instructions with runtime errors, you’ll allow it and choose a graceful method for handling it in a
couple of chapters.

The XVM Instruction Set
The rest of the language description is primarily a run down of the instruction set, so what fol-
lows is such a reference, organized by instruction family. Also worth noting is that, just as you
based the syntax for XtremeScript heavily on C, the XVM Assembly Language is strongly based
on Intel’s 80X86 syntax, although I will mention a few creative liberties I’ve taken to make various
instructions more intuitive or convenient.

Memory
Mov           Destination, Source

The first and most obvious instruction, as always, is Mov. Every assembly language has some sort 
of general-purpose instruction for moving memory around, or a small group of slightly more 
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specialized ones. One thing to note about Mov, however, is that its name is somewhat misleading.
The instruction doesn’t actually move anything, in the sense that the Source operand will no
longer exist in its original location afterwards. A more logical name would be Copy, because the
result of the instruction is two instances of Source. Expect Mov to be your most commonly used
instruction, as it usually is in assembly programming.

As for restrictions on what sort of operands you can use for Source and Destination, Source can be
anything—a literal integer, float, or string value, or a memory reference (which consists of vari-
ables and array indices). Destination, on the other hand, must be a memory reference of some
sort, as it’s illegal to “assign” a value to a literal. In other words, Destination really follows the
same rules that describe an L-Value in C.

Arithmetic
Add           Destination, Source
Sub           Destination, Source
Mul           Destination, Source
Div           Destination, Source
Mod           Destination, Source
Exp           Destination, Power
Neg           Destination
Inc           Destination
Dec           Destination

The next most fundamental family of instructions is probably the arithmetic family. These func-
tions, with the exception of Neg, follow the same operand rules as does Mov. In other words, Source
can be any sort of value, whereas Destination must be a memory reference of some sort. These
instructions work both on integer and floating-point data without trouble.

The three newcomers here are Mod, Exp, and Neg. Mod calculates the modulus of two numbers; that
is, the remainder of Destination / Source, and places it in Destination. Exp handles exponents, by
raising Destination to the power of Power. Lastly, Neg accepts a single parameter, Destination,
which is a memory reference pointing to the value that should be negated.

This family of instructions is another example of the CISC approach you’re taking with the
instruction set; although there are actually more instructions here than are usually supplied for
arithmetic on real CPUs, the VM will perform all of the operations that will be directly needed by
the set of arithmetic operators XtremeScript supports. Imagine, for example, that you didn’t pro-
vide an Exp instruction, but left the ^ (exponentiation) operator in XtremeScript anyway. When
code that uses the operator is compiled down to assembly, you’ll have no choice but to manually
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calculate the exponent using XVM assembly
itself. This means you’d have to perform a
loop of repetitive multiplication. This would
be significantly slower than simply providing
an Exp instruction that takes direct advantage
of a far-faster C implementation. These extra
instructions are good examples of how to
offload more of the work to C, while preserv-
ing the flexibility of the scripting language.

Lastly, I’ve included the Inc and Dec instruc-
tions to round out the arithmetic family.
These simple instructions increment and
decrement the value contained in
Destination, and are analogous to C’s ++ and -
- operators. Once again this a subtle example of the CISC approach; since a general purpose sub-
traction instruction is slightly more complicated than one that always subtracts one, we can (at
least theoretically) improve performance by separating them.

Bitwise
And           Destination, Source
Or            Destination, Source
XOr           Destination, Source
Not           Destination
ShL           Destination, ShiftCount
ShR           Destination, ShiftCount

Up next is the XVM family of bitwise instructions. These instructions allow common bit manipu-
lation functions to be carried out easily, and once again directly match the operator set of
XtremeScript. These instructions are similar to the arithmetic family, and therefore also similar to
Mov, in terms of their operand rules. All Destination operands must be memory references, where-
as Source can be pretty much anything. Note that bitwise instructions will only have meaningful
results when applied to integer data.

The rundown of the instructions is as follows. And, Or, XOr (eXclusive Or), and Not perform their
respective bitwise operations between Source and Destination. ShL (Shift Left) and ShR (Shift
Right) shift the bits of Destination to the right or left ShiftCount times.

INTRODUCING XVM ASSEMBLY

NOTE
Users of Intel 80X86 assembly language
will be happy to see the changes made to
Mul and Div, which are now as easy to use
and side-effect free as Add and Sub. Due
to the language not being dependent on
registers, you can be much more flexible
in your definition of instructions, and
therefore can avoid the small headaches
sometimes associated with these two
instructions on the 80X86.This is also an
example of improving orthogonality.
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String Processing
Concat        String0, String1
GetChar       Destination, Source, Index
SetChar       Index, Destination, Source

XtremeScript is a typeless language with built-in support for strings. In another example of a
CISC-like design decision, I’ve chosen to provide a set of dedicated string-processing functions
for easy manipulation of string data as opposed to simply providing a low-level interface to each
character of the string. Especially in the case of string processing, allowing a C implementation to
be directly leveraged in the form of the previous instructions is far more efficient (and conven-
ient) than forcing the programmer to implement them in XVM Assembly.

The Concat instruction concatenates two strings by appending String1 to String0. GetChar extracts
the character at Index and places it in Destination. SetChar sets the character in Destination and
Index to Source. All indices in XtremeScript are zero-based, which holds true for strings as well.

Conditional Branching
Jmp           Label
JE            Op0, Op1, Label
JNE           Op0, Op1, Label
JG            Op0, Op1, Label
JL            Op0, Op1, Label
JGE           Op0, Op1, Label
JLE           Op0, Op1, Label

The family of jump instructions provided by the XVM closely mimics the basic 80X86 jump
instructions, with one major difference. Rather than provide a separate comparison instruction
like the Cmp instruction I talked about earlier, all of the XVM’s jumps have provisions for evaluat-
ing built-in comparisons. In other words, the
operands you’d like to compare, the method of
comparison, and the line label to jump to are all
included in the same line. This approach to
branching has a number of advantages, so I
decided to change things around a bit.

Jmp performs an unconditional jump to Label,
whereas the rest perform conditional jumps
based on three criteria—Op0, Op1, and the type of
comparison specified in the jump instruction
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itself, which are as follows: Jump if Equal (JE), Jump if Not Equal (JNE), Jump if Greater (JG),
Jump if Less (JL), Jump if Greater or Equal (JGE), and Jump if Less or Equal (JLE). In all cases,
Label must be a line label.

The Stack Interface
Push          Source
Pop           Destination

As you have learned, the runtime stack is vital to the execution of a program. In addition, this
stack can be used to hold the temporary values discussed earlier when reducing a high-level
expression like X + Y * ( Z / Cos ( Theta ) ) ^ Pi to assembly.

Fortunately, the stack interface is pretty simple, as it all just comes down to pushing and popping
values. Push accepts a single operand, Source, which is pushed onto the stack. Pop accepts a single
operand as well, Destination, which must be a memory reference to receive the value popped off
the stack. Unlike on the 80X86, Push can be used with literal values, not just memory references.

The Function Interface
Call          FunctionName
Ret
CallHost      FunctionName

Functions are (almost) directly supported by XVM Assembly, which makes a number of things
easier. First of all, it lets you write assembly code in a very natural way; you don’t have to manually
worry about relative stack indices and other such details. Furthermore, it makes the job of the
compiler easier as well, because high-level functions defined in XtremeScript can be directly
translated to XVM assembly.

A function can be called using the Call instruction, which pushes the return address onto the
stack and makes a jump to the function’s entry point. FunctionName must be a function name
defined in the file, just as the parameter to a jump instruction must be a line label.

Ret does just the opposite. When called, it first grabs the return address from the current stack
frame, and then clears it off entirely and jumps back to the caller. The cool thing about Ret is that
it’s usually optional, as you’ll see when I discuss function declarations. Like return in C, you need
to use Ret only if you’re specifically returning from a specific area in the function. Most of the
time, however, the function will simply end by “falling through” the bottom of its code block.

Lastly, there’s CallHost. This instruction takes a function name as well, just like Call, except that
the function’s definition isn’t expected in the script. Rather, it’s assumed that the host API will
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provide a registered function of the same
name. Without going into too much more
detail, you can safely assume that this is how
XtremeScript interacts with the host API.
You’ll find that this approach is rather similar
to the scripting systems discussed in Chapter 6.
I’ll discuss the exact nature of the host inter-
face in the coming chapters.

Miscellaneous
Pause         Duration
Exit          Code

Lastly, there are a few extra instructions worth mentioning that didn’t really have a home in any
of the other categories.

The first is Pause, which can be used to pause the script’s execution for a specified duration in
milliseconds (provided by the Duration operand). The difference between the Pause instruction
and a simple empty loop is that the host application, as well as any other, concurrently running
scripts, will continue executing. This makes it useful for various issues of timing and latency
wherein the script needs to idle for a given period without intruding on anything else. The
Duration operand can be either a literal value or a memory reference, which means the Pause
duration can be determined at runtime (which is useful).

The last instruction is Exit, which simply causes the script to unconditionally terminate. I also
decided to add the Code operand on a whim, which will give you the ability to return a numeric
code to the host application for whatever reason. I can’t think of any real purposes for it just yet,
but you never know— it just might save your life someday. :) Regardless, Exit is not required;
scripts will automatically terminate on their own when their last instruction is reached.

XASM Directives
The XASM Assembler, of course, is primarily responsible for reducing a series of assembly lan-
guage instructions to their purely numeric, machine code equivalent. However, in order to do its
job in full, it needs a bit more information about the script it’s compiling, as well as the exe-
cutable script it will ultimately become. For example, how much stack space should be allocated
for the script? What are the names of the script’s variables and arrays, and how big should the
arrays be? And perhaps most importantly, which code belongs to which functions?
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All of these questions can be answered with directives. A directive is a special part of the script’s
source code that is not reduced to machine code and therefore is not part of the final exe-
cutable. However, the information a directive provides helps the assembler shape the final version
of the machine code output, and is therefore just as important as the source code itself in many
ways. Directives will be used in the case of XVM Assembly to set the script’s stack size, declare vari-
ables and arrays, and mark the beginning and ends of functions. Ultimately, directives help turn
otherwise raw source code into a fully structured script.

Stack and Data
The first group of directives you’ll explore relate to stack and data, which are closely linked (as
you’ll see soon). The first, SetStackSize, is the simplest and is solely responsible for telling the
XVM how big a stack the script should be allocated. Here’s an example:

SetStackSize    1024

When loaded and run, the executable version of the script will be given 1024 stack elements to
work with. This is the same idea behind lua_open () (see Chapter 6), which accepted a single
stack size parameter for the script. This directive is optional, however. Omitting it will cause the
script to ask for zero bytes, which is a code to the XVM to use whatever default value has been
configured (it won’t actually allocate it a zero-byte stack).

Next up is the data the script will operate on. As you learned in the last chapter, scripts operate
on two major data structures: simple variables and one-dimensional arrays. First up are variables,
which can be declared like this:

var MyVar0
var MyVar1
var MyVar2

For simplicity’s sake, I decided against the capability to declare multiple variables on one line.

Of course, you’ll often need large blocks of data to work with, rather than just single variables, so
you can use the [] notation to create arrays of a given size:

var MyArray0 [ 16 ]
var MyArray1 [ 8192 ]

Variables and arrays can be declared both inside and outside of functions. Those declared out-
side are automatically considered global, and those declared elsewhere are considered local to
wherever the place of that declaration may be.
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Functions
The instruction set lets you write code, the var directives let you statically allocate data, so all
that’s really left is declaring functions. The Func directive can be used to “wrap” a block of code
that collectively is considered a function with somewhat C-style notation. Here’s an example:

Func Add
{

Param   Y
Param   X
Var     Sum
Mov     Sum, X
Add     Sum, Y
Mov     _RetVal, Sum

}

This code is of course an example of a simple Add function. Note that the Func directive doesn’t
allow the passing of formal parameters, but you can use the Param directive to make things easier
(I’ll get to Param in a moment). Notice that the return value is placed in _RetVal, which allows you
to pass it back to the caller. Furthermore, note the lack of a Ret instruction, as I mentioned. Ret
will be automatically appended to your function’s code by the assembler, so you have to add it
only when you want to exit the function based on some conditional logic.

The Param directive is required for accessing parameters on the stack. Each call to Param associates
the specified identifier with its corresponding index within the parameter list section of the stack
frame. So, if two parameters are pushed onto the stack before the call to Add, the following code:

Param    Y
Param    X

Would assign the second parameter to Y and the first parameter to X (remember the reversal of
parameter order from within the function due to the LIFO nature of a stack). We’ll see more
about why this works the way it does in the next chapter, but for now, understand that without
Param, parameters cannot be read from the stack.

Once a function has been declared with Func, its name can be used as the operand for a Call
instruction.
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Escape Sequences
Because game scripting often involves scripted dialogue sequences, it’s not uncommon to find a
heavy use of the double quote (“) symbol for quotes. Unfortunately, because strings themselves
are delimited with that same symbol, you need a way for the assembler to tell the difference
between a quotation mark that’s part of the string’s content, and the one that marks the string’s
end. This is accomplished via escape sequences, also sometimes known as backslash codes.

Escape sequences are single- and sometimes multi-character codes preceded by a backslash (\).
The backslash is a sign to the assembler that whatever character (or specially designated
sequences of characters) immediately follows is a signal to do something or interpret something
differently, rather than just another character in the string. Here’s an example:

Mov    Quote, "General: \"Troops! Mobilize!\""

Here, the otherwise problematic quotation marks surrounding the General’s command are now
safely interpreted by the assembler for what they really are. This is because any quotation mark
preceded by a backslash is actually output to the final executable as quotation mark alone, so the
final string will look like this:

General: "Troops! Mobilize!"

Just as intended. Of course, this brings up the issue of the backslash itself. If it’s used to mark
quotation marks, how do you simply use a backslash by itself if that’s all you want? All you need to
do is precede the backslash you want with another backslash, and that’s that. For example:

Push "D:\\Gfx\\MySprite.bmp"

Of course, this ends up forcing you to use twice the amount of backslashes you need, but it’s
worth it to solve the quotation mark issue.

Comments
Lastly, I decided to throw comments into this section as well. Comments really aren’t directives
themselves, but I figured this was as good a place as any to mention them. Like most assemblers,
XVM has a very simple commenting scheme that uses the semicolon to denote a single-line com-
ment, like so:

; This is a comment.
Mov    Y, X    ; So is this.

; This is a
; multi-line
; comment.
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SUMMARY OF XVM ASSEMBLY
You’ve covered a lot of ground here in a fairly short space, so here are a few important bullet
points to remember just to make sure you stay sharp:

■ Assembly language and machine code are basically the same thing; the only real difference
is how they’re expressed. Assembly is the human readable version that is fed to the
assembler, and machine code is the purely numeric equivalent that the assembler pro-
duces. This is the version your virtual machine will actually read and execute.

■ Instructions can be expressed in two ways: as a human readable mnemonic, such as “Mov”
and “Ret”, or as numeric opcodes, which are simply integer values.

■ Instructions accept a variable-number of operands, which help direct the instruction to
perform more specific actions.

■ Conditional logic and iteration are handled exclusively with jump instructions and line
labels.

■ The RISC versus CISC debate centers upon how complex an instruction set is, in regards
to the functionality of each instruction. CISC instruction sets can be faster in many appli-
cations, and was the chosen methodology for the design of the XVM instruction set.

■ An instruction set’s orthogonality is a measure of how complete the set is in terms of
instructions that can be logically paired or grouped. XVM Assembly is designed to be
reasonably orthogonal.

■ The XVM Assembly instruction set is based on a somewhat reworked version of Intel
80X86 assembly, although it has almost no notion of registers because they wouldn’t pro-
vide any of their physical advantages in the virtual context of the XVM. The _RetVal reg-
ister is provided, however, for handling function return values.

■ Expressions, which are ubiquitous and vital to high-level languages, don’t exist in assem-
bly and are instead reduced to a series of single instructions. Expressions often use the
stack to store temporary values as these instructions are executed, which allows them to
keep track of the overall result.

■ The stack is vital to the execution of a program, because it provides a temporary storage
location for the intermediate result values used when parsing expressions, and of course
provides the foundation for function calls.

■ A stack frame or activation record is a data structure pushed onto the stack for each func-
tion call that encapsulates that function’s return value, parameter list, and all of its local
variables and arrays.

■ XVM stands for “XtremeScript Virtual Machine”, but it’s also the Roman numeral repre-
sentation of 985. 985 kinda looks like “1985”. I was born in 1981. 1985 - 1981 = 4, which
is the exact number of letters in my first name! COINCIDENCE!?!
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SUMMARY
Out of all the theoretical chapters in the book, this has hopefully been among the most informa-
tive. In only a few pages you’ve learned quite a lot about basic assembly language, different
approaches to instruction set design, and even gotten your first taste of how an assembler works. I
then moved on to cover the design of XVM Assembly, the low-level language for the
XtremeScript system that will work hand-in-hand with the high-level language developed in the
last chapter. You’ve got another major piece of the design puzzle out of the way, and you’re about
to put it to good use.

The next chapter will focus on the design and implementation of XASM (which I pronounce
“Exasm”, by the way), which is the XtremeScript Assembler. You’ll be taking a big step, as this will
mark your first actual work on the system you’ve spent so many pages planning. As you’ve also
seen, the assembler will be more than just another part of a larger system. Once you also have a
working VM (which will directly follow your work on the assembler), you’ll have the first working
version of your scripting system. The language itself may be less convenient than a high-level, C-
style language, but will be capable of the same things. In other words, the following chapter will
be your next step towards attaining scripting mastery (feel free to insert the Jedi-reference of your
choice here).

SUMMARY
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“It’s fair to say I’m stepping out on a limb, 
but I am on the edge. And that’s where it happens.”

——Max Cohen, Pi
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Over the course of the last eight chapters, you’ve been introduced to what scripting is and
how it works, you’ve built a simple command-based language scripting system, you’ve

learned how real procedural scripting is done on a conceptual level, you’ve learned how to use a
number of existing scripting systems in real programs, and you’ve even designed both the high-
and low-level languages the XtremeScript system will employ. At this point, you’re poised and
ready to begin your final mission—to take XtremeScript out of the blueprints and design docs in
your head, and actually build it.

This chapter will mark the first major step in that process, as you design and implement XASM.
XASM is short for XtremeScript Assembler, and, as the name implies, will be used to assemble scripts
written in XVM Assembly down to executables capable of running on the XtremeScript virtual
machine. This program will sit in between the high-level XtremeScript compiler (which outputs
XVM assembly) and the XVM itself, and is therefore a vital part of the overall system. Figure 9.1
illustrates its relationship with its neighboring components.

9. BUILDING THE XASM ASSEMBLER

Figure 9.1

XASM sits in between

the compiler and run-

time environment as

the final stage in the

process of turning a

script into an 

executable.

XASM is a good place to start because it’s an inherently simple program, at least when compared
to the complexities of a high-level language compiler. Despite the myriad of details you’ll see in
the following pages, its main job can still be described simply as the mapping of instruction
mnemonics to their respective opcodes, as well as other text-to-numeric conversions. It’s really
just a “filter” of sorts; human-readable source code goes in one end, and executable machine
code comes out the other.
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With the pleasantries out of the way, it’s time to roll up your sleeves and get started. This chapter
will cover

■ A much more in-depth exploration of how a generic assembler works.
■ The exact details of how XASM works.
■ An overall design plan for the construction of the assembler.
■ A file format specification for the output of XASM, the XVM executable file.

I strongly encourage you to browse the code for the working XASM assembler as or after you read
the chapter. It can be found on the accompanying CD and is heavily commented and organized.
Regardless of how many times you read this chapter and how much you may think you “totally
get it”, the XASM source code itself is, for all intents and purposes, required reading. Once you
understand the underlying concepts, you’ll really stand to gain by seeing how it all fits together in
a working program. In a lot of ways, this chapter is almost a commentary on the XASM source
code specifically, so please don’t underestimate the importance of taking the time to at least read
through it when you’re done here.

HOW A SIMPLE ASSEMBLER WORKS
Before coding or designing anything, you need to understand how a simple assembler works on a
conceptual level. You got a quick crash course in the process of reducing assembly to machine code
in the last chapter, but you’ll need a better understanding than that to get the job done here.

As you saw in Chapter 8, the basic job of an assembler is to translate human readable assembly
source code to a purely numeric version known as machine code. Essentially, the process consists
of the following major steps:

■ Reducing each instruction mnemonic to its corresponding opcode based on a “master”
instruction lookup table.

■ Converting all variable and array references to relative stack indices, depending on the
scope in which they reside.

■ Taking note of each line label’s index within the instruction stream and replacing all ref-
erences to those instructions (in jump instructions and Call) with those indices.

■ Discarding any extraneous or human-readable content like whitespace, as well as com-
mas and other delimiting symbols. In other words, reducing everything to a binary form
as opposed to ASCII.

■ Writing the output to a binary file in a structured format recognized by the XVM as an
executable.

HOW A SIMPLE ASSEMBLER WORKS
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The next section discusses how the instructions of a script file are processed by a generic assem-
bler, in reasonably complete detail. The output of this generic, theoretical assembler is known as
an instruction stream, a term representing the resulting data when you combine all of the opcodes
and operands and pack them together sequentially and contiguously. It represents everything the
original source code did, but in a much faster and more efficient manner, designed to be blasted
through the VM’s virtual processor at high speeds.

Assembling Instructions
Primarily, an assembler is responsible for mapping instruction mnemonics to opcodes. This
process involves a lookup table (ahem) containing strings that represent a given instruction, the
opcode, and other such information. Whenever an instruction is read from the file, this table is
searched to find the instruction’s corresponding entry. If the entry is found, the associated
opcode is used to replace the instruction string in the output file. If it’s not found, you can
assume the instruction is invalid (or just misspelled) and display an error. Check out Figure 9.2 to
see this expressed visually.

The actual implementation of the table is up to the coder, but a hash table is generally the best
approach because it allows strings to be used as indices in linear time. Of course, there’s nothing
particularly wrong with just using a pure C array and searching it manually by comparing each
string. After all, although it is significantly slower than using a hash table or other, more sophisti-
cated method of storage, you probably won’t be writing scripts that are nearly big enough to
cause noticeable slowdown. Besides, assembly isn’t done at runtime, so the speed at which a script
is assembled has no bearing on its ultimate runtime speed.

9. BUILDING THE XASM ASSEMBLER

NOTE
This is just me ranting about a huge pet peeve of mine, but have you
ever thought about how stupid the term “lookup table” is? It’s com-
pletely redundant.What other function does a table have other than
lookups? Do tables exist that don’t allow lookups? What purpose would
such a table serve? It’d be like saying “read-from book” or “drive-around
car” or “buy-from store”.There’s no point in prefixing the name of
something with its sole purpose, because the name by itself already tells
you what it does. Oh well, don’t mind me, and feel free to disagree and
send me flame e-mails calling me an idiot. :) I’ll continue using the term
just because everyone’s already used to it, but know this—every time I
say it, I die a little inside. In the meantime I’ll just get back to writing this
learn-from chapter using my type-on keyboard.
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I also mentioned previously that in addition to the mnemonic string and the opcode, each entry
in the table can contain additional information. Specifically, I like to store an instruction’s
opcode list here. The opcode list is just a series of flags of some sort (usually stored in a simple
array of bit vectors) that the assembler uses to make sure the operands supplied for the given
instruction are proper. For example, a Mov instruction accepts two parameters. The first parame-
ter, Destination, must be a memory reference of some sort, because it’s where the Source value
will be stored. Source, on the other hand, can be anything—another memory location like
Destination, or a literal value. So the first operand can be of one data type, while the second 
can be many. The lookup table would store an opcode list at the Mov instruction’s index that 
specifies this.

The operand list can also be implemented any way you like, but as I said, I prefer using arrays of
bit vectors. Each element in the array is a byte, integer, long integer, or whatever (depending on
how many flags you need). Each element of the array corresponds to an operand, in the order
they’re expected. In the case of Mov, this would be a two-element array indexed from 0 to 1. 

HOW A SIMPLE ASSEMBLER WORKS

NOTE
Hashtables are a great way to implement the instruction lookup table,
so I highly recommend them in your own assemblers. C++ users can
immediately leverage the existing STL hashtable, for example. I won’t be
using them in the source to XASM, however, because I find them to be
somewhat obtrusive as far as teaching material goes; it’s easier to under-
stand the linear search of a C array than it is to understand even a total-
ly black boxed hashtable.You’ll find throughout the book that I usually
chose simplicity over sophistication for this reason.

Figure 9.2

Looking up an instruc-

tion in the table to find

its corresponding

opcode.
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Element 0, corresponding to Destination, only allows memory references and would therefore have
the MEMORY_REF flag set (for example), whereas the LITERAL_VALUE flag would be unset. Element 1,
on the other hand, because it corresponds to Source, would have both the MEMORY_REF and LITER-
AL_VALUE flags set. Other operand types would exist as well, such as LINE_LABEL and FUNCTION_REF for
jump instructions and CALL for example. This is explained in more detail in Figure 9.3.

9. BUILDING THE XASM ASSEMBLER

Figure 9.3

Bit vectors being used

to store the description

of an operand list.

This table, with its three major components, would be enough information to write a basic assem-
bler capable of translating instructions with relative ease. As each instruction is read in, its name is
validated to make sure it’s in the table and is therefore a known mnemonic, the operands are
checked against the operand list stored in the table, and finally, its opcode is written to the output.

The operands are written to the output as well, of course, but doing so is significantly more com-
plex than assembling the instructions themselves. To understand how operand lists are assem-
bled, you first have to know how each type of operand is assembled; only then can you process
entire operand lists and write them to the output file. To get things started, let’s learn how vari-
able references are assembled, and then move on to operand assembly in general.

Assembling Variables
Variables are assembled in a reasonably straightforward way. As you learned in the last chapter, a
variable or array index is really just a symbolic name that the programmer attaches to a relative stack
index. The stack index is always relative to the top of the stack frame of the function in which it’s
declared. Even global variables can be placed on the stack (at the bottom, for example).

A function’s stack frame generally consists of a number of parameters, the caller’s return address,
and local data. An active function’s stack frame is always at the top of the stack. If that function
makes another function call, the newly called function then takes over the top of the stack while
it’s running. Once the second function returns, its stack frame is popped off the stack, so that
when the calling function continues executing, it’s once again on top.
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If you remember back to the discussion of Lua in Chapter 6, you may recall that the Lua stack
can be accessed in two ways; with positive indices and with negative indices. Positive indices start
from the bottom, so that the higher the index, the higher up you go into the stack. Negative
indices, however, are used to read from the stack relative to the top. Therefore, -1 is the top of
the stack, -2 is the second highest stack element, and so on. The lower the negative index, the
lower into the stack you read. You use a similar technique when dealing with stack frames.
Because a function’s stack frame is always at the top (as long as it’s the active function, which it
obviously is if its code is executing), you can access elements relative to the top of the current
stack frame by using negative indices. Check out Figure 9.4.

HOW A SIMPLE ASSEMBLER WORKS

Figure 9.4

Stack indexing.

The stack frame consists of three major components. Starting from the top of the frame and
working down, they are as follows: local data, the caller’s return address, and the passed parame-
ters (see Chapter 8 for more information on why it’s laid out this way). So, if you have four local
variables and two parameters, you know that the size of the stack frame is seven elements (4 + 2 +
1 = 7; always add 1 because the return address takes exactly one stack index in addition to every-
thing else). Therefore, the stack frame takes up the top seven elements of the stack. The four
local variables take indices -1 through -4, the return address is at -5, and the two parameters are at
indices -6 and -7.

Figure 9.5 contains an example of a stack frame.
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You can use this information to replace a variable name with a stack index. Let’s assume the fol-
lowing code was used to declare the function’s variables, and that variables are placed on the
stack in the order they’re declared (therefore, the first one declared is the lowest on the stack):

var X
var Y
var Z
var W

X would be placed on the stack first, followed by Y, Z, and W. Because W would be on the top of the
stack, its relative index is -1. Z follows it at index -2, and Y and X complete the local data section of
the frame with indices -3 and -4, respectively. You can then scan through the input file and, as you
read each variable operand, replace it with the indices you’ve just calculated. Check out Figure 9.6.

However, it isn’t enough to simply replace a variable with a number. For example, there’d be no
way to tell a stack index from a literal integer value. Imagine assembling the following instruction:

Mov    Z, 4

As previously determined, Z resides at index -2. Also assuming that the Mov instruction corre-
sponds to opcode 0, your assembled output would look something like the following:

0 -2 4

The XVM, when it receives this data, is going to interpret it at as “Move the value of 4 into -2.”,
which doesn’t make much sense. What you need to do is prefix the assembled operand with a
flag of some sort so that it can tell the difference between an assembled variable (a relative stack

9. BUILDING THE XASM ASSEMBLER

Figure 9.5

An example stack

frame.
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index) and an assembled integer variable. For example, let’s say the code for a stack index is 0,
and the code for an integer literal is 1. The new output of the assembler would look like this:

0 0 -2 1 4

As you can see, the new format for the Mov instruction is opcode, operand type, operand data,
operand type, and operand data.

Lastly, there’s the issue of referencing global variables. Because these reside at very different loca-
tions than local data, you need to make sure to be ready for them. I prefer storing globals at the
bottom of the stack;
this way, whether a
given variable is local
or global, you can
always use stack
indices to reference
them. Because the
bottom of the stack
can be indexed using
positive indices, you
don’t have to make
any changes to the
instruction stream.

HOW A SIMPLE ASSEMBLER WORKS

Figure 9.6

Variables and their

association with stack

indices relative to the

current stack frame.

NOTE
XASM and the XVM will actually work a bit differently than
what I’ve described here. For reasons that will ultimately
become clear in the next chapter, the stack indices generated
for variables will begin at index -2, rather than -1. Since I don’t
want to bewilder you too much, the reason has to do with an
extra value that the XVM pushes onto the stack after the stack
frame, which causes everything to be pushed down by one
index (thus, local data starts at -2 instead of -1).This extra value
wasn’t mentioned in chapter 8 because it’s specific to the XVM-
- it needs it for some internal bookkeeping issues we’ll get into
in the next chapter. For now, just keep this detail in mind.
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An assembled global variable reference is just like a local one; the only difference is the sign of
the index.

Assembling Operands
You’ve already seen the first steps in assembling operands in the last section with the codes you
used to distinguish variable stack indices from integer literals, but let’s round the discussion out
with coverage of other operand types. As you saw, operands are prefixed with an operand type
code so that the runtime environment can determine what it should do with the operand data
itself. In the case of a stack index operand type, the runtime environment expects a single integer
value to follow (which is treated as the index itself). In the case of an integer literal operand type,
a single integer value would again be expected. In this case, however, this is simply a literal value
and is treated as such.

There are a number of operand types to consider, however. Table 9.1 lists them all.

9. BUILDING THE XASM ASSEMBLER

Table 9.1  Operand Types
Type Example Description

Integer Literal 256 A literal integer value

Float Literal 3.14159 A literal float value

String Literal "L33T LIEK JEFF K.!!11" A literal string value

Variable MyVar A reference to a single variable

Array with MyArray [ 15 ] An array indexed by an integer literal
Literal Index value

Array with MyArray [ X ] An array indexed by a variable
Variable Index

Line Label MyLabel A line label, used in jump instructions

Function Name MyFunc The name of a function, used in the
Call instruction

Host API Call MyHostAPIFunc The name of a host API function, used
in the CallHost instruction
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The list should be pretty straightforward, although you might be a bit confused by the idea of
arrays indexed by literal values being considered different than arrays indexed by variables. The
reason this is an issue is that the two operand types must be written to the output file with differ-
ent pieces of information. For example, an array with an integer index must be written out with
the base index of the array (where the array begins on the stack), as well as the array index itself
(which will be added to the first value to find the absolute stack index, which is where the specific
array element resides). In fact, you could even add the array index to the array’s base at compile-
time and write that single value out as a typical variable reference (which would be more effi-
cient). An array indexed with a variable, on the other hand, cannot be resolved at assemble-time.
There’s no way to know what the indexing variable will contain, which means you can only write
out the array’s base index and the index of the variable index. These two methods of indexing
arrays are different, and the runtime environment must be aware of this so it can process them
properly. Check out Figure 9.7.

HOW A SIMPLE ASSEMBLER WORKS

Figure 9.7

Arrays being indexed in

different ways.

As for the operand type codes themselves, they’re just simple integer values. An integer literal
might be 0, floats and strings might be 1 and 2, variables and both array types might be 3, 4, and
5, and so on. As long as the assembler outputs codes that the VM recognizes, the actual values
themselves don’t matter.

Now that you can prefix each operand with a code that allows the VM to properly read and inter-
pret its data based on its type, there’s one last piece of information each instruction needs, and
that’s how many operands there are in total. This is another simple addition to the instruction
stream output. In between the opcode and the first operand, you need only insert another inte-
ger value that holds the number of operands following. In the case of Mov, this would always be 2
(the Source and Destination operands). In the case of Jmp it’d always be 1 (the Label operand).
So, if you have the following line of code:

Mov    MyVar, 16384
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and MyVar is found at stack index -8, the machine-code equivalent would look like this:

0 2 3 -8 0 16384

Now, the order is basically this: first you output the opcode (0), and then you output the newly-
added operand count (2, for two operands), and then the operand type of the first operand (a
variable in this case, the code for which let’s assume is 3), and then the variable’s stack index (-8),
and finally the second operand. The second operand is an integer, the code for which let’s
assume is 0, followed by the value itself (16384). Check out Figure 9.8 for a visual of this format.

9. BUILDING THE XASM ASSEMBLER

Figure 9.8

The new format of an

assembled instruction
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followed by N
operands, each of

which consist of an

operand type code and

operand data.

You might be wondering why you need to include the operand count at all. As you’ve seen, these
instructions have a fixed number of operands. For example, Mov always has two operands, Jmp
always has 1, and so on. There doesn’t seem to be much need to include this data when you can
just derive it from the opcode itself. The reason I like to include it, however, is that it may
become advantageous at some point to give instructions the ability to accept a variable number of
operands. For example, you might want to alter the Exit instruction so that it can be called with-
out the return code, thereby making it optional (so Exit might be interpreted the same as Exit 0,
for example). If you decide to do this, however, you’ll need some way for the VM to know that
sometimes, Exit is called with a return code, and sometimes it isn’t. Adding a simple variable
count to the instruction stream allows you to do this easily.

Assembling String Literals
Strings are simple to assemble, but it may not be done in the way you’d imagine. Simple literal
values like integers can be embedded directly into the instruction, immediately following the
operand type code. You could do the same thing with strings, but that means clogging up your
otherwise simplistic instruction stream with chunks of string data. Consider the following two
lines of code:
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Mov    X, "This is a string literal."
Mov    Y, 16384

The instruction stream would look something like this:

0 2 3 8 This is a string literal 0 2 3 9 0 16384

I personally happen to find this implementation a bit messy; loading the instruction stream from
the disk when the script is loaded into the runtime environment will become a more complicated
affair, because you’ll have to manage the reading of strings in addition to simply reading in sim-
ple integer values (and floats, in the case of float literals).

Instead of clogging up the instruction stream, I suggest strings be grouped at assemble-time and
loaded into a separate structure called the string table. The string table contains all of a script’s
string literals, and assigns each a sequential index (which means it’s just a simple array). Then,
instead of placing a string literal itself in the instruction stream, you substitute it with its corre-
sponding index into the string table. The string table itself is then written out in full to another
part of the output file.

In the case of the previous example, because the two-line script has only one string, it’d be
loaded into the string table at index 0. Therefore, the instruction stream itself would now take on
a much cleaner, more compact form:

0 2 3 8 0 0 2 3 9 0 16384

Ahhh, much better. Figure 9.9 illustrates the separation between the instruction stream and the
string table.

HOW A SIMPLE ASSEMBLER WORKS

Figure 9.9

The string table sepa-

rates strings from the

instruction stream,

allowing for cleaner

encapsulation and logi-

cal grouping of data.

Assembling Jumps and Function Calls
The last real aspect of the instruction stream to discuss in this initial overview of the assembly
process deals with line labels and functions. Line labels are used to mark the location of a given
instruction with a symbolic name that can be used to reach it with a jump. Function names are
similar; rather than marking a single instruction, however, they mark a block of them and give
the code within that block its own scope and stack frame.
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Line labels and jumps are often approached with one of two popular methods when assembling
code for a real hardware system. The first method is called the two-pass method, because the cal-
culation of line labels is handled in one complete pass over the source file, whereas the second
pass assigns the results of the first pass (the index of each line label) to those line label’s respec-
tive references in jump instructions.

You have a number of options when approaching this issue in your own assembler. Regardless of
how you do it, though, the underlying goal of this phase is twofold; to determine which instruc-
tion each line label corresponds to, and to use the index of those instructions to replace the
label’s references in jump instructions. The following code provides an example:

Label0:
Mov    X, Y
And    Z, Q
Jmp    Label0
Pop    W
Pause  U
JLE    X, Y, Label1
Push   256

Label1: Jmp    Label0
Exit   0

Here you have two labels and three jump instructions (forget about the actual code itself, it’s just
there to fill space). The first label points to the first instruction (Mov X, Y), whereas the second
(and last) label points to the eighth instruction (Jmp Label0). Notice here that the actual instruc-
tion pointed to by a given label is always the one that immediately follows it. The label and the
instruction can be separated by any amount of whitespace, including line breaks, which is why the
two don’t have to appear on the same physical line to be linked. Here’s the same code again with
line numbers to help explain how this all works:

Label0:
0: Mov    X, Y
1: And    Z, Q
2: Jmp    Label0
3: Pop    W
4: Pause  U
5: JLE    X, Y, Label1
6: Push   256
7: Label1: Jmp    Label0
8: Exit   0

9. BUILDING THE XASM ASSEMBLER
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According to the diagram, these nine instructions are indexed from 0-8, and any lines that 
do not contain instructions (even if they contain a label declaration) don’t count. Also, notice
that line labels can be declared after references to them are made, as in the case of Label1.
Here, notice that Label1 is referenced in the JLE instruction on line 5 before being declared on
line 7. This is called a forward reference, and is vital to assembly programming for obvious reasons
(refer to Chapter 8’s intro to assembly language coding for examples). However, this ability for
label references to precede their declarations is what makes line label assembly somewhat tricky.
Before I get into that, however, let’s take a look at the previous code after its line labels have been
assembled:

Mov    X, Y
And    Z, Q
Jmp    0
Pop    W
Pause  U
JLE    X, Y, 7
Push   256
Jmp    0
Exit   0

Check out Figure 9.10 for a graphical representation of this process.

HOW A SIMPLE ASSEMBLER WORKS

Figure 9.10

Line labels and jumps

are matched up over

the course of two

passes

As you can see, the label declarations are gone. In place of label references are simple integer val-
ues that correspond to the index of a target instruction. The runtime environment should route
the flow of execution to this target instruction when the jump is executed. What you’re more
interested in, though, is the actual process of calculating these instruction indices. I think the
two-pass approach is simpler and more straightforward, so let’s take a look at how that works.
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■ The first pass begins with the assembler scanning through the entire source code file
and assigning a sequential index to each instruction. It’s important to note that the
amount of lines in the file is not necessarily equal to the amount of instructions it con-
tains (in fact, this is rarely the case and will ultimately be impossible when the final XVM
assembly syntax is taken into account). Lines that only contain directives, labels, white-
space, and comments don’t count.

■ The first pass utilizes an array of line labels that is similar in structure to the master
instruction lookup table discussed earlier. Each element of this array contains the line
label string itself, as well as the index of the instruction it points to. With these two fields,
you have enough data to match up jumps with their target instructions in the resulting
machine code.

■ Whenever a line label declaration is detected, a new element in the array is created, with
its name field set to the name of the label string. So, if you encounter MyLabel: in the
source code, a new element is created in the line label array containing the string
“MyLabel” (note the removal of the colon). Care must also be taken to ensure that the
same label is not declared twice; this is a simple matter of checking the label string
against all array elements to make sure it doesn’t already exist.

■ Remember, a line label always points to the instruction immediately following it. So, when-
ever a label is detected, you copy the instruction counter to a temporary variable and use
that value as the label’s target index. This value, along with the label’s name, is placed
into the array and the label is recorded. The process of determining a line label’s target
instruction is called resolving the label.

■ This process continues until the entire source file has been scanned. The end result is an
array containing each line label and its corresponding instruction index. The instruction
stream has not been generated in any form yet, however; this pass is not meant to pro-
duce any code.

This completes the first pass, so let’s take a look at the steps involved in the second pass. The sec-
ond pass is where you actually assemble the entire source file and dump out its corresponding
machine code. All you’re worried about in this section, however, is the processing of line labels,
so let’s just focus on that and ignore the rest.

■ The second pass scans through each instruction of the source file, just as the first did. As
each instruction is found, it’s converted to its machine-code equivalent using the tech-
niques discussed previously. In the case of jump instructions, however, you need to out-
put a line label operand type. What this actually consists of isn’t the line label string, but
rather the target instruction’s index.

■ Whenever a jump instruction is found, its line label is read and used as a key to search
the line label array constructed in the last pass. When the corresponding element is
found, you grab the instruction index field and use that value to replace the label in the

9. BUILDING THE XASM ASSEMBLER
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machine code you output. Just like with labels, this is called resolving the jump. Note also
that if the label cannot be found in the label array, you know it’s an invalid label (or
again, just a misspelling) and must alert the users with an error.

That, in a nutshell, is how line labels are processed in a two-pass fashion. The end results are
jump instructions that vector directly to their target instructions, as if you never used the labels 
to begin with. Slick, huh?

Functions and Call instructions are processed in virtually the same way. In the same first pass you
use to gather and resolve line labels, you can also detect instances of the Func directive, which, to
refresh your memory, looks like this:

Func Add
{

Param  X                 ; Assign names to the two parameters
Param  Y
Var    Sum               ; Create a local variable for the sum
Mov    Sum, X            ; Perform the addition
Add    Sum, Y
Mov    _RetVal, Sum      ; Store the sum in the _RetVal register

}

This is a simple addition function, defined using the Func directive. In a lot of ways, Func is just a
glorified line label; its major purpose (aside from establishing the function’s scope, which is why
you need the curly braces as well) is simply to help you find the entry point of the function.

Because Call is basically just an unconditional jump that also saves the return address on the
stack, you can approach the resolution of function names, as well as the assembling of Call
instructions, in roughly the same way you approached line labels and jumps. In the first pass (the
same “first pass” discussed previously), you gather and resolve each function name, associating it
with the index of the first instruction within its scope, or its entry point. In the case of the Add func-
tion, the entry point is Mov Sum, X (remember, directives like Param and Var don’t count as instruc-
tions), and therefore, the index of that instruction will be stored along with the “Add” name string
within an array of functions. This array will be structured just as the label array is; each element
contains a function name and an index.

The second pass will then replace the function name parameter in each Call instruction with the
index of the function’s entry point. So, if Add’s entry point is the 204th instruction in the script,
any Call instruction that calls the function would go from this:

Call    Add

to this:

Call    204

HOW A SIMPLE ASSEMBLER WORKS
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Simple, right? Of course, functions are more than just labels, and calling a function is more than
just jumping to it—otherwise, you’d just use the jump instructions and typical line labels instead.
A function also brings with it a concept of scope and builds itself an appropriate stack frame
upon its invocation—containing the parameters passed, return address and local data.

Because of this extra baggage, you won’t actually replace the function name in a Call instruction
with the function’s entry point, but rather, an index into a function table. The function table is a
structure that will be created during the assembly of the script and persist all the way up to the
script’s runtime. Whenever a function is called, this index is used to extract information about
the requested function from the table. This information will primarily pertain to the construction
of function’s stack frame, but will also include the basics like, of course, the entry point itself.

The issue of functions and their stack frames is highly specific from machine to machine, from
language to language, and from compiler to compiler. As a result, I won’t be covering it just yet
(although I will later in this chapter). This section is just meant to be a conceptual overview of a
generic assembler, and discussing the details of the stack frames and the function invocation and
return sequence would go too far beyond that. I’ll return to this subject later.

XASM OVERVIEW
You now should understand the majority of how a generic assembler does its job in theory, so I’ll
now expand that into a description of how XASM will work in practice. XASM is, more or less, a
typical assembler; the only major difference is that it’s designed to produce code for a typeless vir-
tual machine, which makes things a lot easier on you.

In addition to the basic assembler functionality, it brings with it a number of added features like
the directives discussed in the last chapter for declaring variables, arrays, functions and so on.
Overall, the assembler will be responsible for the following major steps:

■ A first pass over the source code that processes directives, including the processing of
line label indices and function entry points.

■ A second pass over the source that assembles each instruction into its machine code
equivalent, also resolving jump labels and function calls as well.

■ Writing the completed data out to a binary file using a structured format that the XVM
can recognize.

This is a very broad roadmap, but it’s more or less the task you’re responsible for. I’m now going
to discuss a variety of topics that relate to the construction of this assembler, getting closer and
closer to a full, specific game plan with each one. Eventually you’ll reach a point where you
understand enough individual topics to put everything together into a fully functional program.

9. BUILDING THE XASM ASSEMBLER
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Memory Management
First and foremost, it’s important to be aware of the different ways in which both the script source
data, as well as the final executable data, can be stored. Early compilers and assemblers ran on
machines with claustrophobically small amounts of memory, and as a result, kept as much infor-
mation on the hard drive as possible at all times. Source files were read from the disk in very
small chunks, processed individually, and immediately written to either temporary files or the
final executable to clear room for the next chunk. This process was repeated incrementally until
the entire file had been scanned and processed.

Today, however, you find yourself in a much different situation. Memory is much cheaper and far
more ubiquitous, giving compiler writers a lot more room to stretch out. As a result, you’re usual-
ly free to load an entire source file into memory, perform as many passes and analysis phases as
you want, and write the results to disk at your leisure. Of course, no matter how much memory
you’ve got at your fingertips, it’s never a good idea to be wasteful or irresponsible.

Because of this, you’ve got a decision to make early on. You already know that you’ll be making
repeated passes over the source file—at least two—and might want to load everything into memo-
ry for that reason alone. Furthermore, loading the file into memory allows you to easily make on-
the-fly changes to it; various preprocessing tasks could be performed, for example, that translate
the file into slightly different or more convenient forms for further processing.

In a nutshell, having the entire file loaded into memory makes things a lot easier; data access is
faster and flexibility is dramatically increased. Furthermore, memory requirements in general will
rarely be an issue in this case. Unlike the average assembler or compiler, which may be responsi-
ble for the translation of five or ten million lines of code, an assembler for a scripting language is
unlikely to ever be in such a position. Scripts, almost by their very nature, tend to be dramatically
smaller than programs.

Of course, it’s not necessarily an open and shut case. There are definitely reasons to consider
leaving the source file (among other things) on the disk and only using a small amount of actual
memory for its processing. For example, you might want to distribute your assembler and compil-
er along with your game, or with a special version of your game that’s designed to be expanded
by mod authors or other game hackers. In this case, when the program will be run on tens, hun-
dreds, or even thousands of different end users’ machines, available memory will fluctuate wildly
and occasionally demand a small footprint. Furthermore, despite these comments, it’s always pos-
sible that your game project, for whatever reason, will demand massive scripts that occupy huge
amounts of memory. Although I personally find this scenario rather unlikely, you can never rule
something out entirely. See Figure 9.11 for a visual representation of this concept.

In the end, it’s all up to you. There’s a strong case to be made for both methods. As as long as
there aren’t any blatantly obvious reasons to go one way over the other, you really can’t go wrong.

XASM OVERVIEW
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Either method will serve you well if it’s implemented correctly. However, for the purpose of this
book, you’ll load the entire script into memory, rather than constantly making references to an
external file, for a number of reasons:

■ It’s a lot easier to learn the concepts involved when everything is loaded into a structured
memory location rather than the disk, so learning the overall process of assembly will be
simpler.

■ You’re free to do more with the file once you have it loaded; you can move blocks of
code around, make small changes, perform various preprocessing tasks, and the like.

■ Overall, the assembler will run faster. Because it’s making multiple passes over the source
file, you avoid repetitious disk access.

Input: Structure of an XVM
Assembly Script
Whenever approaching a difficult situation, the most important thing is to know your enemy. In
this case, the enemy is clear—the source code of an XVM Assembly script. These scripts,
although more than readable for pansy humans, are overflowing with fluff and other extraneous
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data that software simply chokes on. Whitespace? Hmph! Line breaks? Hmph! An assembler
craves not these things. It’s your job to filter them out.

Parsing and understanding human-readable data of any sort is always a tricky affair. Style and
technique differ wildly from human to human, which means you have to make all sorts of gener-
alizations and minimize your assumptions in order to properly support everyone. Whitespace and
line breaks abound, huge strings of case-sensitive characters are often required for a human to
express what software could express in a single byte, and above all else, errors and typos can
potentially be anywhere. Indeed, above all else, compiler theory will teach you to appreciate the
cold, calculated order and structure of software.

The point, however, is that the input you’ll be dealing with is complex, and the best way to ensure
things go smoothly is to understand and be prepared for anything the enemy can throw at you.
To this end, this section is concerned with everything a given XVM Assembly script can contain,
as well as the different orders and styles these things can be presented in.

Remember, even though the XtremeScript compiler will ultimately replace humans as the source
of input for XASM, there’s always the possibility of writing assembly-level scripts by hand, or edit-
ing the assembly output of the compiler. This will be particularly useful before the compiler is fin-
ished, because you’ll be forced to use XASM directly. Because of this, you should write the pro-
gram to be equally accommodating to both the clean, predictable style of a compiler’s output,
and the haphazard mess of a human.

The following subsections deal with each major component of a script. I initially listed these in
the last chapter, but I’ll delve into more detail here and provide examples of how they may be
encountered.

Directives
Before the instructions themselves, most scripts will present a number of directives to help guide
the assembler and VM in their handling of the script’s code. Remember, unlike instructions,
directives are not reduced to machine code but are rather treated as directions for the assembler
to follow. Directives allow the script writer to exert more specific control over the assembler’s out-
put.

SetStackSize
The first directive is called SetStackSize and allows the stack size for the script to be set by the
script itself. It’s a rather simple directive that accepts a single numeric parameter, which is of
course the stack size. For example,

SetStackSize 1024

XASM OVERVIEW
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will set the size of the script’s stack to 1024 elements. Here are some notes to keep in mind:

■ 0 can be passed as a stack size as well, which is a special flag for the VM to allocate the
default stack size to the script.

■ The directive does not have to appear in the script at all; just like requesting a stack size
of zero elements, this is another way to tell the VM to simply use the default size.

■ The stack size parameter itself must be an integer literal value and cannot be negative.
■ The directive cannot appear in a single script file more than once. Multiple occurrences

of the directive should produce an error.

Func
Perhaps the most important directive is Func, because it’s the primary method of organization
within a script. All code in a script must reside in a function; any code found in the global scope
will cause an error. Remember, of course, that the term code only refers to instructions. Certain
directives, like Var for instance (which I’ll cover next), can be found both inside and outside of
functions.

However, a script that consists solely of user-defined functions won’t do anything when executed;
just like a C program with no main (), none of a script’s functions will execute if they aren’t
explicitly called. Usually this is desirable, because most of the time you simply want to load a
script into memory and call specific functions from it when you feel necessary, rather than imme-
diately executing it (which you learned about first-hand in Chapter 6). However, it’s often impor-
tant for certain scripts to have the abil-
ity to execute automatically on their
own, without the host having to call
a specific function.

In this case, XVM scripts mirror C
somewhat in the sense that they can
optionally define a function called
_Main () that is considered the
script’s entry point. Just as a func-
tion’s entry point is the first instruc-
tion that’s executed upon its invo-
cation, a script’s entry point can be
thought of as the first function that
should be called when it begins
running. The XVM will recognize
_Main () and know to run it auto-
matically. Here’ an example:
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; This function will run automatically when a script is executed
Func _Main
{

; Script execution begins here
}

XASM will need to take note of whether a _Main () function was found, and set the proper flags
in the output file accordingly so as to pass the information on to the XVM. Because identifiers,
including function names, are not preserved after the assembly phase, the XVM will have no way
to tell on its own whether a given function was initially called _Main () and therefore relies on the
assembler to properly flag it.

Getting back to the Func directive in general, let’s have a look at its general structure:

Func FuncName
{

; Code
}

Functions can be passed parameters, but this is not reflected in the syntax of the function decla-
ration itself and can therefore be ignored for now. All you really need to do to ensure the validity
of a given function is make sure the general directive syntax is followed and that the function’s
name is not already being used by another function. Also, for reasons you’ll see later, the assem-
bler will automatically support alternate coding styles, such as:

Func FuncName {
; Code

}
Func FuncName { ; Code }
Func FuncName

{
; Code

}

People tend to get pretty defensive about their personal choice of placement for curly braces and
that sort of thing—and I’m no exception—so it’s always nice to respect that (even if my style is
right and you’re all doing it wrong).

Unlike languages like Pascal, functions cannot be nested. Therefore, the following will cause an
error:
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Func Super
{

; Code
Func Sub
{

; Code
}
; Code

}

The last issue in regards to Func is that Ret is not explicitly required at the end of a function. A Ret
instruction will always be appended to the end of a function (even if you put one there yourself,
not that it’d make a difference), to save the user having to add it to each function manually.
Generally speaking, if you can find something that the users will have to type themselves in all
cases, you might as well let them intentionally omit it so the assembler or compiler can add it
automatically.

Var/Var []
The Var directive is used to declare variables. The directive itself is independent of scope, which
means it can be placed both inside and outside of functions. Any instance of Var found inside a
function (even the special _Main () function) will be local to that function only. Var declarations
outside of functions, however, are used to declare globals that can be referenced automatically
inside any function.

The syntax of the simple Var directive is as follows:

Var VarName

Unlike a lot of languages, I’ve chosen to keep things simple, so Var cannot be used to declare a
comma-delimited series of varaibles, like this:

Var X, Y, Z

Instead, they must be declared one at a time, like this:

Var X
Var Y
Var Z

The naming rules of variables are the same as functions; no two variables, regardless of scope, can
share the same identifier. Notice that last comment I made; unlike languages like C, which let
you “shadow” global variables by declaring locals with the same name, XVM Assembly prevents
this. This is just another way to keep things simple. Of course, this doesn’t mean that two vari-
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ables in two different functions can’t use the same identifier; that’d be silly. Perhaps I should
phrase it this way: no two variables within the same or overlapping scope can share a name.

Var also has a modified form that can be used to declare arrays, which has the following syntax:

Var ArrayName [ ArraySize ]

All variable and array declarations in XtremeScript are static, however, which means that only a
constant can be used in place of ArraySize. Attempting to use a variable as the size of the array
should cause an error. Because arrays are always referenced with [] notation, it would be possible
to allow variables and arrays to share certain names. For example, it’s easy to tell the following
apart:

Var    X
Var    X [ 16 ]
Mov    X, "Hello!"
Mov    X [ 2 ], X

The X array is always followed by an open-bracket, whereas the X variable is not. However, it’s yet
another complexity you don’t really need, so you will treat all variables and arrays the same way
when validating their names.

When a Func block is being assembled, the number of Var directives found within its braces is used
to determine the total size of the function’s local data. Take the following function for example:

Func MyFunc
{

Var    X
Var    Y
Var    MyArray [ 16 ]

}

The two Var instances mean you have two local variables, and the single Var [] instance declares a
single local array of 16 elements. “Local data” is defined as the total sum of variables and arrays a
given function declares, and therefore, this function’s local data size is 18 stack elements. Just to
recap what you learned earlier, this means that X will refer to index -2, Y will be -3, and MyArray [
0 ] through MyArray [ 15 ] will represent indices -4 through -19. (Remember, XASM and XVM
expect all local data to start at index -2, rather than -1).

Variable declarations, like most directives, will be assessed during the first pass over the source,
which means that forward references will be possible. In other words, the following code frag-
ment is acceptable:

Mov    X, 128.256
Var    X
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I strongly advise against this for two reasons, however:

■ The code is far less readable, especially if there’s a considerable amount of code between
the variable’s reference and its declaration. Although forward referencing is a must for
line labels, it’s in no way required with variables.

■ It’s generally good practice to declare all variables before code anyway, or at least declare
variables before the block of code in which they’ll be used.

Given a choice between the two, I’d personally rather the language not support forward variable
references at all, but as we’ll soon see, it’s actually easier to allow them—you’d have to go out of
your way to stop them, and because the goal here is to keep things nearly as simple as possible,
let’s leave it alone for now.

Param
The Param directive is similar to Var in that it assigns a symbolic name to a relative stack index.
Unlike Var, however, Param doesn’t create any new space; rather, it simply references a stack ele-
ment already pushed on by the caller of a function and is therefore used to assign names to
parameters. Because of this, Param can only appear inside functions; there’s no such thing as a
“global parameter” and as such, any instance of Param found in the global scope will cause an
error. Lastly, Param cannot be used to declare arrays, so Param [], regardless of the scope it’s found
in, will cause an error as well.

Just for completeness, Param has the following syntax:

Param ParamName

Param also plays a pivotal role when processing a Func block. Just as the number of Var instances
could be summed to determine the total size of the function’s local data, the number of Params
can be added to this number, along with an additional element to hold the return address, to
determine the complete size of the function’s stack frame. As an example, let’s expand the func-
tion from the last section to accept three parameters:

Func MyFunc
{

; Declare parameters
Param  U
Param  V
Param  W
; Declare local variables
Var    X
Var    Y
Var MyArray [ 16 ]

9. BUILDING THE XASM ASSEMBLER
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; Begin function code
Mov    MyArray [ 0 ], U
Mov    MyArray [ 1 ], V
Mov    MyArray [ 2 ], W

}

This function is now designed to accept three parameters. This means that, in addition to the sin-
gle stack element reserved for the return address, as well as the 18 stack elements worth of local
data, the total size of this function’s stack frame at runtime will be 3 + 1 + 18 = 22 elements.

Use of the Param directive is required for any function that accepts parameters. Due to the syntax of
XVM Assembly, there’s no other way to perform random access of the stack, which means param-
eters will be inaccessible unless the function assigned names to the parameter’s indices within the
stack using Param.

Also worth noting is the relationship between the number of Param directives found in a function,
and the number of parameters Pushed onto the stack by the caller. Unlike higher level languages
like C and even XtremeScript, there’s no way to enforce a specific function prototype on callers;
the callers simply push whatever they want onto the stack and use Call to invoke the function. If
the caller pushes too many parameters onto the stack, meaning, the number of elements pushed
on is greater than the number of Param directives, nothing serious should occur; the function sim-
ply won’t reference them, and the stack space will be wasted. However, if too few values are
pushed onto the stack, references to certain parameters will return garbage values (because
they’ll be reading from below the stack frame, and therefore reading from the caller’s local data).
This in itself is not a huge problem, but serious consequences may follow when the function
returns. Because functions automatically purge the stack of their stack frame, the function will
inadvertently pop off part of the caller’s local data as well, because the supplied stack frame was
smaller than expected. In short, always make sure to call functions with enough parameters to
match the number expected.

Lastly, the order of Param directives is important. For example, imagine you’d like to use the fol-
lowing XtremeScript-style prototype in XVM Assembly:

Func MyFunc ( U, V, W );

The assembly version of the function must declare its parameters in either the same order or the
exact reverse order:

Func MyFunc
{

Param U
Param V
Param W

}
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The stack indices will be assigned to the parameter names in the order they’re encountered,
which explains why it’s so important. Note, however, that I implied you might want to list the
parameters in reverse order, like this:

Func MyFunc
{

Param W
Param V
Param U

}

This is actually preferable to the first method, because it allows the caller to push the parameters
onto the stack in U, V, W order rather than forcing the W, V, U order. Check out Figure 9.12 to
see this difference depicted graphically.
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Identifiers
With all this talk of functions, variables, and parameters, you should make sure to define a given
standard by which all identifiers should be named. Like most languages, let’s make it simple and
say that all identifiers must consist of letters, numbers, and underscores, and can’t begin with a
number.

Also, unlike most languages, everything in XVM Assembly, namely identifiers, is case-insensitive. I
personally don’t like the idea of case sensitivity; the only real advantage I can see is being able to
explicitly differentiate between two variables named like this:

Mov MyVar, myVar
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And this is just bad practice. The two names are so close that you’re only going to end up confus-
ing yourself, so I’ve taken it out of the realm of possibilities altogether.

Instructions
Despite the obvious importance of directives, instructions are what you’re really interested in.
Because they ultimately drive the output of machine code, instructions are the “meat” of the
script and are also the most complex aspects of translating a source script to an executable.

The XVM instruction set is of a decent size, but despite its reasonable diversity, each instruction
still follows the same basic form:

Mnemonic Operand, Operand, Operand

Within this form there’s a lot of leeway, however. First of all, an instruction can have anywhere
from 0-N operands, which means the mnemonic alone is enough in the case of zero-parameter
instructions. Also, you’ll notice that I generally put more space between the mnemonic and the
first operand than I do between each individual operand. It’s customary to put one or two tab
stops between the mnemonic and its operand list so that operands always line up on the same
column. Operands are also subject to convention; like in C, I always put a single space between
the trailing comma of an operand and the following operand. However, none of these is directly
enforced, so the following instruction:

Mov    X, Y

Can also be written in any of the following ways:

Mov X, Y
Mov               X,Y
Mov X     ,Y

and so forth.

However, unlike C, you’ll notice a lack of a semicolon after each line. This means that instruc-
tions must stay within the confines of a physical line; no multi-line instructions are allowed. Also,
there must exist at least one space or tab between the instruction mnemonic and the operand
list, but operands themselves can be entirely devoid of whitespace because ultimately it’s only the
commas that separate them.

Instructions and the general format of their operands is the easy part. The real complexity
involved in parsing an instruction is handling the operands properly. As you learned, there are a
number of strongly differing operand types that all must be supported by the parser. Depending
on which operand types are supported, at least, the instruction parser needs to be ready for any
of the following:
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■ Integer and floating-point literals. Integer literals are defined as strings of digits, optional-
ly preceded by a negative sign. Floats are similar, although they can additionally contain
one (and only one) radix point. Exponential notation and other permutations of float-
ing-point form are not supported, but can be added rather easily.

■ String literals. These are defined simply as any sequence of characters between two dou-
ble quotes, like most languages. The string literal also supports two escape sequences; \",
which embeds a double quote into the string without terminating it, as well as \\, which
embeds a single backslash into the string. Remember that single backslashes cannot be
directly used because they’ll inadvertently register an escape sequence, which will most
likely be incorrect. The general rule is to always use twice as many backslashes as you
actually need to ensure that escape sequences aren’t accidentally triggered.

■ Variables. These can be found in two places—either as the entire operand, or as the
index in an array operand.

■ Array Indices. Arrays can be found as operands in two forms: those that are indexed with
integer literals, and those that are indexed with variables. It should be noted that arrays
cannot appear without an index. For example, an array called MyArray can only appear as
an operand as MyArray [ Index ], never as simply MyArray.

■ Line Labels, Functions, and Host API Calls. These operands are pretty much as simple
as variables; only the identifier needs to be read. A common newbie mistake, however, is
to add the colon to the line label reference like you would in the declaration. Jmp
MyLabel:, however, will cause an error because the : is not a valid identifier character
and is only used in the declaration.

Any operand list that does not contain as many operands as the instruction requires will cause an
error.

Line Labels
Line labels can be defined anywhere, but are subject to the same scope rules as variables and
arrays. Also, like the Param directive, they cannot appear outside functions. Line labels are always
declared with the following syntax:

Label:

Host API Function Calls
In addition to functions defined within the script and invoked with Call, host API functions can
be called with the CallHost instruction. CallHost works just like Call does; the only difference is
that the function it refers to is defined by the host application and exposed to the scripting sys-
tem through its inclusion in the host API.
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Everything about calling a host API function is syntactically identical to calling a script function.
You pass parameters by pushing them onto the stack, you receive return values via _RetVal, and so
on. The only major difference lies within the assembler, because you can’t just check the speci-
fied function name against an array of function information. In fact, you have to save the entire
function name string, as-is, in the executable file because you’ll need it at runtime (because the
host API’s functions will not be known at assemble-time). Figure 9.13 illustrates this.

XASM OVERVIEW
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Host API function calls being preserved until runtime.

The only real check you can do at assemble-time is make sure the function name string is a valid
identifier—in other words, that it consists solely of letters, numbers, and digits, and does not
begin with a number.

The _Main () Function
As mentioned, scripts can optionally define a _Main () function that contains code that is auto-
matically executed when the script is run. Scripts that do not include this function are also valid,
as they’re usually just designed to provide a group of functions to the host application, but nei-
ther type of script may include code in the global scope.

Aside from its ability to run automatically and that Param directives are not allowed, the _Main ()
function does not have any other special properties. Also, for reasons that you’ll learn of soon,
the _Main function must be appended with an Exit instruction (as opposed to Ret, like other func-
tions). This ensures that the script will end properly when _Main () returns.

The _RetVal Register
_RetVal is a special type of operand that can be used in all the same places as variables, arrays, or
parameters can be used. You can store any type of variable in it at any time, and use it in any
instruction where such an operand would be valid. However, because _RetVal exists permanently
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in the global scope, its value isn’t changed or erased as functions are called and returned; this is
what makes it so useful for returning values.

Comments
Lastly, let’s talk about comments. Comments are somewhat flexible in XVM Assembly, in the
sense that they can easily appear both on their own lines, or can follow the instruction on a line
of code. For example:

; This is a comment.
Mov    X, Y        ; So is this.

Comments are approached in a simple manner; as the assembler scans through the source file,
each line is initially preprocessed to strip any comments it contains. This means the code that
actually analyzes and processes the source code line doesn’t even have to know comments exist,
making the code cleaner and easier to write. Because of this, comments have very little impact on
the code overall. Because they’re immediately stripped away before you have much of a chance to
look at them, you can almost pretend they don’t exist.

One drawback to comments, however, is that multi-line comments are not supported. Only the
single-line ; comment is recognized by XASM.

A Complete Example Script
That’s pretty much all you’ll need to know to prepare for the rest of the chapter. Now that I’ve
discussed every major aspect of a script file, you’re ready to move on. Before you do, however, it’s
a good idea to solidify your knowledge by applying everything to a simple example script that
demonstrates how things will appear in relation to one another:

; Example script

; Demonstrates the basic layout of an XVM
; assembly-language script.

; ---- Globals ------------------------------------------------

Var    GlobalVar
Var    GlobalArray [ 256 ]
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; ---- Functions ----------------------------------------------

; A simple addition function
Func MyAdd
{

; Import our parameters
Param   Y
Param   X
; Declare local data
Var    Sum
Mov    Sum, X
Add    Sum, Y
; Put the result in the _RetVal register
Mov    _RetVal, Sum
; Remember, Ret will be automatically added

}

; Just a bizarre function that does nothing in particular
Func MyFunc
{

; This function doesn't accept parameters
; But it does have local data
Var    MySum
; We're going to test the Add function, so we'll
; start by pushing two integer parameters.
Push   16
Push   32
; Next we make the function call itself
Call   MyAdd
; And finally, we grab the return value from _RetVal
Mov    MySum, _RetVal
; Multiply MySum by 2 and store it in GlobalVar
Mul    MySum, 2
Mov    GlobalVar, MySum
; Set some array values
Mov    GlobalArray [ 0 ], "This"
Mov    GlobalArray [ 1 ], "is"
Mov    GlobalArray [ 2 ], "an"
Mov    GlobalArray [ 3 ], "array."

}

XASM OVERVIEW
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; The special _Main () function, which will be automatically executed
Func _Main
{

; Call the MyFunc test function
Call MyFunc

}

Whew! Think you’re clever enough to write an assembler that can understand everything here,
and more? There’s only one way to find out, so let’s keep moving.

Output: Structure of an XVM
Executable
So you know what sort of input to expect, and you’ll learn about the actual processing and assem-
bly of that input in the next section. What that leaves you with now, however, are the details of
the output.

As I’ve mentioned before, XASM will directly output XVM executable files, which have the .XSE
(XtremeScript Script Executable) extension. These files are read by the XVM and loaded into
memory for execution by the host application. As such, you must make sure you output files that
follow the structure the XVM expects exactly.

I’m covering this section here because in the next section, when you actually get to work on
implementing XASM itself, it’ll be nice to have an idea of what you’re outputting so I can refer to
the various structures of the executable file without having to introduce them as well. Let’s get
started.

Overview
.XSE files are tightly-packed binary files that encapsulate assembled scripts. This means there’s no
extraneous spacing or buffering in between various data elements; each element of the file
directly precedes the last.

For the most part, data is written in the form of bytes, words and double words (1-byte, 2-byte and
4-byte structures, respectively). However, floating-point data is written directly to the file as-is
using C’s standard I/O functions, and as a result, is subject to whatever floating-point format the
C compiler for the platform it’s compiled on uses. String data is stored as an uncompressed, byte-
for-byte copy, but is preceded by a four-byte length indicator, rather than being null-terminated.
Check out figure 9.14.

The .XSE format is designed for speed and simplicity, providing a fast, structured method for
storing assembled script data in a way that can be loaded quickly and without a lot of drama.

9. BUILDING THE XASM ASSEMBLER
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Each field of the file is prefixed by a size field, rather than followed by a terminating flag of some
sort. This, for example, allows entire blocks of the file to be loaded into memory very quickly by
C’s buffered input routines in a single call. In addition to the speed and simplicity by which a file
can be loaded, the .XSE format is of course far from human-readable and thus means scripts can
be distributed with your games without fear of players being able to hack and exploit your scripts.
This can be especially beneficial in the case of multiplayer games where cheating actually has an
effect on other human players.

The following subsections each explain a separate component of the file, and are listed in order.
Figure 9.15 displays the format graphically, but do read the following subsections to understand
the details in full.

XASM OVERVIEW

Figure 9.14

Using a string-length

indicator instead of a

null terminator.

The Main Header
The first part of the file is the main header, where general information about the script is stored.
The main header is the only fixed-size structure in the file, and is described in Table 9.2 and
Figure 9.16.

In a nutshell, this header structure contains all of the basic information the XVM will need to
handle the script once it’s loaded. The ID string is a common feature among file formats; it’s the
quickest and easiest way to identify the incoming file type without having to perform complex
checks on the rest of the structure. This is always set to "XSE0". The version field allows you to

Figure 9.15

An overview of the

.XSE executable 

format.
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Table 9.2  XSE Main Header
Name Size (in Bytes) Description

ID String 4 Four-character string containing the
.XSE ID,“XSE0”

Version 2 Version number (first byte is major, sec-
ond byte is minor)

Stack Size 4 Requested stack size (set by
SetStackSize directive; 0 means use
default)

Global Data Size 4 The total size of all global data

Is _Main () Present? 1 Set to 1 if the script implemented a
_Main () function, 0 otherwise.

_Main () Index 4 Index into the function table at which
_Main () resides.

Figure 9.16

The main header.

specify up to two digits worth of version information, in Major.Minor format. The nice thing about
this is that your VM can maintain backwards compatibility with old scripts, even if you make radi-
cal changes to the file format, because it’ll be able to recognize “legacy” executables. For now
you’re going to set this for version 0.4. The stack size field, of course, is directly copied from the
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SetStackSize directive, and defaults to zero if the directive was not present in the script. Following
this field is the size of all global data in the program, which is collected incrementally during the
assembly phase. Lastly, we store information regarding the _Main () function-- the first is a 1-byte
flag that just lets us know if it was present at all. If it was, the following field is its 4-byte index into
the function table.

The Instruction Stream
The instruction stream itself is the heart of the executable; it of course represents the logic of the
script in the form of assembled bytecode. The instruction stream itself is a very simple structure;
it consists of a four-byte header that specifies how many instructions are found in the stream
(which means you can assemble up to 2^32 instructions total, or well over 4 billion), followed by
the actual stream data.

The real complexity lies in the instructions and their representation within the stream. As you
learned, encoding an instruction involves a number of fields that help delimit and describe its
various components. The instruction stream overall can be thought of as a hierarchical structure
consisting of a simple sequence of instructions at its highest level. Within each instruction you
find an opcode and an operand stream. Within the operand stream is the operand count fol-
lowed by the operands themselves. Within each operand you find the operand type, followed by
the operand data. Phew! Tables 9.3-9.6 summarize the instruction stream and its various levels of
detail.

Overall this might come across as a complex structure, but it’s honestly quite simple; just work
your way through it slowly and it should all make sense. Check out Figure 9.17 for a visual repre-
sentation of a sample instruction stream.

XASM OVERVIEW

Table 9.3  The Instruction Stream Structure
Name Size (in Bytes) Description

Size 4 The number of instructions in the stream (not
the stream size in bytes)

Stream N A variable-length stream of instruction 
structures
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Table 9.4  The Instruction Structure
Name Size (in Bytes) Description

Opcode 2 The instruction’s opcode, corresponding
to a specific VM action

Operand Stream N Contains the instruction’s operand data

Table 9.5  The Operand Stream Structure
Name Size (in Bytes) Description

Size 1 The number of operands in the stream
(the operand count)

Stream N A variable-length stream of operand
structures

Table 9.6  The Operand Structure
Name Size (in Bytes) Description

Type 1 The type of operand (integer literal, vari-
able, and so on)

Data N The operand data itself, which can be any
size
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Operand Types
The last issue regarding the instruction stream is one of the various operand types the operands
can assume. In addition to the code for each type, you also need to know what form the operand
data itself will be found in. Let’s first take a look at the operand type codes themselves, found in
Table 9.7.

You’ll notice this list differs slightly from the more theoretical version discussed earlier. This one,
however, is more suited towards the specific assembly language and virtual machine. Each value
in the Code column of the table refers to the actual value you’ll find in the operand type field.

Some of these fields may be a bit confusing, so let’s run through them real quick. First up are the
literal values; integer, float, and string. Integers and floats will be written directly into the
instruction stream, so they’re nothing to worry about. String literals, however, as you learned ear-
lier, are only indirectly represented within the stream. Instead of stuffing the string itself in the
operand data field, you use a single integer index that corresponds to a string within the string
table (which I’ll discuss in more detail later).

Beyond literal values are stack indices, which are used to represent variables in the assembled
script. Stack indices come in two forms; one is an absolute stack index, which is a single signed inte-
ger value that should be used to read from the stack. As usual, negative values mean the index is
relative to the top of the stack (local), whereas positives mean the index is relative to the bottom
(global). An absolute stack index is used for representing single variables mostly, but is also used
for arrays when the index of the array is an integer literal. As you know, if an array called MyArray
[] begins at stack index -8 (known as the array’s base address), MyArray [ 4 ] is simply the base
address plus 4. -8 + 4 = -4, so MyArray [ 4 ] can be written to the instruction stream simply as -4.
The VM doesn’t need to know an array was ever even involved; all it cares about is that absolute
stack index. From the VM’s perspective, creating MyArray [ 4 ] is no different than manually cre-
ating MyArray0, MyArray1, MyArray2 and MyArray3 as separate, single variables.

Relative stack indices are slightly more complex, and are only used when an array is indexed with a
variable. If the assembler encounters MyArray [ X ], it can’t tell what the final stack index will be

XASM OVERVIEW

Figure 9.17

A sample instruction stream.

Note the hierarchical nature of

the structure; an instruction

stream contains instructions,

which (in addition to the

opcode) contain operands,

which in turn contain operand

types and operand data fields.
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because the value of X won’t be known until runtime. So, you instead write the base address of
MyArray [] to the file, followed by the stack index at which X resides, so that the VM can add the
value of X to MyArray []’s base address at runtime and find the absolute index. I know this can all
come across as complicated, but remember—it’s just one level of indirection, which is easy to fol-
low as long as you go slowly. Check out Figure 9.18 for a visual.

You’re out of the woods with stack indices, which brings you to the next two codes. The
Instruction Index code means the operand contains a single integer value that should be treated
as an index into the instruction stream. So, if a line label resolves to instruction 512, and you
make a jump to that label, the operand of that jump instruction will be the integer value 512.

9. BUILDING THE XASM ASSEMBLER

Table 9.7  Operand Type Codes
Code Name Description

0 Integer Literal An integer literal like 256 or -1024.

1 Floating-Point Literal A floating-point value like 3.14159 or -987.654.

2 String Literal Index An index into the string table representing a
string literal value.

3 Absolute Stack Index A direct index into the stack, like -6 (relative to
the top) or 8 (relative to the bottom). Direct
stack indices are used for both variables and
arrays indexed with a literal value.

4 Relative Stack Index A base index into the stack that is offset by the
contents of a variable’s value at runtime. Used for
arrays indexed with variables.

5 Instruction Index An index into the instruction stream, used as
jump targets.

6 Function Index An index into the function table, used for func-
tion calls via Call.

7 Host API Call Index An index into the host API call table, used for
host API calls via CallHost.

8 Register Code specifying a specific register (currently used
only for _RetVal).
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The Function Index code is similar, and is used as the operand for the Call instruction. Rather
than provide a direct instruction index to jump to, however, a function index refers to an ele-
ment within the function table, which I’ll discuss in detail later.

Similar to the Function Call Index is the Host API Call Index. Because the names of the host
API’s functions aren’t known until runtime, you need to store the name string itself in the exe-
cutable file for use by the VM. The host API call table collects the function name operands
accepted by the CallHost instruction and saves them to be dumped into the executable file. Much
like string literals, these function name strings are then replaced in the instruction stream with an
index into the table.

The last operand type is Register. The Register type uses a single integer code to specify a certain
register as an operand, usually as the source or destination in a Mov instruction. You’ll remember
from the last chapter that your VM won’t need any registers, with the exception of _RetVal.
_RetVal, used for returning values from functions, is the only register the XVM needs or offers and
is therefore specified with code 0. I have, however, allowed for the possibility of future expansion
by implementing it this way; if you ever find a need for a new register, you can simply add another
code to this operand type, rather than hard-coding new registers in separate operand types.

The String Table
The string table is a simple structure that immediately follows the instruction stream and contains
all of a script’s string literal values. The indices of this table are implicit; in other words, the strings
are purposely written out to the table in their proper order, so the string corresponding to index
4 will be the fourth string found in the table, the string corresponding to index 12 will be the
twelfth, and so on.

The string table is one of the simpler parts of an .XSE file. It consists of a four-byte header con-
taining the number of strings in the table. The string data itself immediately follows; each string
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in the table is preceded by its own individual four-byte header specifying the string length. The
string length is then followed by the string’s characters. Note that the strings are not padded or
aligned in any way; if a string’s header contains the value 37, the string is exactly 37 characters
(not including a null-terminator, because it’s not needed here), which in turn means that the
next string begins immediately after the 37th character is read. Tables 9.8 and 9.9 outline the
string table in its entirety.

Check out Figure 9.19 for a visual layout of the table.
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Table 9.8  The String Table Structure
Name Size (in Bytes) Description

Size 4 The number of strings in the table (not the
total table size in bytes)

Strings N String data

Table 9.9  The String Structure
Name Size (in Bytes) Description

Size 4 The number of characters in the string

Characters N Raw string data itself (not null terminated)

Figure 9.19

A sample string table.
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The Function Table
The function table is the .XSE format’s next structure and maintains a profile of each function in
the script. Each element of the table contains the function’s entry point (the index of its first
instruction), the number of parameters it takes, and the total size of its local data. This informa-
tion is used at runtime to prepare stack frames, for example.

As you can see, the total size of the function’s stack frame can be derived from this table, by
adding the Parameter Count field to the Local Data Size and adding one to make room for the
return address. The XVM will use this calculated size to physically create the stack frame as the
function is called. This is partially why you can’t simply use an instruction index as the operand
for a Call instruction—the VM needs this additional information to properly facilitate the func-
tion call. Lastly, of course, the Entry Point field is used to make the final jump to the function
once the stack frame has been prepared.

XASM OVERVIEW

Table 9.10  The Function Table Structure
Name Size (in Bytes) Description

Size 4 The number of functions in the table.

Functions N Function data.

Table 9.11  The Function Structure
Name Size (in Bytes) Description

Entry Point 4 The index of the first instruction of the
function.

Parameter Count 1 The number of parameters the function
accepts.

Local Data Size 4 The total size of the function’s local data
(the sum of all local variables and arrays).
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The _Main () function is also contained in this table, and is always stored at index zero (unless
the script doesn’t implement _Main (), in which case index zero can be used for something else).
The main header of the .XSE file contains a field that lets the VM know whether the _Main ()
method is present. Note also that the _Main () method will always set the Parameter Count field
to zero, because it cannot accept parameters.

Take a look at Figure 9.20, which illustrates the function table.
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Figure 9.20

A sample function

table.

The Host API Call Table
As was mentioned, the names of host API functions are not known at runtime. Therefore, you
must collect and save the strings that compose the function name operand accepted by the
CallHost instruction, because the XVM will need them in order to bind host API function calls
with the actual host API functions. This is a process called late binding.

The Host API Call Table is much like the string literal table; it’s simply an array of strings with
implicit indices that the instruction stream makes references to. Tables 9.12 and 9.13 list the table
and its elements in detail:

Table 9.12  The Host API Call Table Structure
Name Size (in Bytes) Description

Size 4 The number of host API calls in the table
(not the total table size in bytes)

Host API Calls N Host API calls
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That’s basically it. Aside from maybe the instruction stream, which gets a bit tricky, the .XSE for-
mat overall is a simple and straightforward structure for storing executable scripts. It’s an easy
and clean format to both read and write, so you shouldn’t have much trouble working with it.
Despite its simplicity, however, it’s still quite powerful and complete, and will serve you well.
Regardless, it’s also designed to be expanded, as the built-in version field will allow any changes
you make to seamlessly merge with your existing code base. Multiple script versions can certainly
co-exist peacefully as long as they can identify themselves properly to the XVM at load-time.

Once again, to help solidify your understanding of the format, is a graphical representation of a
basic .XSE file in Figure 9.21.

IMPLEMENTING THE ASSEMBLER

Table 9.13  The Host API Call Structure
Name Size (in Bytes) Description

Size 1 The number of characters in host API func-
tion name

Characters N The host API function name string (not null
terminated)

Figure 9.21

Another graphical view

of the .XSE file, now

that you understand 

all of its fields and

components.

IMPLEMENTING THE ASSEMBLER
You now understand the type of input you can expect, and you’ve got a very detailed idea of what
your output will be like. Between these two concepts lies the assembler itself, of course, which
translates the input to the output in the first place. At this point you have enough background
knowledge on the task at hand to get started.
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Before moving on, I’d like to say that what you’re about to work on is going to be your first real
taste of compiler theory. I discussed some of these principals in a much more simplistic manner
back in the command-based language chapters, but what you’re about to build is far more com-
plex and a great deal more powerful. The scripts you’ll be able to write with this program can do
almost anything a C-style language can do (just without the C-style syntax), but that kind of flexi-
bility brings with it a level of internal complexity you’re just beginning to understand. I’m going
to explain things reasonably slowly, however, so you should be fine as long as you stay sharp and
don’t rush it.

In a nutshell, the assembler’s job is to open an input file, convert its contents, and write the
results to an output file. Obviously, the majority of this process is spent in the middle phase; con-
verting the contents. This will be a two-pass process, wherein the first pass scans through the file
and collects general information about the script based on directives and other things, and the
second pass uses that information to facilitate the assembly of the code itself. To actually explain
this process I’m going to switch back and forth between top-down and bottom-up approaches,
because it helps to first introduce the basic theory in a bottom-up fashion, and then cover the
program itself from a top-down perspective.

Basic Lexing/Parsing Theory
Technically, the principals behind building this assembler will correspond strongly with the
underlying field of study known as compiler theory. Compiler theory, as the name suggests, con-
cerns itself with the design and implementation of language processors of all sorts, but namely
the high-level compilers used to process languages like C, C++, and Java. These general concepts
can be applied to any sort of language interpretation and translation, which means it wouldn’t be
a bad idea to just teach you the stuff now.

However, as you’d suspect, compiler theory is a rough subject that can really chew you up and
spit you out if you don’t approach it with the right preparation and frame of mind. Furthermore,
despite its relative difficulty, it just flat-out takes a long time to cover. This is the only chapter
you’re going to spend on the construction of XASM, so there’s just no room for a decent compil-
er theory primer either way.

Fortunately, you can get by without it. The type of translation you’ll be doing as you write XASM
is so minimal by comparison to the translation of a language like C, that you can easily make do
with an ad-hoc, bare minimum understanding. Don’t worry though, because you’re only a few
chapters away from the section of the book that deals with the construction of the XtremeScript
compiler. That’s where I’ll wheel out the big guns, and you’ll learn intermediate compiler theory
the right way (you’ll need it, too). Until then, I’ll keep it simple.

This section, then, will proceed with highly simplified discussions of the two major techniques
you’ll be employing in the implementation of XASM—lexing and parsing. Together, these two

9. BUILDING THE XASM ASSEMBLER
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concepts form the basis for a language processor capable of understanding, validating, and trans-
lating XVM Assembly Language.

Lexing
To get things started, let’s once again consider the Add function, a common example throughout
the last two chapters:

Func MyAdd
{

Param  X                 ; Assign names to the two parameters
Param  Y
Var    Sum               ; Create a local variable for the sum
Mov    Sum, X            ; Perform the addition
Add    Sum, Y
Mov    _RetVal, Sum      ; Store the sum in the _RetVal register

}

To humans it’s simple, but it seems like it’d be pretty complicated for a piece of software to some-
how understand it, right? This is true; being able to scan through this block of code, character by
character, and manage to do everything an assembler does is complicated. But like most compli-
cated things, it all starts with the basics.

The first thing to understand is that not everything the assembler is going to do overall will be
done at once. Language processors almost invariably work in incremental phases, wherein each
phase focuses on a small, reasonably simple job, thus making the job of the following phase even
simpler. Together these phases form a pipeline, at each stage of which the source is in a progres-
sively more developed, validated, or translated form.

Generally speaking, the first phase when translating any language is lexical analysis. Lexical analy-
sis, or lexing for short, is the process of breaking up the source file into its constituent “words”.
These “words”, in the context of lexing, are known as lexemes. For example, consider the following
line of code:

Mov    Sum, X             ; Perform the addition

This line contains four separate lexemes; Mov, Sum, , (the comma), and X (note that the white-
space and comments are automatically stripped away and do not count). Already you should see
how much easier this makes your task. Right off the bat, the lexer allows the users to fill their
code with as much whitespace and commenting as they want, and you never have to know about
it. As long as the lexer can filter this content out and simply provide the lexemes, you get each
isolated piece of code presented in a clean, clutter-free manner. But the lexer does a lot more
than just this.

IMPLEMENTING THE ASSEMBLER



458

The unfiltered source code, as it enters your assembler’s processing pipeline, is called a character
stream, because it’s a stream of raw source code expressed as a sequence of characters. Once it
passes through the first phase of the lexer, it becomes a lexeme stream, because each element in the
stream is now a separate lexeme. Figure 9.22 helps visualize this.
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Figure 9.22

A character stream

becoming a lexeme

stream.

In addition to isolating and extracting lexemes, the real job of the lexer is to convert the lexeme
stream to a token stream. Tokens, unlike lexemes, are not strings at all; rather, they’re simple codes
(usually implemented as integers) that tell you what exactly the lexeme is. For example, the line
of code used in the last example, after being converted to a lexeme stream, looks like this (note
that for simplicity, everything is converted to uppercase by the lexer):

MOV SUM , X

The new stream of lexemes is indeed easier to process, but take a look at the token stream (each
element in the following stream is actually a numeric constant):

TOKEN_TYPE_INSTR TOKEN_TYPE_IDENT TOKEN_TYPE_COMMA TOKEN_TYPE_IDENT

Just for reference, it might be easier to mentally process the token stream when it’s listed 
vertically:

TOKEN_TYPE_INSTR
TOKEN_TYPE_IDENT
TOKEN_TYPE_COMMA
TOKEN_TYPE_IDENT

Do you understand what’s happened here? Instead
of physically dealing with the lexeme strings them-
selves, which is often only of limited use, you can
instead just worry about the token type. As you can
see by looking at the original line of code, the token
stream tells you that it consists of an instruction
(TOKEN_TYPE_INSTR), an identifier, (TOKEN_TYPE_IDENT),

NOTE
Technically, lexers and tokenizers
are two different objects, but they
work so closely together and are
so similar that they’re usually
referred to and even implemented
as a singular object.
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a comma, (TOKEN_TYPE_COMMA), and finally another identifier. These tokens of course directly cor-
respond to Mov, Sum, ,, and X, respectively. This process of turning the lexeme stream into a token
stream is known as tokenization, and because of this, lexers are often referred to as tokenizers.

Without getting into the nitty gritties, I can tell you that the lexer is one of the easier parts of a
compiler (or assembler) to build. Yet, as you can see, its contribution to the overall language-pro-
cessing pipeline is considerable. After only the first major stage of translation, you can already
tell, on a basic level, what the script is trying to say. Of course, simply converting the character
stream to a token stream isn’t enough to understand everything that’s going on. To do this, you
must advance to the next stage of the pipeline.

Parsing
The parser immediately follows the lexer and tokenizer in the pipeline, and has a very important
job. Given a stream of tokens, the parser is in charge of piecing together its overall meaning
when taken as a collective unit. So, although the tokenizer is in charge of breaking down the
source file from a giant, unruly string of characters to a collection of easy-to-use tokens, the pars-
er takes those tokens and builds them back up again, but into a far more structured view of the
overall source code. See Figure 9.23.
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The parser uses tokens

and lexemes to deter-

mine what the source

code is trying to say.

There are many approaches to parsing, and building a parser is easily one of the most complex
aspects of building a compiler. Fortunately, certain methods of parsing are easier than others,
and the easy ones can be applied quite effectively to XASM.

In this chapter, you won’t have to worry about the fine points of parsing theory and all the vari-
ous terms and concepts that are associated with it. Rather, you’re going to take a somewhat brute-
force approach that, although not necessarily as clever as some of the methods you’ll find in a
compiler theory textbook, definitely get the job done in a clean, highly structured, and, dare I
say, somewhat elegant manner.

In a nutshell, the parser will read groups of tokens until it finds a pattern between them that 
indicates the overall purpose of that particular token group. This process starts by reading in a
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single token. Based on this initial token’s type, you can predict what tokens should theoretically
come next, and compare that to the actual token stream. If the tokens match up the way you
think they do, you can group them as a logical unit and consider them valid and ready to assem-
ble. Figure 9.24 illustrates this.
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Figure 9.24

Each initial token

invokes a different

parsing sequence.

I think an example is in order. Imagine a new fragment of example code:

Func MyFunc {

As you can see, this is the beginning of a function declaration. It’s cut off just before the func-
tion’s code begins, because all you’re worried about right now is the declaration itself. After the
lexer performs its initial breakdown of the character stream, the tokenizer will go to work exam-
ining the incoming lexemes and convert them to a token stream. The token stream for the previ-
ous line of code will consist of:

TOKEN_TYPE_FUNC
TOKEN_TYPE_IDENT
TOKEN_TYPE_OPEN_BRACKET

Notice that you can reserve an entire token simply for the Func directive. This is common among
reserved words; for example, a C tokenizer would consider the if, while, and for keywords to
each be separate tokens. Anyway, with the tokens identified, the parser will be invoked and the
second step towards assembly will begin.

The parser begins by requesting the first token in the stream from the tokenizer, which will
return TOKEN_TYPE_FUNC. Based on this, the parser will immediately realize that a function declara-
tion must be starting. This is how you predict which tokens must follow based on the first one
read. Armed with the knowledge of XVM Assembly, you know that a function declaration consists
of the Func keyword, an identifier that represents the function’s name, and the open bracket 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



461

symbol. So, the following two tokens must be TOKEN_TYPE_IDENT and TOKEN_TYPE_OPEN_BRACKET. If
either of these tokens is incorrect, or if they appear in the wrong order, you’ve detected a syntax
error and can halt the assembly process to alert the users. If these two tokens are successfully
read, on the other hand, you know the function declaration is valid and can record the function
in some form before moving on to parse the next series of tokens.

Check out the following pseudo-code, which illustrates the basic parsing process for a function
declaration:

Token CurrToken = GetNextToken ();   // Read the next token from the stream
if ( CurrToken == TOKEN_TYPE_FUNC )  // Is a function declaration starting?
{

if ( GetNextToken () == TOKEN_TYPE_IDENT ) // Look for a valid identifier
{

string FuncName = GetCurrLexeme (); // The current lexeme is the
// function name, so save it

if ( GetNextToken () != TOKEN_TYPE_OPEN_BRACKET ) // Make sure the open
// bracket is present

{
Error ( "'{' expected." );

}
Error ( "Identifier expected." );

}
}
// Check for remaining token types...

The code starts by reading a single token from the stream using GetNextToken (). It then deter-
mines whether the token’s type is TOKEN_TYPE_FUNC. If so, it begins the code that parses a function
declaration, which consists of reading and validating the identifier (function name) and then
ensuring the presence of the open bracket. If a valid identifier is found, it’s saved to the string
variable FuncName.

Remember, the token itself is not the function name; the token is simply a code representing the
type of the current lexeme (in this case, an identifier). The lexeme itself is what you want to copy,
because it’s the actual string containing the function’s name. Therefore, you use the function
GetCurrLexeme () to get the lexeme associated with the current token (which you got with
GetNextToken ()). If the token associated with the function name lexeme is not of type
TOKEN_TYPE_IDENT, it means a non-identifier lexeme was read, such as a number or symbol (or
some other invalid function name). In this case, you use the Error () function to report the error
that an identifier was expected. If an identifier was found, you proceed to verify the presence of
the open bracket token, and use Error () again to alert the users that the open bracket was
expected if it’s not found.
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Hopefully this has helped you understand the general process of parsing. Along with lexing and
tokenization, you should at least have a conceptual idea of how this process works. Once you’ve
properly parsed a given group of tokens, you’re all set to translate it. After parsing an instruction,
for example, you use the instruction lookup table to verify its operands and convert it to machine
code. In the case of directives like Func, you add a new entry to the function table (which, if you
recall, stores information on the script’s functions, like their entry points, parameter counts, and
local data sizes).

With the basic idea behind lexing, parsing, and ultimately translation under your belt, let’s move
forward and start to learn how these various concepts are actually implemented.

Basic String Processing
As you should already be able to tell simply by looking at the last few examples, the process of
translating assembly source to machine code will involve massive amounts of string processing.
Especially in the case of the lexer and tokenizer, almost everything you do will involve the analy-
sis, manipulation, or conversion of string data. So, before you take another step forward, you
need to make a quick detour into the world of string processing and put together a small but
vital library of functions for managing the formidable load of string processing that awaits you.

Vocabulary
You have to talk the talk in order to understand what’s going on. In the case of string processing,
there’s a small vocabulary of terms you’ll need to have under your belt in order to follow the dis-
cussion. Most of this stuff should be second nature to you, as high-level programming tends to
involve a certain amount of string processing by nature, but I’ll go over them anyway just to be
sure you’re on the same page.

The Basics
On the most basic level, as you obviously know, a string is simply a sequence of characters. Each
character represents one of the symbols provided by the ASCII character set, or whichever char-
acter set you happen to be using. Other examples include Unicode, which uses 16-bits to repre-
sent a character rather than the 8-bits ASCII uses, which gives it the ability to reference up to
65,536 unique characters as opposed to only 255. You’re of course concerning yourself only with
ASCII for now.

Substrings
A substring is defined as a smaller, contiguous chunk of a larger string. In the string "ABCDEF",
"ABC", "DEF", and "BCD" are all examples of substrings. A substring is defined by two indices: the
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starting index and the ending index. The substring data itself is defined as all characters between
and including the indices.

Whitespace
Whitespace can exist in any string, and is usually defined simply as non-visible characters such as
spaces, tabs, and line breaks. However, it is often important to distinguish between whitespace
that includes line breaks, and whitespace that doesn’t. For example, in the case of C, where state-
ments can span multiple lines, whitespace can include line breaks because the line break charac-
ter itself doesn’t have meaning. However, in the case of most assembly languages, including yours,
whitespace cannot include line breaks because the line break character is used to represent the
end of instructions.

A common whitespace operation is trimming, also known as clamping or chomping, wherein the
whitespace on either or both sides of a string is removed. Take the following string for example:

"   This is a padded string.    "

A left trim would remove all whitespace on the string’s left side, transforming it into:

"This is a padded string.    "

A right trim would remove all whitespace on the string’s right side, like this:

"   This is a padded string."

Lastly, a full trim would produce:

"This is a padded string."

Trimming is often done by or before the lexing phase to make sure extraneous whitespace is
removed early in the pipeline.

Classification
Strings and characters can be grouped and categorized in a number of ways. For example, if a
character is within the range of 0..9, you can say that string is a numeric digit. If it’s within the
range of a..z or A..Z, you can say it’s an alphabetic character. Additionally, if it’s within the range
of 0..9, a..z or A..Z, you can call it an alphanumeric, which is the union of both numeric digits
and alphabetic characters.

This sort of classification can be extended to strings as well. For example, a string consisting
entirely of characters that each individually satisfies the requirements of being considered numer-
ic digits can be considered a numeric string. Examples include “111”, “123456”, “0034870523850235”
and “6”. By prefixing a numeric string with an optional negation sign (-), you can easily extend
the class of numeric strings to signed numeric strings. By further adding the allowance of one
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radix point (.) somewhere within the string (but not before the sign, if present, and not after the
last digit), you can create another class called signed floating-point numeric strings. See figure 9.25
for a visual.
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Figure 9.25

String classification.

As you can see, this sort of classification is a useful and frequent operation when developing an
assembler or compiler. You’ll often have to validate various string types, ranging from identifiers
to floating point numbers to single characters like open brackets and double quotes. This is also
a common function when determining a lexeme’s corresponding token. Your string-processing
library will include an extensive collection of string-classification functions.

A String-Processing Library
As the assembler is written, you’ll find that what you need most frequently are string classification
functions. Substring extraction and other such operations are performed much less frequently, so
you’ll usually just hardcode them where you need them.

Let’s start small by writing up a collection of functions you can use to classify single characters.
Generally, as you work your way through the source code, you’ll need to know if a given character
is any of the following things:

■ A numeric digit (0-9).
■ A character from a valid identifier (0-9, a-z, A-Z, or _ [underscore]).
■ A whitespace character (space or tab).
■ A delimiter character (something that separates elements; braces, commas, and so on).

Generally, these characters are easy to detect. I’ll just show you the source to each function (in
actual C, because this is a much lower-level operation), because they should be pretty self-
explanatory:

// Determines if a character is a numeric digit
int IsCharNumeric ( char cChar )
{

// Return true if the character is between 0 and 9 inclusive.
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if ( cChar >= '0' && cChar <= '9' )
return TRUE;

else
return FALSE;

}

// Determines if a character is whitespace
int IsCharWhitespace ( char cChar )
{

// Return true if the character is a space or tab.
if ( cChar == ' ' || cChar == '\t' )

return TRUE;
else

return FALSE;
}

// Determines if a character could be part of a valid identifier
int IsCharIdent ( char cChar )
{

// Return true if the character is between 0 or 9 inclusive or is
// an uppercase or lowercase letter
if ( ( cChar >= '0' && cChar <= '9' ) ||

( cChar >= 'A' && cChar <= 'Z' ) ||
( cChar >= 'a' && cChar <= 'z' ) ||
cChar >= '_' )

return TRUE;
else

return FALSE;
}

// Determines if a character is part of a delimiter
int IsCharDelimiter ( char cChar )
{

// Return true if the character is a delimiter
if ( cChar == ':' || cChar == ',' || cChar == '"' ||

cChar == '[' || cChar == ']' ||
cChar == '{' || cChar == '}' ||
IsCharWhitespace ( cChar ) )
return TRUE;

else
return FALSE;

}
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Simple enough, right? Each function basically works by comparing the character in question to
either a set of specific characters or a range of characters and returning TRUE or FALSE based on
the results.

Now that you can classify individual characters, let’s expand the library to include functions for
doing the same with strings. Because these functions are a bit more complex than their single-
character counterparts, I’ll introduce and explain them individually.

Let’s first write some numerical classification functions. One immediate difference between char-
acters and strings is that there’s no differentiation between an “integer character” and a “float char-
acter”, because a numeric character is simply defined as being within the range of 0..9. With strings
however, there’s the possibility of the radix point being involved, which allows you to differentiate
between integers and floats. Let’s first see some code for classifying a string as an integer:

int IsStringInt ( char * pstrString )
{

if ( ! pstrString )
return FALSE;

if ( strlen ( pstrString ) == 0 )
return FALSE;

unsigned int iCurrCharIndex;

for ( iCurrCharIndex = 0;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( ! IsCharNumeric ( pstrString [ iCurrCharIndex ] ) &&
! ( pstrString [ iCurrCharIndex ] == '-' ) )
return FALSE;

for ( iCurrCharIndex = 1;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( pstrString [ iCurrCharIndex ] == '-' )
return FALSE;

return TRUE;
}

Essentially what you’re doing here is simple. First, you do some initial checks to make sure the
string pointer is valid and not empty. You then make an initial scan through the string to make
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sure that all characters are either numeric
digits or the negation sign. Of course, at
this stage, a number like -867-5309 would
be considered valid. So, to complete the
process, you make one more scan
through to make sure that the negation
sign, if present at all, is only the first 
character.

So you can classify integer strings, but
what about floats? Well, it’s more or less
the same principal, the only difference
being the radix point you now have to
watch for as well.

int IsStringFloat ( char * pstrString )
{

if ( ! pstrString )
return FALSE;

if ( strlen ( pstrString ) == 0 )
return FALSE;

unsigned int iCurrCharIndex;

for ( iCurrCharIndex = 0;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( ! IsCharNumeric ( pstrString [ iCurrCharIndex ] ) &&
! ( pstrString [ iCurrCharIndex ] == '.' ) &&
! ( pstrString [ iCurrCharIndex ] == '-' ) )
return FALSE;

int iRadixPointFound = FALSE;

for ( iCurrCharIndex = 0;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( pstrString [ iCurrCharIndex ] == '.' )
if ( iRadixPointFound )

return FALSE;
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else
iRadixPointFound = TRUE;

for ( iCurrCharIndex = 1;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( pstrString [ iCurrCharIndex ] == '-' )
return FALSE;

if ( iRadixPointFound )
return TRUE;

else
return FALSE;

}

Once again, you start off with the typical checks for bad strings. You then move on to make sure
the number consists solely of numbers, radix points, and negation signs. Once you know the
characters themselves are all valid, you make sure the semantics of the number are correct as
well, insomuch as there’s only one radix point and negation operator.

With the numeric classification functions out of the way, let’s move on to something a bit more
abstract—determining whether a string is whitespace. Here’s the code:

int IsStringWhitespace ( char * pstrString )
{

if ( ! pstrString )
return FALSE;

if ( strlen ( pstrString ) == 0 )
return TRUE;

for ( unsigned int iCurrCharIndex = 0;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( ! IsCharWhitespace ( pstrString [ iCurrCharIndex ] ) )
return FALSE;

return TRUE;
}
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This is a very simple function; all that’s necessary is to pass each character in the string to our pre-
viously defined IsCharWhitespace () function and exit if non-whitespace is found. One extra note,
however—note that unlike the last two functions you’ve written, this function returns TRUE in the
event of an empty string. You do this because a lack of characters can usually be considered
whitespace as well.

Let’s write one more, shall we? To make sure each of your character classifying functions has a
corresponding string version, you need to make a function for determining whether a string is a
valid identifier. Let’s take a look:

int IsStringIdent ( char * pstrString )
{

if ( ! pstrString )
return FALSE;

if ( strlen ( pstrString ) == 0 )
return FALSE;

if ( pstrString [ 0 ] >= '0' && pstrString [ 0 ] <= '9' )
return FALSE;

for ( unsigned int iCurrCharIndex = 0;
iCurrCharIndex < strlen ( pstrString );
++ iCurrCharIndex )

if ( ! IsCharIdent ( pstrString [ iCurrCharIndex ] ) )
return FALSE;

return TRUE;
}

This one’s pretty easy too—all it does is make sure the first character is not a digit (which isn’t
allowed in an identifier), and then uses IsCharIdent () to make sure that each subsequent char-
acter is a valid identifier character.

The Assembler’s Framework
To begin implementing the assembler itself, you must first establish the major structures and
helper functions that the lexer and parser will need as they traverse and assemble the source file.
There’s quite a bit of data to be managed as this process progresses, much of which won’t make it
to the executable file but rather will help shape that executable’s final form.
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The General Interface
Just to get it out of the way, let’s start with a description of how the assembler will be implement-
ed specifically. XASM will be a simple console application, which makes the code portable and
the interface easy to design. The user will specify the input and output files using command-line
parameters, and all messages to be displayed (error messages, a summary of script statistics gath-
ered during the assembly process, and so on) will be written directly to the console as well (as
opposed to a log file or something along those lines). Here’s a simple usage example:

XASM MyScript.XASM

This will compile MyScript.xasm into MyScript.xse, producing the executable in the same directo-
ry. If, for whatever reason, the user wants the executable to have a different name, this can be
specified as a second, optional parameter:

XASM MyScript.XASM MyExec.XSE

Note also that the assembler will automatically detect and append missing file extensions, so
MyScript and MyExec will be considered just as valid as MyScript.XASM and MyExec.XSE.

A Structural Overview
With the general interface out of the way, let’s check out a bird’s eye view of the assembler and its
major internal structures. One thing I’d like to mention up front is that the assembler is primarily
composed of tables for managing various script-defined elements, like variables, functions, and
labels. Because the quantity of these elements will vary significantly from script to script, linked
lists will be employed for the majority of these tables to allow them to incrementally grow only as
large as is necessary.

The actual implementation of the lists can vary from project to project and from coder to coder. I
personally think a simple C++ class that provides basic linked list functionality (or possibly one
provided by the STL) is the cleanest way to go. Others may write a generic, pure-C implementa-
tion that can be used in the same way. Still others may simply hard code the list over and over
again for each table so that a generic structure isn’t involved in any way. When writing your own
assembler (or compiler, or any of these programs), just go with whatever you’re most comfortable
with. For absolute simplicity’s sake, I’ll be using a very basic C implementation.

Source Code Representation
As I mentioned previously, I decided to buffer everything in memory rather than incrementally
read from the source file on the hard drive. Overall, this makes the process faster, and it’s just eas-
ier to work with the data when it’s immediately available in arrays.
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At load time, the number of lines in the source file will be counted, and a suitably sized array of
static strings called g_ppstrSourceCode will be allocated. These static strings will be large enough to
hold what you predefine as the largest possible line the assembler supports. I usually use 4096 for
this value. Chances are this is much bigger than anything you will ever need, but you never know.
Besides, it’s easy to change if you feel the need to do so. Here’s the declaration and allocation of
the structure:

#define MAX_SOURCE_LINE_SIZE        4096

char ** g_ppstrSourceCode = NULL;
int g_iSourceCodeSize;

When the loading of the source script is complete, you’ll have a separate string representing each
line of code easily and sequentially accessible in memory. Figure 9.26 illustrates the source code
array in relation to the source on disk.
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The source code array

in relation to the origi-

nal source file.

The Assembled Instruction Stream
In addition to buffering the incoming source code, you’ll also buffer the outgoing assembled
instruction stream. Just as the source file is loaded once and then forgotten about, the output file
(the executable) will be entirely out of the picture during the assembly process; only when the
process has completed in full will the output file be opened, written to in one quick phase, and
closed.

The storage of the assembled instruction stream in memory will almost directly mimic the struc-
ture it will be stored with in the executable file, which I discussed earlier. This means it follows
the same hierarchical form, and therefore must exist as a number of nested structures that are
ultimately put to use in a large array.
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Instructions

The instruction structure will need to contain the instruction’s opcode, the number of operands
it accepts, and a pointer to the operand data itself:

typedef struct _Instr          // An instruction
{

int iOpcode;               // Opcode
int iOpCount;              // Number of operands
Op * pOpList;              // Pointer to operand list

}
Instr;

Operands

The Op (operand) pointer points to a dynamically allocated Op array. The Op structure itself looks
like this:

typedef struct _Op             // An assembled operand
{

int iType;                 // Type
union                      // The value
{

int iIntLiteral;       // Integer literal
float fFloatLiteral;   // Float literal
int iStringTableIndex; // String table index
int iStackIndex;       // Stack index
int iInstrIndex;       // Instruction index
int iFuncIndex;        // Function index
int iHostAPICallIndex; // Host API Call index
int iReg;              // Register code

};
int iOffsetIndex;          // Index of the offset

}

It primarily consists of a union nested inside a larger struct. The union structure was chosen
because in a typeless language, any operand can contain any data type at any time; an efficient
way to support each of these types simultaneously is to let them share the same memory loca-
tions. Of course, certain fields needed to be kept separate and were thus declared outside of the
union. These were iType, which is used to determine which data type is currently being used, and
iOffsetIndex. Figure 9.27 depicts the instruction stream in action:
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iOffsetIndex is only used when the active data type within the union is iStackIndex. In the cases
where an operand is defined as a relative stack index, we need to store the base index and the off-
set. Since we can’t have two members of the union active at the same time without overwriting
each other, the offset field is kept separate.

During the first pass, the number of instructions will be counted, and g_pInstrStream [] will be
allocated with this number before the start of the second pass.

Here’s the declaration

Instr * g_pInstrStream = NULL;
int g_iInstrStreamSize;

The Script Header
The .XSE file provides a main header data area that provides general information in regards to
the script as a whole, and you’ll store in an internal structure for gathering and maintaining
some of the data. You’ll call it g_ScriptHeader, and it’ll simply be an instance of the ScriptHeader
structure:

typedef struct _ScriptHeader    // Script header data
{

int iStackSize;             // Requested stack size
int iGlobalDataSize;        // The size of the script's global data
int iIsMainFuncPresent;     // Is _Main () present?
int iMainFuncIndex;         // _Main ()'s function index

}
ScriptHeader;

As you can see, you don’t need to represent the entire header in this structure. The ID string and
version numbers can simply be kept in #defines and written at the last moment to the output file
because they won’t change on a per-script basis.
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A Simple Linked List Implementation
All of the remaining structures in XASM are built on linked lists to allow them to grow dynami-
cally as the source file is assembled. Before we go any further, I’m going to cover a simple C
linked list implementation that will be the basis for the remaining tables.

Linked lists consist of two structures: the list itself, and the node. Here they are:

typedef struct _LinkedListNode  // A linked list node
{

void * pData;               // Pointer to the node's data
_LinkedListNode * pNext;    // Pointer to the next node in the list

}
LinkedListNode;

typedef struct _LinkedList      // A linked list
{

LinkedListNode * pHead,    // Pointer to head node
* pTail;    // Pointer to tail node

int iNodeCount;            // The number of nodes in the list
}

LinkedList;

The list structure itself is very generic, but the key is the pData pointer in the node structure.
Since this is a void pointer, it can be used to store anything, which makes the list flexible enough
to handle all of XASM’s tables.

Lists can be declared easily using these structures like so:

LinkedList MyList;

This structure is illustrated in Figure 9.28.

Once you’ve created a list, it needs to be initialized. This is performed with a call to
InitLinkedList ():

void InitLinkedList ( LinkedList * pList )
{

// Set both the head and tail pointers to null
pList->pHead = NULL;
pList->pTail = NULL;

// Set the node count to zero, since the list is currently empty
pList->iNodeCount = 0;

}
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All this function does is set the head and tail pointers to NULL, and set the node count to zero.
Once the list is initialized, you can start adding nodes to it with AddNode ():

int AddNode ( LinkedList * pList, void * pData )
{

// Create a new node
LinkedListNode * pNewNode = ( LinkedListNode * )

malloc ( sizeof ( LinkedListNode ) );

// Set the node's data to the specified pointer
pNewNode->pData = pData;

// Set the next pointer to NULL, since nothing will lie beyond it
pNewNode->pNext = NULL;

// If the list is currently empty, set both the head and tail pointers
// to the new node
if ( ! pList->iNodeCount )
{

// Point the head and tail of the list at the node
pList->pHead = pNewNode;
pList->pTail = pNewNode;

}

// Otherwise append it to the list and update the tail pointer
else
{
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// Alter the tail's next pointer to point to the new node
pList->pTail->pNext = pNewNode;
// Update the list's tail pointer
pList->pTail = pNewNode;

}

// Increment the node count
++ pList->iNodeCount;

// Return the new size of the linked list - 1, which is the node's index
return pList->iNodeCount - 1;

}

The function begins by allocating space for the node and initializing its pointers. The node count
of the list is then checked-- if the list is empty, this node will become both the head and tail, and
the pHead and pTail pointers should be updated accordingly. If not, the node becomes the new
tail, which requires the list’s pTail to be updated, as well as the pNext pointer of the old tail node.
Lastly, the node count is incremented and the list’s new size is returned to the caller (which is
actually treated as the new node’s index).

When you’re done with the list, the memory used for both its data and the nodes themselves
must be freed. This is handled with FreeLinkedList ():

void FreeLinkedList ( LinkedList * pList )
{

// If the list is empty, exit
if ( ! pList )

return;

// If the list is not empty, free each node
if ( pList->iNodeCount )
{

// Create a pointer to hold each current node and the next node
LinkedListNode * pCurrNode,

* pNextNode;

// Set the current node to the head of the list
pCurrNode = pList->pHead;

// Traverse the list
while ( TRUE )
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{
// Save the pointer to the next node before freeing the current one
pNextNode = pCurrNode->pNext;

// Clear the current node's data
if ( pCurrNode->pData )

free ( pCurrNode->pData );

// Clear the node itself
if ( pCurrNode )

free ( pCurrNode );

// Move to the next node if it exists; otherwise, exit the loop
if ( pNextNode )

pCurrNode = pNextNode;
else

break;
}

}
}

The function boils down to a loop that iterates through each node and frees both it and its data.

We now have a linked list capable of implementing each of the tables XASM will need to main-
tain. Let’s have a look at the tables themselves.

The String Table
As the script’s instructions are processed, string literal values will most likely pop up here and
there. Because you want to remove these from the outgoing instruction stream and instead
replace them with references to a separate table, this table will need to be constructed, as well an
appropriate set of functions for interfacing with it.

The table is built on the linked list covered in the previous section, which means there’s not a
whole lot left to implement. The table’s declaration is also quite simple:

LinkedList g_StringTable;

The pData member in each node will simply point to a typical C-style null-terminated string,
which means all that’s necessary is creating a simple wrapper based around AddNode () that will
make it easy to add strings directly to the table from anywhere in the program. This function will
appropriately be named AddString.
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int AddString ( LinkedList * pList, char * pstrString )
{

// ---- First check to see if the string is already in the list

// Create a node to traverse the list
LinkedListNode * pNode = pList->pHead;

// Loop through each node in the list
for ( int iCurrNode = 0; iCurrNode < pList->iNodeCount; ++ iCurrNode )
{

// If the current node's string equals the specified string, return
// its index
if ( strcmp ( ( char * ) pNode->pData, pstrString ) == 0 )

return iCurrNode;
// Otherwise move along to the next node
pNode = pNode->pNext;

}

// ---- Add the new string, since it wasn't added

// Create space on the heap for the specified string
char * pstrStringNode = ( char * ) malloc ( strlen ( pstrString ) + 1 );
strcpy ( pstrStringNode, pstrString );

// Add the string to the list and return its index
return AddNode ( pList, pstrStringNode );

}

With this function you can add a string to the table from anywhere in your code and immediately
get the index into the table at which it was added. This will come in very handy when parsing
instructions later. Notice also that the function first checks to make sure the specified string isn’t
already in the table. This is really just a small space
optimization; there’s no need to store the same
string literal value in the executable more than
once.

Lastly, you may be wondering why AddString ()
also asks for a linked list pointer. The string will
always be added to g_StringTable, won’t it? Not
necessarily. As we’ll see later on, the host API call
table is almost identical to the string table; in fact,
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it pretty much is identical. Since we can really just think of it as another string table, there’s no
point in writing the same function twice just so it can have a different name. Because of this, I
used AddString () in both places, and thus, the caller has to specify which list to add to.

The Function Table
The next table of interest is the function table, which collects information on each function the
script defines. This table is required to maintain information regarding scope, stack frame details,
and so on. Once again we’ll be leveraging our previously defined linked list structure.

What sort of information is important when keeping track of functions? Right off the bat you
need to record its name, because that’s how it’ll be referenced in the code. You also need to 
keep track of everything that falls within the function’s scope. This primarily means variables 
and line labels. And lastly, you need to describe a function’s stack frame as well; the XVM will
need this information at runtime to prepare the stack when function calls are made. The stack
frame primarily consists of local data. In addition, however, it also contains the function’s parame-
ters, so you’ll need to track those too. Lastly, we’ll need to record the function’s entry point.
Together, these fields will provide enough information to definitively describe a function. Here’s
the structure:

typedef struct _FuncNode        // A function table node
{

int iIndex;                 // Index
char pstrName [ MAX_IDENT_SIZE ];    // Name
int iEntryPoint;            // Entry point
int iParamCount;            // Param count
int iLocalDataSize;         // Local data size

}
FuncNode;

And here’s the table itself:

LinkedList g_FuncTable;

Now, the structure has provisions for tracking the number of parameters and variables a function
has, but what about the parameters and variables themselves? These are stored separately in
another table called the symbol table. This goes for labels as well, which are stored in a label table.
These two structures will be described in a moment.

You can now represent functions, so the next step is the ability to add them, right? Right. Let’s
have a look at a function you can use to easily add functions to the table.

IMPLEMENTING THE ASSEMBLER
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int AddFunc ( char * pstrName, int iEntryPoint )
{

// If a function already exists with the specified name, exit and return
// an invalid index
if ( GetFuncByName ( pstrName ) )

return -1;

// Create a new function node
FuncNode * pNewFunc = ( FuncNode * ) malloc ( sizeof ( FuncNode ) );

// Initialize the new function
strcpy ( pNewFunc->pstrName, pstrName );
pNewFunc->iEntryPoint = iEntryPoint;

// Add the function to the list and get its index
int iIndex = AddNode ( & g_FuncTable, pNewFunc );

// Set the function node's index
pNewFunc->iIndex = iIndex;

// Return the new function's index
return iIndex;

}

The function begins by determining whether or not the specified function already exists in the
table, using GetFuncByName (). As you can probably guess, this function returns a pointer to the
matching node, which is how we can determine if the function has already been added. Of
course, I haven’t covered this function yet, so just take it on faith for now. We’ll get to it in a
moment. If the function already exists, -1 is returned as an error code to the caller. Otherwise, we
create a new function node, initialize it, and add it to the table. The index returned by AddNode ()
is saved in the function’s iIndex field, which lets each node in the table keep a local copy of its
position in the table. This index is also returned to the caller.

Note that the newly added function has only set a few of its fields. The function never initialized
its parameter count, local data size, or stack frame size. The reason for this, which you’ll discover
later as you write the parser, is that as you scan through the file, you need to first save the func-
tion’s name and retrieve a unique function table index. From that point forward, you gradually
collect the function’s data and eventually complete the structure by sending the remaining info.
Of course, in order to send that info anywhere, you need a function index, which you’ll have
because the function has already been created.
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The function you’ll use to add this remaining data looks like this:

void SetFuncInfo ( char * pstrName, int iParamCount, int iLocalDataSize )
{

// Based on the function's name, find its node in the list
FuncNode * pFunc = GetFuncByName ( pstrName );

// Set the remaining fields
pFunc->iParamCount = iParamCount;
pFunc->iLocalDataSize = iLocalDataSize;

}

Again the function begins with a call to GetFuncByName (), but beyond that it’s just a matter of set-
ting some fields.

Unlike the string table, the function table is not just written to. For the most part, you can pack
your strings into the table and forget about them; the only time they’ll be read is when they’re
ultimately dumped out to the executable file. It’s important to interact with functions in the func-
tion table on a regular basis, however; as you parse the file in the second pass, you’ll need to refer
to the function table frequently to verify scope and other such matters. Because of this, you also
need the ability to quickly and easily get a function’s node based on its name. For this you’ll cre-
ate a function called GetFuncByName ():

FuncNode * GetFuncByName ( char * pstrName )
{

// If the table is empty, return a NULL pointer
if ( ! g_FuncTable.iNodeCount )

return NULL;

// Create a pointer to traverse the list
LinkedListNode * pCurrNode = g_FuncTable.pHead;

// Traverse the list until the matching structure is found
for ( int iCurrNode = 0; iCurrNode < g_FuncTable.iNodeCount; ++ iCurrNode )
{

// Create a pointer to the current function structure
FuncNode * pCurrFunc = ( FuncNode * ) pCurrNode->pData;

// If the names match, return the current pointer
if ( strcmp ( pCurrFunc->pstrName, pstrName ) == 0 )

return pCurrFunc;
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// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The structure was not found, so return a NULL pointer
return NULL;

}

With this function, you can immediately retrieve any function’s node at any time, based solely on
its name. For example, when parsing a Call instruction, you simply need to grab the function
name string from the source code, pass it to this function, and use the Index member of the struc-
ture it returns to fill in the assembled Call’s operand data.

The Symbol Table
The symbol table was mentioned in the last section, and is where you’re going to store the script’s
variables and arrays. Like functions, variable and array information is initially collected in the first
pass and then used heavily during the assembly process of the second pass. It’s yet another appli-
cation of our linked list; here’s the declaration:

LinkedList g_SymbolTable;

To adequately represent a variable within the symbol table, you need the variable’s identifier, its
size (which is always 1 for elements, but can vary for arrays), and of course, its stack index. In
addition, however, you’ll naturally need some way to record the variable’s scope as well. You’ll do
this by storing the index into the function table of the function in which the variable is declared.
Then, whenever you need to retrieve a variable based on its identifier, you’ll also pass the func-
tion index so that it’ll know exactly which identifier to match it with (otherwise, you wouldn’t be
able to reuse the same identifiers in different functions). Here’s the structure:

typedef struct _SymbolNode      // A symbol table node
{

int iIndex;                 // Index
char pstrIdent [ MAX_IDENT_SIZE ];    // Identifier
int iSize;                  // Size (1 for variables, N for arrays)
int iStackIndex;            // The stack index to which the symbol points
int iFuncIndex;             // Function in which the symbol resides

}
SymbolNode;

Like always, let’s create a function that can add a variable or array to the symbol table easily:
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int AddSymbol ( char * pstrIdent, int iSize, int iStackIndex, int iFuncIndex )
{

// If a label already exists
if ( GetSymbolByIdent ( pstrIdent, iFuncIndex ) )

return -1;

// Create a new symbol node
SymbolNode * pNewSymbol = ( SymbolNode * )

malloc ( sizeof ( SymbolNode ) );

// Initialize the new label
strcpy ( pNewSymbol->pstrIdent, pstrIdent );
pNewSymbol->iSize = iSize;
pNewSymbol->iStackIndex = iStackIndex;
pNewSymbol->iFuncIndex = iFuncIndex;

// Add the symbol to the list and get its index
int iIndex = AddNode ( & g_SymbolTable, pNewSymbol );

// Set the symbol node's index
pNewSymbol->iIndex = iIndex;

// Return the new symbol's index
return iIndex;

}

With the new symbol added, you’ll need the ability to retrieve it based both on its identifier and
its function index. This function will be called GetSymbolByIdent ():

SymbolNode * GetSymbolByIdent ( string Ident, int FuncIndex )
{

// Traverse the linked list until a symbol with the proper
// identifier and scope is found.
// First latch onto the initial node
SymbolNode * CurrSymbol = SymbolTable.Head;
// Loop through each node in the list
for ( CurrIndex = 0; CurrIndex < SymbolTable.SymbolCount; ++ CurrIndex )
{

// Check to see if the current node matches the specified identifier
if ( CurrNode.Ident == Ident )

// Now see if their scopes are the same or overlap (global/local)
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if ( CurrNode.FuncIndex == FuncIndex || CurrNode.StackIndex >= 0 )
return CurrNode;

// Otherwise move on to the next in the list
CurrNode = CurrNode.Next;

}
// The specified symbol was not found, so return NULL
return NULL;

}

Just pass it the symbol’s identifier and function index, and this function will return the full node,
allowing you access to anything you need. Variables declared in functions are also prohibited
from sharing identifiers with globals. This is what the line in the previous code is all about:

if ( CurrNode.FuncIndex == FuncIndex || CurrNode.StackIndex >= 0 )

If the two identifiers don’t share the same function, they might still conflict if the node already in
the table is global. To determine whether this is the case, you simply compare the stack index to
zero. If it’s greater, it means you aren’t using negative stack indices, which is an invariable charac-
teristic of globals. Clever, huh? Remember, stack indices that are relative to the bottom are posi-
tive, which is where globals are stored. Variables, because they’re always relative to the top of the
stack inside their respective stack frames, are referenced with negative indices.

Before moving on, there are two other helper functions that will come in handy when we get to
the parser. In addition to retrieving the pointer to a whole symbol node structure, there will also
be times when it’s nice to be able to extract specific fields based on a variable’s identifier. Here’s a
function that allows you to get a symbol’s stack index:

int GetStackIndexByIdent ( char * pstrIdent, int iFuncIndex )
{

// Get the symbol's information
SymbolNode * pSymbol = GetSymbolByIdent ( pstrIdent, iFuncIndex );

// Return its stack index
return pSymbol->iStackIndex;

}

It’s naturally simple since it’s just based on the existing GetSymbolByIdent () function we already
covered. The other function returns a symbol’s size:

int GetSizeByIdent ( char * pstrIdent, int iFuncIndex )
{

// Get the symbol's information
SymbolNode * pSymbol = GetSymbolByIdent ( pstrIdent, iFuncIndex );
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// Return its size
return pSymbol->iSize;

}

IMPLEMENTING THE ASSEMBLER

NOTE
Technically, the term symbol table is usually applied to a much broader
range of information and stores information for all of the program’s
symbols (the term symbol just being a synonym for identifier).This
means that symbol tables usually store information regarding functions,
line labels, etc. However, I think it’s easier and cleaner to work with mul-
tiple, specialized tables rather than one big collection of everything. I
just retain the term “symbol table” for posterity’s sake.

The Label Table
Completing the set of function- and scope-related tables is the label table. This table maintains a
list of all of the script’s line labels, which is useful because all references to these labels must even-
tually be replaced with indices corresponding to the label’s target instruction. Of course, it’s
another linked list, so it has a rather predictable declaration:

LinkedList g_LabelTable;

Unlike functions and symbols, line labels don’t need to be stored with much. All a label really
needs is its name (the label itself), the index of its target instruction, and the index of the func-
tion in which it’s declared. This should translate into a pretty self-explanatory set of structures,
especially after seeing so many already, so I’ll just list them both:

typedef struct _LabelNode       // A label table node
{

int iIndex;                 // Index
char pstrIdent [ MAX_IDENT_SIZE ];    // Identifier
int iTargetIndex;           // Index of the target instruction
int iFuncIndex;             // Function in which the label resides

}

And, as you’d expect, you need functions both for adding labels and retrieving them based on
their identifier and scope. Here they are (there’s nothing new, so the comments should be expla-
nation enough):
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int AddLabel ( char * pstrIdent, int iTargetIndex, int iFuncIndex )
{

// If a label already exists, return -1
if ( GetLabelByIdent ( pstrIdent, iFuncIndex ) )

return -1;

// Create a new label node
LabelNode * pNewLabel = ( LabelNode * ) malloc ( sizeof ( LabelNode ) );

// Initialize the new label
strcpy ( pNewLabel->pstrIdent, pstrIdent );
pNewLabel->iTargetIndex = iTargetIndex;
pNewLabel->iFuncIndex = iFuncIndex;

// Add the label to the list and get its index
int iIndex = AddNode ( & g_LabelTable, pNewLabel );

// Set the index of the label node
pNewLabel->iIndex = iIndex;

// Return the new label's index
return iIndex;

}

Once we’ve got the label in the table, we can read it back out with GetLabelByIdent ():

LabelNode * GetLabelByIdent ( char * pstrIdent, int iFuncIndex )
{

// If the table is empty, return a NULL pointer
if ( ! g_LabelTable.iNodeCount )

return NULL;

// Create a pointer to traverse the list
LinkedListNode * pCurrNode = g_LabelTable.pHead;

// Traverse the list until the matching structure is found
for ( int iCurrNode = 0; iCurrNode < g_LabelTable.iNodeCount;

++ iCurrNode )
{

// Create a pointer to the current label structure
LabelNode * pCurrLabel = ( LabelNode * ) pCurrNode->pData;

9. BUILDING THE XASM ASSEMBLER



487

// If the names and scopes match, return the current pointer
if ( strcmp ( pCurrLabel->pstrIdent, pstrIdent ) == 0 &&

pCurrLabel->iFuncIndex == iFuncIndex )
return pCurrLabel;

// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The structure was not found, so return a NULL pointer
return NULL;

}

As you’d imagine, it traverses the list until a suitable match is found, at which point it returns the
index. Otherwise it returns NULL.

The Host API Call Table
The host API call table stores the actual function name strings that are found as operands to the
CallHost instruction. These are saved in the executable and loaded by the VM to perform late
binding in which the strings supplied by the script are matched up to the names of functions pro-
vided by the host. This is our last linked list example, so here’s the declaration:

LinkedList g_HostAPICallTable;

The actual implementation of the host API call table is almost identical to that of the string table,
because it really just is a string table underneath. The only real technical difference is its name,
and the fact that it’s written to a different part of the executable. This is why AddString () was
designed to support different lists; just pass it a pointer to g_HostAPICallTable instead of
g_StringTable, and you’re good to go. Check out Figure 9.29 for a visual.

The Instruction Lookup Table
The last major structure to discuss here is the instruction lookup table, which contains a descrip-
tion of the entire XVM instruction set. This table is used to ensure that each instruction read
from the input file is a valid instruction and is being used properly.

Defining Instructions

Since the instruction set won’t change often, and certainly won’t change during the assembly
process itself, there’s no need to wheel out yet another linked list. Instead, it’s just a statically 
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allocated array of InstrLookup structures. The InstrLookup structure encapsulates a single instruc-
tion, and looks like this:

typedef struct _InstrLookup     // An instruction lookup
{

char pstrMnemonic [ MAX_INSTR_MNEMONIC_SIZE ];  // Mnemonic string
int iOpcode;                // Opcode
int iOpCount;               // Number of operands
OpTypes * OpList;           // Pointer to operand list

}
InstrLookup;

As you can see, the structure maintains the instruction’s mnemonic, its opcode, the number 
of operands it accepts, and a pointer to the operand list. As I mentioned earlier in the chapter,
each operand type that a given operand can accept is represented in a bitfield. OpTypes is
just an alias type that wraps int, since int gives us a simple 4-byte bitfield to work with:
typedef int OpTypes;

These structures, as mentioned above, are stored in a statically allocated global array. Here’s the
declaration:

#define MAX_INSTR_LOOKUP_COUNT      256      // The maximum number of
// instructions the lookup table
// will hold
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#define MAX_INSTR_MNEMONIC_SIZE     16       // Maximum size of an instruction
// mnemonic's string

InstrLookup g_InstrTable [ MAX_INSTR_LOOKUP_COUNT ];

Adding Instructions

Two functions will be necessary to populate the table-- one to add new instructions, and one to
define the individual operands. Let’s look at the function for adding instructions first, which is of
course called AddInstrLookup ():

int AddInstrLookup ( char * pstrMnemonic, int iOpcode, int iOpCount )
{

// Just use a simple static int to keep track of the next instruction
// index in the table.
static int iInstrIndex = 0;

// Make sure we haven't run out of instruction indices
if ( iInstrIndex >= MAX_INSTR_LOOKUP_COUNT )

return -1;

// Set the mnemonic, opcode and operand count fields
strcpy ( g_InstrTable [ iInstrIndex ].pstrMnemonic, pstrMnemonic );
strupr ( g_InstrTable [ iInstrIndex ].pstrMnemonic );
g_InstrTable [ iInstrIndex ].iOpcode = iOpcode;
g_InstrTable [ iInstrIndex ].iOpCount = iOpCount;

// Allocate space for the operand list
g_InstrTable [ iInstrIndex ].OpList = ( OpTypes * )

malloc ( iOpCount * sizeof ( OpTypes ) );

// Copy the instruction index into another variable so it can be returned
// to the caller
int iReturnInstrIndex = iInstrIndex;

// Increment the index for the next instruction
++ iInstrIndex;

// Return the used index to the caller
return iReturnInstrIndex;

}
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Given a mnemonic, opcode, and operand count, AddInstrLookup () will create the specified
instruction at the next free index within the table (maintained via the static int) and return the
index to the caller. It also allocates a dynamic array of OpTypes, giving the instruction room to
define each of its operands. That process is facilitated with a function called SetOpType ():

void SetOpType ( int iInstrIndex, int iOpIndex, OpTypes iOpType )
{

g_InstrTable [ iInstrIndex ].OpList [ iOpIndex ] = iOpType;
}

Pretty simple, huh? Given an instruction index, the iOpType bitfield will be assigned to the speci-
fied operand. The bitfield itself is constructed on the caller’s end, by combining a number of
operand type masks with a bitwise or. Each of these masks represents a specific operand data type
and is assigned a power of two that allows it to flip its respective bit in the field. Table 9.14 lists
them.

You’ll notice that these operand types don’t line up exactly with a lot of the other operand type
tables you’ve seen. This is because you can be a lot more general when describing what type of
operand a given instruction can accept than you can when describing what type of operand that
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Table 9.14  Operand Type Bitfield Masks
Constant Value Description

OP_FLAG_TYPE_INT 1 Integer literal value

OP_FLAG_TYPE_FLOAT 2 Floating-point literal value

OP_FLAG_TYPE_STRING 4 String literal value

OP_FLAG_TYPE_MEM_REF 8 Memory reference (variable or array index)

OP_FLAG_TYPE_LINE_LABEL 16 Line label (used in jump instructions)

OP_FLAG_TYPE_FUNC_NAME 32 Function name (used in the Call
instruction)

OP_FLAG_TYPE_HOST_API_CALL 64 Host API call (used in the CallHost
instruction)

OP_FLAG_TYPE_REG 128 A register, which is always the _RetVal reg-
ister in our case
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instruction did accept. For example, the Mov instruction’s destination operand can be a variable or
array index. The parser doesn’t care which it is; it only wants to make sure it’s one of them.

So we’ve got the two functions we need, as well as our bitfield flags. Let’s look at an example of
how a few instructions in the set are defined. Here’s Mov:

iInstrIndex = AddInstrLookup ( "Mov", 0, 2 );
SetOpType ( iInstrIndex, 0, OP_FLAG_TYPE_MEM_REF |

OP_FLAG_TYPE_REG );
SetOpType ( iInstrIndex, 1, OP_FLAG_TYPE_INT |

OP_FLAG_TYPE_FLOAT |
OP_FLAG_TYPE_STRING |
OP_FLAG_TYPE_MEM_REF |
OP_FLAG_TYPE_REG );

Here, the instruction is added first with a call to AddInstrLookup. Along with the mnemonic, we
pass an opcode of zero and an operand count of two. The two operands are then defined with
two calls to SetOpType (). Notice how whatever data types the operand may need are simply com-
bined with a bitwise or; it makes for very easy operand description. Here’s the definition of JGE:

iInstrIndex = AddInstrLookup ( "JGE", 24, 3 );
SetOpType ( iInstrIndex, 0, OP_FLAG_TYPE_INT |

OP_FLAG_TYPE_FLOAT |
OP_FLAG_TYPE_STRING |
OP_FLAG_TYPE_MEM_REF |
OP_FLAG_TYPE_REG );

SetOpType ( iInstrIndex, 1, OP_FLAG_TYPE_INT |
OP_FLAG_TYPE_FLOAT |
OP_FLAG_TYPE_STRING |
OP_FLAG_TYPE_MEM_REF |
OP_FLAG_TYPE_REG );

SetOpType ( iInstrIndex, 2, OP_FLAG_TYPE_LINE_LABEL );

This instruction represents opcode 24, and accepts three
operands. The first two can be virtually anything, but notice that
the last parameter must be a line label. Let’s wrap things up
with a look at a really simple one, Call:

iInstrIndex = AddInstrLookup ( "Call", 28, 1 );
SetOpType ( iInstrIndex, 0, OP_FLAG_TYPE_FUNC_NAME );

Call is added to the list as opcode 28 with one operand, which
must be a function name.
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Of course, if you really want to go all out, you could store your language description in an exter-
nal file that is read in by the assembler when it initializes. This would literally allow a single assem-
bler to implement multiple instruction sets, which may be advantageous if you have a number of
different virtual machines that you use in various game projects.

When dealing with real hardware, it’d take a lot more than a simple description of instructions
and operands to define an entire assembly language, but in the case of a virtual machine like
ours, you may very well decide that you want to change the instruction set for your next game. 
If you continue work on the first game, or revise it with a new version or sequel, you may find
yourself working with two different instruction sets at once, for two different virtual machines.
Designing your assembler with swappable language definitions in mind will allow you to easily
handle this situation.

For example, you may want to simply define your languages with a basic ASCII file so you can
quickly make changes in a text editor. This would most easily be done in a tab-delimited flatfile.
Flatfiles are easy to parse because each element of the file is separated by the same, single-charac-
ter \t code. Here’s an example of what it might look like:

Mov   0   2
MemRef
Int   Float   String   MemRef
Jmp   19      1
Label

In this particular example, the first line defined the Mov instruction. Following the mnemonic
string, was a 0 and a 2, signifying the opcode (zero) and the instruction’s two operands. The pars-
er would then know that the following two lines are the operand definitions. Each of these lines
consist of tab-delimited strings. The strings are identified by the parser as different operand types,
like MemRef and String in this case. Following the two operand lines is another instruction defini-
tion, this time for Jmp, as well as its single operand definition. The parser would continue reading
these instruction definitions until the end of the file was reached, at which point it would consid-
er the language complete. The end result is a simple and flexible solution to multiple game proj-
ects that allows you to leverage your existing assembler without even having to recompile. In fact,
to make it easier, a new directive could be added to the assembler’s overall vocabulary that speci-
fied which instruction set to use; this way scripts can define their own “dialect” without the user
needing to manually handle the language swapping (which would otherwise have to be done
with a command-line parameter, configuration file, or other such interface mechanism). Check
out Figure 9.30 for a graphical take on this concept.
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Accessing Instruction Definitions

Once the table is populated, the parser (and even the lexer) will need to be able to easily retrieve
the instruction lookup structure based on a supplied mnemonic. This will be enabled with a func-
tion called GetInstrByMnemonic (). Here’s the code:

int GetInstrByMnemonic ( char * pstrMnemonic, InstrLookup * pInstr )
{

// Loop through each instruction in the lookup table
for ( int iCurrInstrIndex = 0;

iCurrInstrIndex < MAX_INSTR_LOOKUP_COUNT; ++ iCurrInstrIndex )
{
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// Compare the instruction's mnemonic to the specified one
if ( strcmp ( g_InstrTable [ iCurrInstrIndex ].pstrMnemonic,

pstrMnemonic ) == 0 )
{

// Set the instruction definition to the user-specified pointer
* pInstr = g_InstrTable [ iCurrInstrIndex ];
// Return TRUE to signify success
return TRUE;

}
}

// A match was not found, so return FALSE
return FALSE;

}

Structural Overview Summary
So you’ve got a number of global structures, which, altogether, form the assembler’s internal rep-
resentation of the script as the assembly process progresses. Here’s a summary in the form of
these structures’ global declarations:

// Source code representation
char ** g_ppstrSourceCode = NULL;
int g_iSourceCodeSize;

// The instruction lookup table
InstrLookup g_InstrTable [ MAX_INSTR_LOOKUP_COUNT ];

// The assembled instruction stream
Instr * g_pInstrStream = NULL;
int g_iInstrStreamSize;

// The script header
ScriptHeader g_ScriptHeader;

// The main tables
LinkedList g_StringTable;
LinkedList g_FuncTable;
LinkedList g_SymbolTable;
LinkedList g_LabelTable;
LinkedList g_HostAPICallTable;
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Each (or most) of these global structures also has a small interface of functions used to manipu-
late the data it contains. Let’s run through them one more time to make sure you’re clear with
everything.

Starting with the string table:

int AddString ( LinkedList * pList, char * pstrString );

Next up is the function table:

int AddFunc ( char * pstrName, int iEntryPoint );
FuncNode * GetFuncByName ( char * pstrName );
void SetFuncInfo ( char * pstrName, int iParamCount, int iLocalDataSize );

Followed by the symbol and label tables:

int AddSymbol ( char * pstrIdent, int iSize, int iStackIndex, int iFuncIndex );
SymbolNode * GetSymbolByIdent ( char * pstrIdent, int iFuncIndex );
int GetStackIndexByIdent ( char * pstrIdent, int iFuncIndex );
int GetSizeByIdent ( char * pstrIdent, int iFuncIndex );

int AddLabel ( char * pstrIdent, int iTargetIndex, int iFuncIndex );
LabelNode * GetLabelByIdent ( char * pstrIdent, int iFuncIndex );

Lastly, there’s the instruction lookup table:

int AddInstrLookup ( char * pstrMnemonic, int iOpcode, int iOpCount );
void SetOpType ( int iInstrIndex, int iOpIndex, OpTypes iOpType );
int GetInstrByMnemonic ( char * pstrMnemonic, InstrLookup * pInstr );

Lastly, check out Figure 9.31 for a graphical overview of XASM’s major structures.

Lexical Analysis/Tokenization
From here on out, I will refer to the lexical analysis phase as the combination of both the lexer
and the tokenizer. Therefore, according to the new definition, the lexer’s input is the character
stream, and its output is the token stream. The lexeme stream will really only exist abstractly.

Therefore, the task in this section is to write a software layer that sits between the raw source code
and the parser, intercepting the incoming character stream and outputting a token stream that
the parser can immediately attempt to identify and translate. This will be our lexer.
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The Lexer’s Interface and Implementation
The implementation of the lexical analyzer is embodied by a small group of functions and struc-
tures. The primary interface will come down to a few main functions: GetNextToken (),
GetCurrLexeme (), GetLookAheadChar (),SkipToNextLine (), and ResetLexer ().

GetNextToken ()
GetNextToken () returns the current token and advances the token stream by one. Its prototype
looks like this:

int GetNextToken ();

As you can see, it doesn’t require any parameters but returns an int. This integer value is the
token, which can be any of the number of token types I’ll define later in this section. Aside from
returning the token, however, GetNextToken () does quite a bit of behind-the-stage processing.
Namely, the token stream will advance by one, which means that repetitive calls to GetTokenStream
() will continually produce new results automatically and eventually cycle through every token in
the source file. In other words, the parser and other areas of the assembler won’t have to manage
their own token stream pointers; it’s all handled internally.

In addition to returning the current token and advancing the stream, GetNextToken () also
fills the g_Lexer structure to reflect all of the current token’s information, which I’ll get to
momentarily.
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GetCurrLexeme ()
GetCurrLexeme () returns a character pointer to the string containing the current lexeme. For
example, if GetNextToken () returns TOKEN_TYPE_IDENT, GetCurrLexeme () will return the actual iden-
tifier itself. Its prototype looks like this:

char * GetCurrLexeme ();

The string pointed to by GetNextLexeme () belongs to the g_Tokenizer structure, however, which
means you shouldn’t alter it unless you make a local copy of it. Once you’ve used GetNextToken ()
to bring the next token in the stream into focus and determine its type, you can follow up with a
call to GetCurrLexeme () to take further action based on the content of the lexeme itself.

GetLookAheadChar ()
Thus far I haven’t discussed look-aheads, so I’ll introduce them here. You’ll learn about this con-
cept in much fuller detail later, but for now, all you really need to know is that a look-ahead is the
process of the parser looking past the current token to characters that lie beyond it. However,
although it does read the character, it doesn’t advance the stream in any way, so the next call to
GetNextToken () will still behave just as it would have before the look-ahead.

Look-aheads are often necessary because some aspect of the language is not deterministic. To
explain what this means in a simple and appropriate context, consider the following example.
Imagine the parser encountering the following variable declaration:

Var MyVar

The tokenizer will reduce this to the following tokens: TOKEN_TYPE_VAR and TOKEN_TYPE_IDENT.
When the identifier token is parsed, the parser will be at a “crossroads”, so to speak. On the one
hand, this may be a complete variable declaration, and if so, you can move on to the next line.
On the other hand, you may only be partially through with an array declaration, which involves
extra tokens (the brackets and the array size). Remember, the parser can’t look at the line of
code as a whole like humans can. When it reaches the identifier token, it can literally only see up
to that point. That means that if, in reality, the previous line was actually this:

Var MyVar [ 256 ]

The parser would have no idea whatsoever. So, you use a look-ahead in these cases, where the
currently read set of parsed tokens isn’t enough for you to determine exactly what the remaining
tokens (if any) should be (hence the term “deterministic”). Rather than read the next token,
however, you simply want to “peek” and find out what lies ahead without the stream being
advanced, because advancing the stream would throw every subsequent call to GetNextToken ()
out of sync. By reading even the first character of the next token, you can determine what you’re
dealing with. In this particular case, that single character would actually be the entire token—
the open bracket. This character alone would be enough to let you know that the variable 
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declaration is in fact an array declaration and that
the line isn’t finished. Of course, if an open brack-
et isn’t found, it means that the current line is
indeed finished, and you can move on to the next
token without fear of the stream being out of sync.

As you’ll see throughout the development of the
parser, you’ll only need a one-character look-
ahead. In other words, at worst you’ll only need to
see the first character of the next token in order
to resolve an ambiguity. In most cases, however,
your language is deterministic enough to parse
without help from the look-ahead at all.

The combination of these three functions should be enough for the parser to do its job, so let’s
look at how they’re actually implemented.

SkipToNextLine ()
You might run into situations in which you simply want to ignore an entire line of tokens.
Because the source code is internally stored as a series of separate lines, all this function really has
to do is increment the current line counter and reset the tokenizer position within it.
SkipToNextLine () has an understandably simple prototype:

void SkipToNextLine ();

ResetLexer ()
ResetLexer () is the last function involved in the lexer’s interface, and performs the simple task
of resetting everything. This function will only be used twice, as the lexer will need to be reset
before each of the two passes over the source is performed.

The Lexer Implementation
The lexer, despite its vital role in the assembly process, is not a particularly complex piece of soft-
ware. Its work is done in two phases—lexing, wherein the next lexeme is extracted from the char-
acter stream, and tokenization, which identifies the lexeme as belonging to one of a number of
token type classes.

Token Types

To get things started, Table 9.15 lists the different types of tokens the lexer will output.
Remember, a token is determined by examination of its corresponding lexeme.
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become so ambiguous that entire
tokens must be looked ahead to.
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Table 9.15  Token Type Constants
Constant Description

TOKEN_TYPE_INT An integer literal

TOKEN_TYPE_FLOAT A floating-point literal

TOKEN_TYPE_STRING A string literal value, not including the surrounding
quotes. Quotes are considered separate tokens.

TOKEN_TYPE_QUOTE A double quote "

TOKEN_TYPE_IDENT An identifier

TOKEN_TYPE_COLON A colon :

TOKEN_TYPE_OPEN_BRACKET An opening bracket [

TOKEN_TYPE_CLOSE_BRACKET A closing bracket ]

TOKEN_TYPE_COMMA A comma ,

TOKEN_TYPE_OPEN_BRACE An opening curly brace {

TOKEN_TYPE_CLOSE_BRACE A closing curly brace }

TOKEN_TYPE_NEWLINE A line break

TOKEN_TYPE_INSTR An instruction

TOKEN_TYPE_SETSTACKSIZE The SetStackSize directive

TOKEN_TYPE_VAR A Var directive

TOKEN_TYPE_FUNC A Func directive

TOKEN_TYPE_PARAM A Param directive

TOKEN_TYPE_REG_RETVAL The _RetVal register

TOKEN_TYPE_INVALID Error code for invalid tokens

END_OF_TOKEN_STREAM The end of the stream has been reached
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Note the END_OF_TOKEN_STREAM constant, which actually isn’t a token in itself but rather a sign that
the token stream has ended.

Even though the token type is just a simple integer value, it’s often convenient to wrap primitive
data types in more descriptive names using typedef (plus it looks cool!). In the case of your tok-
enizer, you can create a Token type based on int:

typedef int Token;

Now, for example, the prototype for GetNextToken () can look like this:

Token GetNextToken ();

This also lets you change the underlying implementation of the tokenizer without breaking code
that would otherwise be dependant on the int type. You never know when something like that
might come in handy. I’ll make use of the Token type throughout the remainder of this chapter,
and in the XASM source.

Initial Source Line Prepping

Before the lexer goes to work, I like to prep the source line as much as possible to make its job
easier. This involves stripping any comments that may be found on the line, and then trimming
whitespace on both sides. After this process, you might even find that the line was pure white-
space to begin with, or consisted solely of a comment. In these cases, the line can be skipped alto-
gether and you can move on to the next.

Comments are stripped first, which is a simple process, although there is one gotcha to be aware
of. XVM Assembly defines comments as anything behind the semicolon character, including the
semicolon itself. Imagine the following line of code:

Mov    X, Y              ; Move Y into X

The comments can be stripped from this line very easily by scanning through the string until the
semicolon is found. If you place a null-terminator at the index of the semicolon, the semicolon
and everything behind it will no longer be a part of the string, and we’ll have the following:

Mov    X, Y

Sounds pretty easy, right? The one caveat to this approach, however, is strings. Imagine the follow-
ing line:

Mov    X, "This curse; it is your birthright."   ; Creepy line of dialogue

The currently unintelligent scanner would, in its well-meaning attempts to rid you of the com-
ments, reduce the line of code to this:

Mov    X, "This curse
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This is not only a different string than was intended, but it won’t even assemble. You therefore
need a way to make sure that the scanner knows when it’s inside a string, so it can ignore any
semicolons until the string ends. Fortunately, this is easily solved: as the scanner moves through
the string, it also needs to keep watch for double-quote characters. When it finds one, it sets a
flag stating that a string is currently being scanned. When it finds the next double-quote, the flag
is turned back off (because presumably, these two quotes were delimiting a string). This process
repeats throughout the entire line of code, so strings won’t trip it up. Let’s look at some code:

void StripComments ( char * pstrSourceLine )
{

unsigned int iCurrCharIndex;
int iInString;

// Scan through the source line and terminate the string at
// the first semicolon
iInString = 0;
for ( iCurrCharIndex = 0;

iCurrCharIndex < strlen ( pstrSourceLine ) - 1;
++ iCurrCharIndex )

{
// Look out for strings; they can contain semicolons too
if ( pstrSourceLine [ iCurrCharIndex ] == '"' )

if ( iInString )
iInString = 0;

else
iInString = 1;

// If a non-string semicolon is found, terminate the string
// at its position
if ( pstrSourceLine [ iCurrCharIndex ] == ';' )
{

if ( ! iInString )
{

pstrSourceLine [ iCurrCharIndex ] = '\n';
pstrSourceLine [ iCurrCharIndex + 1 ] = '\0';
break;

}
}

}
}
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Running the initial line of code through this function will yield the correct output:

Mov    X, "This curse; it is your birthright."

See a visual of this process in figure 9.32.
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Figure 9.32

StripComments ()

maintains a flag that is

set and cleared as

semicolons are read,

since they presumably

denote the beginnings

and endings of string

literals.

Trimming the whitespace from the stripped source line comes next. Trimming is usually pretty
straightforward, but in C it’s a bit trickier than some higher level languages due to its low-level
approach to strings. Here’s a function for trimming the whitespace off both ends of a string:

void TrimWhitespace ( char * pstrString )
{

unsigned int iStringLength = strlen ( pstrString );
unsigned int iPadLength;
unsigned int iCurrCharIndex;

if ( iStringLength > 1 )
{

// First determine whitespace quantity on the left
for ( iCurrCharIndex = 0;

iCurrCharIndex < iStringLength;
++ iCurrCharIndex )

if ( ! IsCharWhitespace ( pstrString [ iCurrCharIndex ] ) )
break;

// Slide string to the left to overwrite whitespace
iPadLength = iCurrCharIndex;
if ( iPadLength )
{
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for ( iCurrCharIndex = iPadLength;
iCurrCharIndex < iStringLength;
++ iCurrCharIndex )

pstrString [ iCurrCharIndex - iPadLength ] =
pstrString [ iCurrCharIndex ];

for ( iCurrCharIndex = iStringLength - iPadLength;
iCurrCharIndex < iStringLength;
++ iCurrCharIndex )

pstrString [ iCurrCharIndex ] = ' ';
}

// Terminate string at the start of right hand whitespace
for ( iCurrCharIndex = iStringLength - 1;

iCurrCharIndex > 0;
-- iCurrCharIndex )

{
if ( ! IsCharWhitespace ( pstrString [ iCurrCharIndex ] ) )
{

pstrString [ iCurrCharIndex + 1 ] = '\0';
break;

}
}

}
}

This function begins by scanning through the string from left to right, counting the number of
whitespace characters it finds using IsCharWhitespace (). It then performs a manual string copy to
physically slide each character over by the number of whitespace characters it found, effectively
overwriting it. For example, if the original string looked like this:

"    This is a string.  "

It would look like this after the first step was complete:

"This is a string.  g.  "

The right-hand whitespace is easily cleared by setting the null terminator right after the last non-
whitespace character in the string. Thus, the end result is:

"This is a string."

Figure 9.33 illustrates how TrimWhitespace () works:
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Lexing and Tokenizing

Here’s where the real work begins. At this point you have a list of token type constants to pro-
duce, your line of source code has been prepped and is ready to go, so all that’s left to do is iso-
late the next lexeme and identify its token type. This, of course, is the most complicated part.

The first thing to understand is where the lexer gets its data. Recall that the source code of the
entire script is stored in a global array of strings, so if you had a small script that looked like this:

Func MyFunc               ; Just a meaningless function
{

Param  X              ; Declare some parameters
Param  Y
Var    Product        ; Declare a local
Mov    Product, X     ; Multiply X by Y
Mul    Product, Y

}

It’d be stored in your source code array like this:

0: Func MyFunc               ; Just a meaningless function
1: {
2: Param  X              ; Declare some parameters
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3: Param  Y
4: Var    Product        ; Declare a local
5: Mov    Product, X     ; Multiply X by Y
6: Mul    Product, Y
7: }

And would look like this after each line was prepped:

0: Func MyFunc
1: {
2: Param  X
3: Param  Y
4: Var    Product
5: Mov    Product, X
6: Mul    Product, Y
7: }

The assembly process moves from line to line, which, in this case, would take you from string 0 to
string 7. What’s important is that at any given time, the current line (and the rest of the script, for
that matter) is conveniently available in this array. The lexer, however, is specifically designed to
ignore this fact that makes it appear as if everything is a continual token stream. Line breaks are
ultimately reduced to TOKEN_TYPE_NEWLINE, and in that regard, are treated like just another token.

Because this array allows you such convenient and structured access to the script, there’s no point
in making another copy of the current line just for the lexer to work with. Instead, you’ll just
work directly with the source code array. This will make everything a lot easier because there
won’t be any extraneous string allocation and copying to worry about.

Let’s now reiterate exactly what the lexer needs to do for you. As an example, assume the source
code line in question is line 5, which looks like this:

Mov    Product, X

You can tell with your eyes that five lexemes compose this line:

Mov
Product
,
X
(Newline)

The question is, how do you get the lexer to do the same thing? Unfortunately, there aren’t any
hard-and-fast rules, at least not at first glance. Ideally, it’d be nice if lexemes were defined by a
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simple premise: for example, that all lexemes are separated by whitespace. This would make your
job very simple, and perhaps even let you use the standard C library tokenizing function, strtok
(). Unfortunately, one of the four lexemes found previously was not separated from the lexeme
before it by a space. Look at the Product and comma lexemes:

Mov    Product, X

There’s no whitespace between them, so that throws the simple rule out the window. There are a
number of ways to approach this problem, some of which are more structured and flexible than
others, but I’ve got a rather simple solution that will fit the needs here well.

The actual rule you can apply to your lexer isn’t much more complicated than the original white-
space rule. In fact, it’s the same rule—just with a broader definition. All lexemes are separated by
the same thing— delimiter characters. A delimiter character, as defined in the string-processing
function IsCharDelimiter (), are any of the characters used to separate or group common ele-
ments. In XVM Assembly, these are colons, commas, double quotes, curly braces, brackets, and
yes, whitespace. So, if you scan through the source line and consider lexemes to be defined as the
strings in between each delimiting character, you’ll have a much more robust lexer.

There is one extra problem defined with this approach, however, because with the exception of
whitespace, delimiting characters are themselves lexemes as well. The comma can be used to sepa-
rate the Product lexeme from the X lexeme, but it’s still a lexeme of its own, and one that you’ll
definitely need the lexer to return. So the final rule is that lexemes are separated by delimiting
characters, and with the exception of whitespace, include the delimiters themselves as well. This
rule will return the proper lexemes:

Mov
Product
,
X
(Newline)

Or at least, it almost will. The one other aspect of the lexer you have to be aware of is its ability to
skip past arbitrary amounts of whitespace. For example, there’s more than a single space between
the Mov and Product lexemes. Because of this, the lexer must be smart enough to know that a lex-
eme doesn’t start until the first non-whitespace character is found. It will therefore scan through
all whitespace and ignore it until the lexeme begins. It then scans from that point forward until
the first delimiter is found. The string between these two indices contains the lexeme.

You’ll therefore need to manage two pointers as you traverse the string and attempt to identify
the next lexeme. Both of these pointers will begin just after the last character of the last lexeme.
When the tokenizer is first initialized, this means they’ll both point to index zero. The first point-
er will then move forward until it finds the first non-whitespace character, which represents the
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beginning of the next lexeme. The second pointer is then repositioned to equal the first. Both
pointers are now positioned on the first character of the lexeme. The second pointer then scans
forward until the first delimiter character is found, and stops just before that character is read. At
this point, the two pointers will exactly surround the lexeme. Check out Figure 9.34 for a visual
representation of this process.
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This substring is then copied into a global string. This global string is the current lexeme, a point-
er to which is returned by GetCurrLexeme (). At this point, the lexer has done its job and the tok-
enizer can begin. Fortunately, this is the easy part, and it’s made even easier by the string process-
ing functions covered earlier.

The first thing to check for are single-character tokens, which mostly include delimiters. You can
use a switch block to compare this single character to each possible delimiter: the comma, the
colon, the double-quote, the opening and closing brackets, newlines, and the opening and clos-
ing curly braces. If any of these matches are made, you return the corresponding TOKEN_TYPE_*
constant.

Single-character tokens are listed in Table 9.16.

If the lexeme is longer than a single character, you know it’s not a delimiter of any sort and can
move on to checking for the multi-character tokens. These consist of integer and float literals,
identifiers, the _RetVal register, and all of the XASM directives. Check out Table 9.17 for a list of
them.
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Table 9.16  Single-Character Tokens
Token Description

TOKEN_TYPE_QUOTE A quotation mark "

TOKEN_TYPE_COMMA A comma ,

TOKEN_TYPE_COLON A colon :

TOKEN_TYPE_OPEN_BRACKET An opening bracket [

TOKEN_TYPE_CLOSE_BRACKET A closing bracket ]

TOKEN_TYPE_NEWLINE A line break

TOKEN_TYPE_OPEN_BRACE An opening curly brace {

TOKEN_TYPE_CLOSE_BRACE A closing curly brace }

Table 9.17  Multi-Character Tokens
Token Description

TOKEN_TYPE_INT An integer literal

TOKEN_TYPE_FLOAT A floating-point literal

TOKEN_TYPE_IDENT An identifier

TOKEN_TYPE_INSTR An instruction

TOKEN_TYPE_SETSTACKSIZE The SetStackSize directive

TOKEN_TYPE_VAR A Var directive

TOKEN_TYPE_FUNC A Func directive

TOKEN_TYPE_PARAM A Param directive

TOKEN_TYPE_REG_RETVAL The _RetVal register
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To check for integers, floats, and identifiers, you can use the functions covered earlier:
IsStringInt (), IsStringFloat (), and IsStringIdent (). Every other token is a specific string like
"VAR" or "_RETVAL" and can be tested with a simple string comparison.

What I’ve described so far is a lexer capable of isolating and identifying all of the language’s
tokens, regardless of whitespace. This is quite an accomplishment! There is one little detail I’ve
left out so far, however, and that’s the issue of string literal tokens. This may not seem like much
of an issue, but it’s actually quite a bit trickier than anything else we’ve lexed so far. The problem
with string literals is that they don’t follow the rules laid down for every other token type. For
example, consider the following:

Mov    StringVal, "This is a string."

The lexer will do fine until it runs into the first space in the string. This will be interpreted as a
delimiter, and ultimately the lexer will produce the following series of lexemes and tokens:

MOV            TOKEN_TYPE_INSTR
STRINGVAL      TOKEN_TYPE_IDENT
,              TOKEN_TYPE_COMMA
"              TOKEN_TYPE_QUOTE
THIS           TOKEN_TYPE_IDENT
IS             TOKEN_TYPE_IDENT
A              TOKEN_TYPE_IDENT
STRING.        TOKEN_TYPE_IDENT
"              TOKEN_TYPE_QUOTE

This certainly isn’t what you want. The value of a string literal should be returned just like the
value of integers and floats are returned. What you’re really looking for from the lexer is the fol-
lowing:

MOV                TOKEN_TYPE_NSTR
STRINGVAL          TOKEN_TYPE_IDENT
,                  TOKEN_TYPE_COMMA
"                  TOKEN_TYPE_QUOTE
This is a string.  TOKEN_TYPE_STRING
"                  TOKEN_TYPE_QUOTE

This means that the lexer must somehow know when it’s extracting a string literal value, because it:

■ Cannot be disrupted by the delimiting symbols that usually mark the end of a lexeme,
because strings can and often do contain these same symbols.

■ Should not convert the resulting lexeme to uppercase, because this would alter the
string’s content.
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■ Should replace the \" and \\ escape sequences with their respective single-character values.
■ Should only stop scanning when it hits a non-escape sequence double-quote.

As you can see, strings add quite a bit of complexity to the otherwise simplistic lexer, so let’s dis-
cuss the solutions to each of these problems. First of all, you need the ability to tell whether
you’re processing a string lexeme. This is done rather easily; whenever a double quote lexeme is
detected, the flag is set, unless it’s already set, in which case it’s unset. This works in the same way
your comment stripper function did; it simply treats double quotes as toggle switches for the
string lexeme state.

As a typical lexeme is scanned, you must continually check to see if it’s ended due to the pres-
ence of a delimiter character. If the lexer is to support strings, however, you must now first deter-
mine whether the string lexeme state is active; if it is, you only check for the presence of a double
quote; if not, you check for any delimiter as usual.

This isn’t enough, however. A single flag will only give us some of the information we need to
properly maintain the state of the lexer, which will result in all tokens after the first string being
interpreted as strings as well. Why? Because the toggling of the string lexeme flag when a double-
quote is read isn’t intelligent enough to differentiate between an opening quote and a closing
quote. When a double-quote is first read, we’ll go from the non-string state to the string state.
We’ll then read the string, and with the string state active, the lexer will know to treat the string
differently, by ignoring delimiters, including whitespace, not converting the final lexeme to white-
space, etc. So far, so good, right?

The problem occurs when the string ends. A double quote will be read, which is the only charac-
ter that can terminate a string lexeme. So the lexer will switch back to its non-string state, and
return the string lexeme. The lexer will then be called again, at which point it will read the clos-
ing double quote (because, if you remember, delimiters are considered separate tokens). When
this token is read, it will once again switch to the string lexing state, just as it did with the first
quote. The lexer will continue to haphazardly alternate between strings and non-strings, greatly
confusing the token stream. Check out figure 9.35 to see what I mean.
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The solution is to design the lexer with three states in mind, rather than two. The first state,
LEX_STATE_NO_STRING, is active by default and is used for all non-string lexemes. When a double-
quote is read, this state switches to LEX_STATE_IN_STRING, which allows it to properly handle string
lexemes. When the next double quote is read, it will know that LEX_STATE_IN_STRING must transi-
tion into LEX_STATE_END_STRING. This state only exists briefly to keep the lexer from confusing
opening and closing quotes. LEX_STATE_END_STRING transitions to LEX_STATE_NO_STRING, and the
cycle continues.

Lastly, you may be wondering why we didn’t take a simpler route by not even trying to separate
double quotes from their respective strings. When a double quote character is read, the lexer
could just read until the closing quote is found, and consider that whole thing one big lexeme.
This would eliminate the need for lexer states and other such complexities. However, it’d make
things harder on the parser, which would end up having to worry about the separation of the
string from its surrounding quotes. Since I prefer to keep all string processing tasks within the
lexer’s implementation, I decided against this. As we’ll see later on, it’ll make the parser’s job sim-
pler. Figure 9.36 illustrates how that method would work.
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The last issue is that of escape sequences. In order to support this, your scanner must also contin-
ually check for the backslash character. When one is found, you react by simply jumping ahead
two characters. You do this because at this stage, you only want to ignore the sequence. You’ll per-
form the actual processing of the sequence later.

With these changes implemented, the lexer will be capable of handling strings. Just as before,
once the lexeme has been isolated, it’s copied into a local lexeme string and made available to
the rest of the program. To properly handle escape sequences, however, this copying process
must be altered a little. As the lexeme is being copied, character-by-character, you must again
keep watch for backslashes. When one is found, the backslash itself is not written to the lexeme
string, but the character immediately following it instead. The process then picks up again after
that character.

That’s basically the story behind XASM’s simple but functional lexer. Let’s have a look at the final
implementation:
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Token GetNextToken ()
{

// ---- Lexeme Extraction

// Move the first index (Index0) past the end of the last token,
// which is marked by the second index (Index1).

g_Lexer.iIndex0 = g_Lexer.iIndex1;

// Make sure we aren't past the end of the current line. If a string is
// 8 characters long, it's indexed from 0 to 7; therefore, indices 8
// and beyond lie outside of the string and require us to move to the
// next line. This is why I use >= for the comparison rather than >.
// The value returned by strlen () is always one greater than the last
// valid character index.

if ( g_Lexer.iIndex0 >= strlen
( g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ] ) )

{
// If so, skip to the next line but make sure we don't go past the
// end of the file. SkipToNextLine () will return FALSE if we hit
// the end of the file, which is the end of the token stream.

if ( ! SkipToNextLine () )
return END_OF_TOKEN_STREAM;

}

// If we just ended a string, tell the lexer to stop lexing
// strings and return to the normal state

if ( g_Lexer.iCurrLexState == LEX_STATE_END_STRING )
g_Lexer.iCurrLexState = LEX_STATE_NO_STRING;

// Scan through the potential whitespace preceding the next lexeme, but
// ONLY if we're not currently parsing a string lexeme (since strings
// can contain arbitrary whitespace which must be preserved).

if ( g_Lexer.iCurrLexState != LEX_STATE_IN_STRING )
{

// Scan through the whitespace and check for the end of the line

9. BUILDING THE XASM ASSEMBLER
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while ( TRUE )
{

// If the current character is not whitespace, exit the loop
// because the lexeme is starting.

if ( ! IsCharWhitespace ( g_ppstrSourceCode
[ g_Lexer.iCurrSourceLine ][ g_Lexer.iIndex0 ] ) )
break;

// It is whitespace, however, so move to the next character and
// continue scanning

++ g_Lexer.iIndex0;
}

}

// Bring the second index (Index1) to the lexeme's starting character,
// which is marked by the first index (Index0)

g_Lexer.iIndex1 = g_Lexer.iIndex0;

// Scan through the lexeme until a delimiter is hit, incrementing
// Index1 each time

while ( TRUE )
{

// Are we currently scanning through a string?

if ( g_Lexer.iCurrLexState == LEX_STATE_IN_STRING )
{

// If we're at the end of the line, return an invalid token
// since the string has no ending double-quote on the line

if ( g_Lexer.iIndex1 >= strlen ( g_ppstrSourceCode
[ g_Lexer.iCurrSourceLine ] ) )

{
g_Lexer.CurrToken = TOKEN_TYPE_INVALID;
return g_Lexer.CurrToken;

}
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// If the current character is a backslash, move ahead two
// characters to skip the escape sequence and jump to the next
// iteration of the loop

if ( g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ]
[ g_Lexer.iIndex1 ] == '\\' )

{
g_Lexer.iIndex1 += 2;
continue;

}

// If the current character isn't a double-quote, move to the
// next, otherwise exit the loop, because the string has ended.

if ( g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ]
[ g_Lexer.iIndex1 ] == '"' )
break;

++ g_Lexer.iIndex1;
}

// We are not currently scanning through a string

else
{

// If we're at the end of the line, the lexeme has ended so
// exit the loop

if ( g_Lexer.iIndex1 >= strlen (
g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ] ) )
break;

// If the current character isn't a delimiter, move to the
// next, otherwise exit the loop

if ( IsCharDelimiter ( g_ppstrSourceCode
[ g_Lexer.iCurrSourceLine ][ g_Lexer.iIndex1 ] ) )
break;

++ g_Lexer.iIndex1;
}

}
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// Single-character lexemes will appear to be zero characters at this
// point (since Index1 will equal Index0), so move Index1 over by one
// to give it some noticeable width

if ( g_Lexer.iIndex1 - g_Lexer.iIndex0 == 0 )
++ g_Lexer.iIndex1;

// The lexeme has been isolated and lies between Index0 and Index1
// (inclusive), so make a local copy for the lexer

unsigned int iCurrDestIndex = 0;
for ( unsigned int iCurrSourceIndex = g_Lexer.iIndex0;

iCurrSourceIndex < g_Lexer.iIndex1; ++ iCurrSourceIndex )
{

// If we're parsing a string, check for escape sequences and just
// copy the character after the backslash

if ( g_Lexer.iCurrLexState == LEX_STATE_IN_STRING )
if ( g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ]

[ iCurrSourceIndex ] == '\\' )
++ iCurrSourceIndex;

// Copy the character from the source line to the lexeme

g_Lexer.pstrCurrLexeme [ iCurrDestIndex ] = g_ppstrSourceCode
[ g_Lexer.iCurrSourceLine ][ iCurrSourceIndex ];

// Advance the destination index

++ iCurrDestIndex;
}

// Set the null terminator

g_Lexer.pstrCurrLexeme [ iCurrDestIndex ] = '\0';

// Convert it to uppercase if it's not a string

if ( g_Lexer.iCurrLexState != LEX_STATE_IN_STRING )
strupr ( g_Lexer.pstrCurrLexeme );

// ---- Token Identification

// Let's find out what sort of token our new lexeme is
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// We'll set the type to invalid now just in case the lexer doesn't
// match any token types

g_Lexer.CurrToken = TOKEN_TYPE_INVALID;

// The first case is the easiest-- if the string lexeme state is
// active, we know we're dealing with a string token. However, if the
// string is the double-quote sign, it means we've read an empty string
// and should return a double-quote instead

if ( strlen ( g_Lexer.pstrCurrLexeme ) > 1 ||
g_Lexer.pstrCurrLexeme [ 0 ] != '"' )

{
if ( g_Lexer.iCurrLexState == LEX_STATE_IN_STRING )
{

g_Lexer.CurrToken = TOKEN_TYPE_STRING;
return TOKEN_TYPE_STRING;

}
}

// Now let's check for the single-character tokens

if ( strlen ( g_Lexer.pstrCurrLexeme ) == 1 )
{

switch ( g_Lexer.pstrCurrLexeme [ 0 ] )
{

// Double-Quote

case '"':
// If a quote is read, advance the lexing state so that
// strings are lexed properly

switch ( g_Lexer.iCurrLexState )
{

// If we're not lexing strings, tell the lexer we're
// now in a string

case LEX_STATE_NO_STRING:
g_Lexer.iCurrLexState = LEX_STATE_IN_STRING;
break;
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// If we're in a string, tell the lexer we just ended a
// string

case LEX_STATE_IN_STRING:
g_Lexer.iCurrLexState = LEX_STATE_END_STRING;
break;

}

g_Lexer.CurrToken = TOKEN_TYPE_QUOTE;
break;

// Comma

case ',':
g_Lexer.CurrToken = TOKEN_TYPE_COMMA;
break;

// Colon

case ':':
g_Lexer.CurrToken = TOKEN_TYPE_COLON;
break;

// Opening Bracket

case '[':
g_Lexer.CurrToken = TOKEN_TYPE_OPEN_BRACKET;
break;

// Closing Bracket

case ']':
g_Lexer.CurrToken = TOKEN_TYPE_CLOSE_BRACKET;
break;

// Opening Brace

case '{':
g_Lexer.CurrToken = TOKEN_TYPE_OPEN_BRACE;
break;
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// Closing Brace

case '}':
g_Lexer.CurrToken = TOKEN_TYPE_CLOSE_BRACE;
break;

// Newline

case '\n':
g_Lexer.CurrToken = TOKEN_TYPE_NEWLINE;
break;

}
}

// Now let's check for the multi-character tokens

// Is it an integer?

if ( IsStringInteger ( g_Lexer.pstrCurrLexeme ) )
g_Lexer.CurrToken = TOKEN_TYPE_INT;

// Is it a float?

if ( IsStringFloat ( g_Lexer.pstrCurrLexeme ) )
g_Lexer.CurrToken = TOKEN_TYPE_FLOAT;

// Is it an identifier (which may also be a line label or instruction)?

if ( IsStringIdent ( g_Lexer.pstrCurrLexeme ) )
g_Lexer.CurrToken = TOKEN_TYPE_IDENT;

// Check for directives or _RetVal

// Is it SetStackSize?

if ( strcmp ( g_Lexer.pstrCurrLexeme, "SETSTACKSIZE" ) == 0 )
g_Lexer.CurrToken = TOKEN_TYPE_SETSTACKSIZE;

// Is it Var/Var []?

if ( strcmp ( g_Lexer.pstrCurrLexeme, "VAR" ) == 0 )
g_Lexer.CurrToken = TOKEN_TYPE_VAR;
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// Is it Func?

if ( strcmp ( g_Lexer.pstrCurrLexeme, "FUNC" ) == 0 )
g_Lexer.CurrToken = TOKEN_TYPE_FUNC;

// Is it Param?

if ( strcmp ( g_Lexer.pstrCurrLexeme, "PARAM" ) == 0 )
g_Lexer.CurrToken =TOKEN_TYPE_PARAM;

// Is it RetVal?

if ( strcmp ( g_Lexer.pstrCurrLexeme, "_RETVAL" ) == 0 )
g_Lexer.CurrToken = TOKEN_TYPE_REG_RETVAL;

// Is it an instruction?

InstrLookup Instr;
if ( GetInstrByMnemonic ( g_Lexer.pstrCurrLexeme, & Instr ) )

g_Lexer.CurrToken = TOKEN_TYPE_INSTR;

return g_Lexer.CurrToken;
}

Our lexer is finished, and it definitely gets the job done. I should mention, however, that our take
on the lexing process has been something of a “brute force” approach. It’s not the most elegant
or flexible method, and while it serves our purposes nicely, it’s not the way we’ll implement the
lexer for the XtremeScript compiler. We’ll of course get into the details of the textbook method
later on, but since I’m sure I’ve already piqued your interest, I’ll give you the gist here.

Lexical analysis is most commonly implemented with a state machine, which is a simple loop that
uses each incoming character to form a progressively more accurate idea of what the string is.
The term “state machine” refers to the fact that the entire lexer is composed of a single loop
(remember that our lexer entered and exited a number of separate loops). At each iteration of
this loop, the function is in one of a finite number of states (which is why, more specifically, it’s a
finite state machine) that determine how it will react to the next character. The final state when the
loop ends corresponds directly to the token type.

Let’s take a look at a simple example to understand this better. Imagine that this particular lexer
is very simple and can only distinguish between different types of numbers. When the loop starts,
it will be in an initial state, which we can call STATE_INIT. The loop iterates once, reading in one
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character. The character is analyzed, and it’s identified as whitespace. The lexer now knows that it
has an arbitrary amount of leading whitespace to deal with, so it switches into STATE_WHITESPACE,
which will consume whitespace until a non-whitespace is found. Finally a non-whitespace charac-
ter is found. If this is a number, the state will switch into STATE_INT. It turns out to be a minus
sign, however, which causes it to switch into STATE_NEG_INT instead. The machine is now expecting
to read a negative integer. If it were to read more whitespace, for example, it would return an
error. It reads the next few characters, all of which are numbers, and thus in accordance with
what that particular state expects. If the token were to end here, the STATE_NEG_INT would reflect a
negative integer, which is exactly what the token would be. However, a period character is read,
which means we’re dealing with a float. The machine switches into STATE_NEG_FLOAT, and the
remaining numbers are read. At any time, the current state alone is enough to handle erroneous
input and ultimately reflect the token type. When the loop ends, the final state is STATE_NEG_FLOAT,
which we can directly map to a token type. As you can see, the states changed in a way that
brought us closer and closer to a conclusion. This means that the real guts of a state machine
loop is a potentially large switch block that defines the rules by which the current state can switch
to the next. These are called state transition rules, or edges.

To further drive the point home, check out Figure 9.37.

The state machine approach is definitely the most elegant way to go, so you might be wondering
why I didn’t just use it here. The reason is primarily that despite its benefits, a state machine isn’t
really the most intuitive way to parse strings--at least not at first. I personally came up with the
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brute force method on my own,
long before learning about state
machines, and I think that’s indica-
tive of a lot of aspiring
compiler/assembler writers.

These ad-hoc methods just come
more naturally, so I like the idea of
covering them instead of pretend-
ing they don’t exist like a lot of text-
books tend to do. In a lot of ways,
the XASM assembler implementa-
tion was designed to deliberately
incorporate these more primitive approaches to lexing and parsing, because they’re very easy to
understand and have ultimately provided you with a much stronger footing for understanding
the more esoteric approaches we’ll be learning about when we build the actual XtremeScript
compiler. Note that the state machine approach can even be applied to our string processing
library functions (and often is).

Final Details

GetNextToken () was by far the biggest hurdle in completing the lexer’s interface, but let’s wrap
things up by taking a quick look at the other functions. Up next is SkipToNextLine (), which is a
rather simple one:

int SkipToNextLine ()
{

// Increment the current line

++ g_Lexer.iCurrSourceLine;

// Return FALSE if we've gone past the end of the source code

if ( g_Lexer.iCurrSourceLine >= g_iSourceCodeSize )
return FALSE;

// Set both indices to point to the start of the string

g_Lexer.iIndex0 = 0;
g_Lexer.iIndex1 = 0;

IMPLEMENTING THE ASSEMBLER

NOTE
Aside from general complexity, one downside to
the state-machine approach is that often, to prop-
erly lex an entire language, literally hundreds of
state transition rules must be written.To alleviate
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rate programs that work with an input file speci-
fying the language’s lexing rules. Of course, we’re
getting way ahead of ourselves-- we’ll learn all
about the details of this starting in Chapter 12.
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// Turn off string lexeme mode, since strings can't span multiple lines

g_Lexer.iCurrLexState = LEX_STATE_NO_STRING;

// Return TRUE to indicate success

return TRUE;
}

It starts by incrementing the pointer to the current line, which moves us to the next line. It then
makes sure we haven’t moved beyond the last line in the file by comparing the new position to
g_iSourceCodeSize. If this test passes, it sets both lexer indices to zero and resets the lexer state to
LEX_STATE_NO_STRING. It returns TRUE to let the caller know that the next line was reached success-
fully.

I’ll cover ResetLexer () next because it’s very similar to SkipToNextLine () and is even simpler.
Here’s the code:

void ResetLexer ()
{

// Set the current line to the start of the file

g_Lexer.iCurrSourceLine = 0;

// Set both indices to point to the start of the string

g_Lexer.iIndex0 = 0;
g_Lexer.iIndex1 = 0;

// Set the token type to invalid, since a token hasn't been read yet

g_Lexer.CurrToken = TOKEN_TYPE_INVALID;

// Set the lexing state to no strings

g_Lexer.iCurrLexState = LEX_STATE_NO_STRING;
}

As you can see, it does many of the things SkipToNextLine () does. The only major difference is
that it sets the source line to zero rather than incrementing it, which lets us start fresh at the
beginning of the file. It sets the initial token type to TOKEN_TYPE_INVALID, just to ensure a clean
slate, and resets the lexer state as well.
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The last function in our lexer interface is GetLookAheadChar (), which scans through the source
code from the current position until it finds the first character of the next token. Let’s have a
look at its implementation:

char GetLookAheadChar ()
{

// We don't actually want to move the lexer's indices, so we'll
// make a copy of them

int iCurrSourceLine = g_Lexer.iCurrSourceLine;
unsigned int iIndex = g_Lexer.iIndex1;

// If the next lexeme is not a string, scan past any potential
// leading whitespace

if ( g_Lexer.iCurrLexState != LEX_STATE_IN_STRING )
{

// Scan through the whitespace and check for the end of the line

while ( TRUE )
{

// If we've passed the end of the line, skip to the next
// line and reset the index to zero

if ( iIndex >= strlen ( g_ppstrSourceCode
[ iCurrSourceLine ] ) )

{
// Increment the source code index

iCurrSourceLine += 1;

// If we've passed the end of the source file, just
// return a null character

if ( iCurrSourceLine >= g_iSourceCodeSize )
return 0;

// Otherwise, reset the index to the first character on
// the new line

iIndex = 0;
}
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// If the current character is not whitespace, return it, since
// it's the first character of the next lexeme and is thus the
// look-ahead

if ( ! IsCharWhitespace ( g_ppstrSourceCode
[ iCurrSourceLine ][ iIndex ] ) )
break;

// It is whitespace, however, so move to the next character
// and continue scanning

++ iIndex;
}

}

// Return whatever character the loop left iIndex at

return g_ppstrSourceCode [ iCurrSourceLine ][ iIndex ];
}

The function starts by making a copy of the lexer’s internal indices into the current source line.
Remember, since GetLookAheadChar () is specifically designed to “peek” into the next token with-
out actually advancing the stream, we can’t make any permanent changes to the lexer’s current
state. Figure 9.38 illustrates the look-ahead.

As long as the current lexeme isn’t a string, the function scans through any whitespace to find its
way to the first non-whitespace character. If a whitespace character is found, the scanning loop
breaks and the function returns whatever character it stopped on. Line breaks are also handled
transparently, but without the aid of SkipToNextLine () of course, since that would alter the lexer
state.
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Error Handling
We’re just about ready to dive into parsing, but before we do, there’s one important issue to
address-- how will we handle errors? There are three major aspects of error handling: detection,
resynchronization, and message output. Detection is all about determining when an error has
occurred in the first place, as well as what type of error it was. Resynchronization is the process of
getting the parser back on track so that it can resume its processing, allowing the program to flag
multiple errors (this is how most modern compilers, like Visual C++, produce “cascading” error
messages). Lastly, and most importantly, the error message must be output to the screen or a log
file of some sort in order to alert the user.

XASM is designed to be a simple and to-the-point middleman between the XtremeScript compil-
er we’ll develop later and the XVM. As such, error handling will be clean but minimal. Because
of this, we’ll skip the resynchronization phase and design the program to halt the assembly
process entirely at the first sign of an error.

Errors will be handled with three basic functions. Let’s look at the first one, ExitOnError (). This
function causes the program to display an error message and terminate:

void ExitOnError ( char * pstrErrorMssg )
{

// Print the message
printf ( "Fatal Error: %s.\n", pstrErrorMssg );

// Exit the program
Exit ();

}

As you can see, it’s all rather simple. The func-
tion spits out the error message (with an auto-
matically appended period, which is nice), and
terminates. One thing to note about this func-
tion, however, is that it’s not meant to be used
for code errors. It’s only for general program
errors, like problems with File I/O and the
like. The next two functions will deal specifical-
ly with code errors.

Next up, let’s look at XASM’s most 
versatile code-error handling function,
ExitOnCodeError ():

IMPLEMENTING THE ASSEMBLER
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void ExitOnCodeError ( char * pstrErrorMssg )
{

// Print the message
printf ( "Error: %s.\n\n", pstrErrorMssg );
printf ( "Line %d\n", g_Lexer.iCurrSourceLine );

// Reduce all of the source line's spaces to tabs so it takes less
// space and so the caret lines up with the current token properly
char pstrSourceLine [ MAX_SOURCE_LINE_SIZE ];
strcpy ( pstrSourceLine, g_ppstrSourceCode [ g_Lexer.iCurrSourceLine ] );

// Loop through each character and replace tabs with spaces
for ( unsigned int iCurrCharIndex = 0;

iCurrCharIndex < strlen ( pstrSourceLine ); ++ iCurrCharIndex )
if ( pstrSourceLine [ iCurrCharIndex ] == '\t' )

pstrSourceLine [ iCurrCharIndex ] = ' ';

// Print the offending source line
printf ( "%s", pstrSourceLine );

// Print a caret at the start of the (presumably) offending lexeme
for ( unsigned int iCurrSpace = 0; iCurrSpace < g_Lexer.iIndex0;

++ iCurrSpace )
printf ( " " );

printf ( "^\n" );

// Print message indicating that the script could not be assembled
printf ( "Could not assemble %s.\n", g_pstrExecFilename );

// Exit the program
Exit ();

}

The output of this function is very cool. First, the current source line is printed to the screen so
the user can actually see the offending code. The lexer’s internal indices are then used to place a
caret symbol directly under the character or token that caused the problem; since most code
errors will involve a specific token, this produces accurate results virtually every time. Also, to save
space and to make the process of aligning the caret easier, tabs are filtered out of a local copy of
the source line.
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There are times, however, when all that’s necessary is to let the user know that a specific character
was expected but not found. For this, there’s ExitOnCharExpectedError ():

void ExitOnCharExpectedError ( char cChar )
{

// Create an error message based on the character
char * pstrErrorMssg = ( char * ) malloc ( strlen ( "' ' expected" ) );
sprintf ( pstrErrorMssg, "'%c' expected", cChar );

// Exit on the code error
ExitOnCodeError ( pstrErrorMssg );

}

As you can see, the function is built on top of ExitOnCodeError (), so we get the extra formatting
for free.

Parsing
With the lexical analyzer up and running, you’re ready to build the parser around it. The nice
thing about parsing is that you no longer have to worry about messy string manipulation and pro-
cessing. Instead, you just deal with “building blocks” so to speak; the much higher level tokens
and lexemes that your lexer provides you with. At this point, parsing becomes a rather easy job
(at least, given the method of parsing you’re going to use).

At this point in the pipeline, you’re dealing with a very clean dataset, which is illustrated in Figure
9.39. Whitespace and comments don’t exist, and your only input comes in the form of tokens
(and optional lexemes or look-ahead characters when you request them). From the perspective
of the parser, the human element of source code is almost entirely eliminated. You still have
large-scale evidence of a human presence, such as syntax errors (and in fact, this is the phase in
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which you’ll detect them), but you don’t have to worry about mixed caps, spacing, or anything
along those lines.

The actual process of parsing the token stream is relatively simple. As mentioned in the parsing
introduction, the main principal is identifying the initial token and predicting what should follow
based on how that initial token fits into the rules of the language. Based on these initial tokens,
you can determine what sort of line you’re dealing with—whether it’s a directive, instruction, line
label, whatever—and easily parse the remaining tokens. Once the first line is finished, you read
the next token in the stream (which will correspond with the first token of the next line), and
start the process over, treating the newly read token as the initial token.

9. BUILDING THE XASM ASSEMBLER

NOTE
The XASM parser is a somewhat ad-hoc implementation that most
closely resembles a parsing method known as recursive descent, without
the recursive element. Most generally, this represents an approach to
parsing called top-down parsing, because we start with a general idea of
what the source (the “initial token”) is saying and work our way down
the details.All you need to know at this point is that it’s an easy-to-
implement approach that gets the job done without a lot of fuss.
Writing a top-down parser won’t exactly put you in line for the Nobel
Prize, but it’s a good way to implement simple translation programs like
this assembler that only need to handle a small, narrowly-defined lan-
guage.The real goal is to ultimately compile a high-level language, so
there’s no point in spending months developing the perfect assembler.
This is really just a means to an end.

Initializing the Parser
Before either pass can begin, the parser must be initialized. During the parsing process, a num-
ber of global variables are maintained that track the status of the script. For example, since the
SetStackSize directive can only appear once, a flag that monitors its presence is checked when
the directive is encountered and subsequently set. I’ll list the code first, then we’ll look at each
line:

// ---- Initialize the script header

g_ScriptHeader.iStackSize = 0;
g_ScriptHeader.iIsMainFuncPresent = FALSE;
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// ---- Set some initial variables

g_iInstrStreamSize = 0;
g_iIsSetStackSizeFound = FALSE;
g_ScriptHeader.iGlobalDataSize = 0;

// Set the current function's flags and variables

int iIsFuncActive = FALSE;
FuncNode * pCurrFunc;
int iCurrFuncIndex;
char pstrCurrFuncName [ MAX_IDENT_SIZE ];
int iCurrFuncParamCount = 0;
int iCurrFuncLocalDataSize = 0;

// Create an instruction definition structure to hold instruction information
// when dealing with instructions.
InstrLookup CurrInstr;

// Reset the lexer
ResetLexer ();

First the script header is initialized by setting the stack size to zero and clearing the flag that mon-
itors the presence of _Main (). The instruction stream size is then set to zero, the SetStackSize
flag I mentioned above is cleared, and the global data size is set to zero.

A number of local flags are then declared that the parser will use to keep track of where it is in
the script. iIsFuncActive is a flag that tells us whether or not the current line of code is within a
function. Of course, this is cleared by default. The remaining variables in this section keep track
of the current function’s information; a pointer to its node in the function table, its index, its
name, and so on.

An empty instruction lookup structure is then created, which is passed to GetInstrByMnemonic ()
whenever an instruction’s definition is needed. Lastly, the lexer is reset with a call to ResetLexer
(), and the show is ready to start. With this basic initialization stuff out of the way, we’re going to
knock down each parsing topic one by one, starting with directives.

Directives
I’m now going to cover each of the directives the assembler supports and discuss how each can
be parsed. Remember, directives don’t translate into actual machine code, so the translation stage
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that follows the parsing of a directive really just means storing its information in the appropriate
tables and moving on.

At each iteration of the first pass, an initial token is read with a call to GetNextToken (), like this:

if ( GetNextToken () == END_OF_TOKEN_STREAM )
break;

Note that before doing anything, we make sure we haven’t passed the end of the token stream. If
we have, the loop ends and the second pass begins. Otherwise, a switch is entered, wherein each
case handles a different initial token. Each of the following subsections will represent one of the
cases of this switch:

switch ( g_Lexer.CurrToken )
{

After the following section, you’ll understand enough to write an assembler that can parse and
translate directives (remember, check out the included XASM source!).

SetStackSize
Let’s start with an easy one—SetStackSize. Here’s an example of its usage:

SetStackSize 1024

This simple directive is reduced to only two tokens: TOKEN_TYPE_SETSTACKSIZE and TOKEN_TYPE_INT.
Remember, the stack size must be set by an integer literal. Anything else will result in an error.
Here’s the case that handles SetStackSize:

case TOKEN_TYPE_SETSTACKSIZE:
// SetStackSize can only be found in the global scope, so make sure we
// aren't in a function.
if ( iIsFuncActive )

ExitOnCodeError ( ERROR_MSSG_LOCAL_SETSTACKSIZE );

// It can only be found once, so make sure we haven't already found it
if ( g_iIsSetStackSizeFound )

ExitOnCodeError ( ERROR_MSSG_MULTIPLE_SETSTACKSIZES );

// Read the next lexeme, which should contain the stack size
if ( GetNextToken () != TOKEN_TYPE_INT )

ExitOnCodeError ( ERROR_MSSG_INVALID_STACK_SIZE );
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// Convert the lexeme to an integer value from its string
// representation and store it in the script header
g_ScriptHeader.iStackSize = atoi ( GetCurrLexeme () );

// Mark the presence of SetStackSize for future encounters
g_iIsSetStackSizeFound = TRUE;

break;

That wasn’t so bad, huh? That’s how parsing works. This pattern, as simple as it seems, can be
applied to the entire language and yield just the results you’re after. See how easy this otherwise
intimidating assembly process becomes with the help of structured phases like lexical analysis and
tokenization?

The basic process is as follows. The code first checks iIsFuncActive to make sure the directive was-
n’t found inside a function. If it was, an error occurs. Another test is performed, this time to
make sure another instance of SetStackSize hasn’t already been found. If it has, another error
occurs. Otherwise, the next lexeme is read, which should be the stack size. If this isn’t an integer
token, it’s an invalid stack size and a third error occurs. Otherwise, the lexeme is converted to an
integer value with atoi () and the stack size is set in the script header, along with the
g_iIsSetStackSizeFound flag.

Func
Functions are declared with the Func directive, and consist of three tokens. For example:

Func MovePlayer
{

This code consists primarily of three tokens: TOKEN_TYPE_FUNC for the Func directive,
TOKEN_TYPE_IDENT for the MovePlayer function name, and TOKEN_TYPE_OPEN_BRACE. There is one issue,
however, because there’s a line break between the function name and the brace. In this particular
case, the lexer would return:

TOKEN_TYPE_FUNC
TOKEN_TYPE_IDENT
TOKEN_TYPE_NEWLINE
TOKEN_TYPE_OPEN_BRACE

However, as I mentioned earlier in the chapter, the syntax of our language is designed to grace-
fully support any particular curly-brace style, which may mean that the function name and curly
brace won’t be separated by any line breaks at all. To cover all bases, the parser is going to have to
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check for any number of line breaks, from 0 to N, between the name of the function and the
opening brace. This will allow the users to use whatever style they’re used to. Let’s look at some
code to parse it (also check out Figure 9.40):

case TOKEN_TYPE_FUNC:
{

// First make sure we aren't in a function already, since nested functions
// are illegal
if ( iIsFuncActive )

ExitOnCodeError ( ERROR_MSSG_NESTED_FUNC );

// Read the next lexeme, which is the function name
if ( GetNextToken () != TOKEN_TYPE_IDENT )

ExitOnCodeError ( ERROR_MSSG_IDENT_EXPECTED );
char * pstrFuncName = GetCurrLexeme ();

// Calculate the function's entry point, which is the instruction
// immediately following the current one, which is in turn equal to the
// instruction stream size
int iEntryPoint = g_iInstrStreamSize;

// Try adding it to the function table, and print an error if it's already
// been declared
int iFuncIndex = AddFunc ( pstrFuncName, iEntryPoint );
if ( iFuncIndex == -1 )

ExitOnCodeError ( ERROR_MSSG_FUNC_REDEFINITION );

// Is this the _Main () function?
if ( strcmp ( pstrFuncName, MAIN_FUNC_NAME ) == 0 )
{

g_ScriptHeader.iIsMainFuncPresent = TRUE;
g_ScriptHeader.iMainFuncIndex = iFuncIndex;

}

// Set the function flag to true for any future encounters and
// reinitialize function tracking variables
iIsFuncActive = TRUE;
strcpy ( pstrCurrFuncName, pstrFuncName );
iCurrFuncIndex = iFuncIndex;
iCurrFuncParamCount = 0;
iCurrFuncLocalDataSize = 0;
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// Read any number of line breaks until the opening brace is found
while ( GetNextToken () == TOKEN_TYPE_NEWLINE );

// Make sure the lexeme was an opening brace
if ( g_Lexer.CurrToken != TOKEN_TYPE_OPEN_BRACE )

ExitOnCharExpectedError ( '{' );

// All functions are automatically appended with Ret, so increment the
// required size of the instruction stream
++ g_iInstrStreamSize;

break;
}
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We begin by first making sure a function isn’t already being parsed. If it is, the current Func direc-
tive is illegal and an error is reported. Otherwise, the next lexeme is read, which should be the
function name. If it’s not a valid identifier, an error is reported. The function’s entry point is then
calculated, which is always equal to the current number of instructions in the stream. This initial
function information (the name and entry point) is added to the function table with a call to
AddFunc ().

The function name is then analyzed to find out if it’s _Main (). If it is, the _Main () flag is set in
the script header and the function’s index is recorded. We then set the function tracking vari-
ables so that subsequent iterations of the parser know:

■ We’re currently inside a function.
■ The current function’s name.
■ The current function’s index.
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During the parsing of the function’s body, you need to count the number of parameters and
local variables as the function is parsed, which is why we initialize iCurrFuncParamCount and
iCurrFuncLocalDataSize to zero. When the end of the function is reached, you can send this infor-
mation to SetFuncInfo () to finalize the function’s entry in the table. Speaking of the end of a
function, you need to parse that too, of course. You haven’t learned how the instructions between
the curly braces are parsed yet, so you’re basically making a jump from the start of the function
to the end, but I’ll fill in the guts soon.

The end of a function is probably the easiest thing to parse in the whole language, because you
just have to read a TOKEN_TYPE_CLOSE_BRACE token. Once the function is read, you need to check
the global flags to make sure that a function is active (otherwise you have a dangling closing curly
brace out in the middle of nowhere). If it is, you can fill in the function’s data with the complet-
ed totals set in iCurrFuncParamCount and iCurrFuncLocalDataSize.

Lastly, there’s one other thing the parser needs to do to translate the end of a function.
Remember that XASM will automatically append the necessary Ret instruction to the end of each
function. Remember also that the first pass of the assembler counts each instruction in order to
allocate an instruction stream of the proper size before the second pass begins. Because of this,
you need to remember to increment the instruction count by one each time a function ends to
make room for the extra Ret.

Here's the code:
case TOKEN_TYPE_CLOSE_BRACE:

// This should be closing a function, so make sure we're in one
if ( ! iIsFuncActive )

ExitOnCharExpectedError ( '}' );

// Set the fields we've collected
SetFuncInfo ( pstrCurrFuncName, iCurrFuncParamCount,

iCurrFuncLocalDataSize );

// Close the function
iIsFuncActive = FALSE;

break;

All we need to do is make sure we’re in a function (reporting an error otherwise), save the infor-
mation about the function we collected with SetFuncInfo (), and clear the active function flag.
Now that you can parse functions, let’s look at how you parse the directives you’ll find inside
them; namely, Var and Param.
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Var/Var []
The Var and Var [] directives can occur both inside and outside of functions. As you’ve learned,
those found outside declare variables and arrays within the global scope, and those found inside
declare them in a scope local to that function.

Like I mentioned earlier when discussing the lexer, you’ll need to utilize a one-character look-
ahead when parsing the Var directive due to its optional [] notation for declaring arrays. Because
the identifier following the Var lexeme might not be the end of the line, you’ll find yourself in a
non-deterministic situation that can only be resolved by examining the first character ahead of
the current position. Check out Figure 9.41.
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The non-deterministic

nature of variable/

array declaration.

Let’s start small and just handle single variables. Variables are declared in the form of the follow-
ing example:

Var X

Which, fortunately, only translates to two tokens: TOKEN_TYPE_VAR and TOKEN_TYPE_IDENT. When a
variable is encountered, you of course add it immediately to the symbol table. However, in order
to properly determine its stack index, you need to know whether you’re in a global or local
scope. To do this, you check the value of g_IsFuncActive.

If you’re in a function, you subtract the value of iCurrFuncLocalDataSize plus two from zero to
obtain the relative stack index. Why do you do this? Think of it like this—although positive stack
indices start from zero, negatives always start from -1 (because negative and positive indices can’t
“share” the zero index). When you encounter your first local variable, whose stack index should
be -1, iCurrFuncLocalDataSize will be set to zero. However, for reasons we’ll see in the next chap-
ter, the top element of the stack (residing at index -1) has to be reserved for some of the VM’s
internal bookkeeping, so our variables get pushed down to index -2. Adding two to
iCurrFuncLocalDataSize will result in a sum of two, which, when subtracted from zero, yields -2--the
correct stack index. When the second variable is read, iCurrFuncIndex will equal 1. You increment
this by two, subtract it from zero, resulting in -3, and you have the next stack index. This contin-
ues onward as more and more variables are read. See Figure 9.42 if you’re as confused as I am.
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Things are different in the case of globals. Global variables should get their own counter, because
they’re separate from locals and because, technically, global declarations can appear in between
function declarations. This is why we initialized g_ScriptHeader.iGlobalDataSize to zero earlier.
Every time a global variable is encountered, the current global data size is used as its index.
Because this size starts out at zero, and the first global’s stack index is zero, you can see how this
relationship works. Check out Figure 9.43 for a better view of how locals and globals co-exist on
the stack.
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With all that sorted out, let’s take a look at the code for parsing single variables, in both the local
and global scope:

case TOKEN_TYPE_VAR:
{

// Get the variable's identifier
if ( GetNextToken () != TOKEN_TYPE_IDENT )

ExitOnCodeError ( ERROR_MSSG_IDENT_EXPECTED );
char pstrIdent [ MAX_IDENT_SIZE ];
strcpy ( pstrIdent, GetCurrLexeme () );

// This version of the code only handles single variables
int iSize = 1;

// Determine the variable's index into the stack

// If the variable is local, then its stack index is always the local data
// size + 2 subtracted from zero
int iStackIndex;
if ( iIsFuncActive )

iStackIndex = -( iCurrFuncLocalDataSize + 2 );
// Otherwise it's global, so it's equal to the current global data size
else

iStackIndex = g_ScriptHeader.iGlobalDataSize;

// Attempt to add the symbol to the table
if ( AddSymbol ( pstrIdent, iSize, iStackIndex, iCurrFuncIndex ) == -1 )

ExitOnCodeError ( ERROR_MSSG_IDENT_REDEFINITION );

// Depending on the scope, increment either the local or global data size
// by the size of the variable
if ( iIsFuncActive )

iCurrFuncLocalDataSize += iSize;
else

g_ScriptHeader.iGlobalDataSize += iSize;

break;
}

Once Var is read, the first thing to do is make sure the following token is an identifier. If not, the
declaration is invalid and an error is reported, otherwise, a local copy is made. For now, we set

IMPLEMENTING THE ASSEMBLER



538

the variable size (stored in iSize) to 1 by default since this initial code won’t handle arrays. 
The variable’s stack index is then calculated using the same algorithm described earlier, and
saved in iStackIndex. Using this information, a new symbol is added using AddSymbol (), which
reports an error in the event of a variable redefinition. Lastly, the current function’s local data
size is incremented by the size of the variable if the scope is local. Otherwise, the global data size
is incremented.

This works, but of course, only handles single variables. To support arrays, you need to start by
adding extra parsing code to interpret the extra tokens an array declaration brings with it. Here’s
an example:

Var MyArray [ 16384 ]

This code creates an array of 16,384 elements and is reduced by the lexer to the following tokens:
TOKEN_TYPE_VAR, TOKEN_TYPE_IDENT, TOKEN_TYPE_OPEN_BRACE, TOKEN_TYPE_INT, and
TOKEN_TYPE_CLOSE_BRACE.

Of course, in order to interpret these extra tokens, you need to use a look-ahead. Once you’ve
parsed the array, the actual addition to the symbol table isn’t much different. The only real
change is taking the larger size into account in a few places, because the only difference between
a variable and an array in XVM Assembly is how many stack elements it occupies.

Here’s a new version of the code, now augmented to parse and translate array declarations as
well:

case TOKEN_TYPE_VAR:
{

// Get the variable's identifier
if ( GetNextToken () != TOKEN_TYPE_IDENT )

ExitOnCodeError ( ERROR_MSSG_IDENT_EXPECTED );

char pstrIdent [ MAX_IDENT_SIZE ];
strcpy ( pstrIdent, GetCurrLexeme () );

// Now determine its size by finding out if it's an array or not, otherwise
// default to 1.
int iSize = 1;

// Find out if an opening bracket lies ahead
if ( GetLookAheadChar () == '[' )
{

// Validate and consume the opening bracket
if ( GetNextToken () != TOKEN_TYPE_OPEN_BRACKET )

ExitOnCharExpectedError ( '[' );
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// We're parsing an array, so the next lexeme should be an integer
// describing the array's size
if ( GetNextToken () != TOKEN_TYPE_INT )

ExitOnCodeError ( ERROR_MSSG_INVALID_ARRAY_SIZE );

// Convert the size lexeme to an integer value
iSize = atoi ( GetCurrLexeme () );

// Make sure the size is valid, in that it's greater than zero
if ( iSize <= 0 )

ExitOnCodeError ( ERROR_MSSG_INVALID_ARRAY_SIZE );

// Make sure the closing bracket is present as well
if ( GetNextToken () != TOKEN_TYPE_CLOSE_BRACKET )

ExitOnCharExpectedError ( ']' );
}

// Determine the variable's index into the stack

// If the variable is local, then its stack index is always the local data
// size + 2 subtracted from zero
int iStackIndex;
if ( iIsFuncActive )

iStackIndex = -( iCurrFuncLocalDataSize + 2 );
// Otherwise it's global, so it's equal to the current global data size
else

iStackIndex = g_ScriptHeader.iGlobalDataSize;

// Attempt to add the symbol to the table
if ( AddSymbol ( pstrIdent, iSize, iStackIndex, iCurrFuncIndex ) == -1 )

ExitOnCodeError ( ERROR_MSSG_IDENT_REDEFINITION );

// Depending on the scope, increment either the local or global data size
// by the size of the variable
if ( iIsFuncActive )

iCurrFuncLocalDataSize += iSize;
else

g_ScriptHeader.iGlobalDataSize += iSize;

break;
}
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Pretty simple addition, huh? It was just a matter of taking the new variable size into account. If
the look-ahead reveals an open bracket, two tokens are read. The first should be the bracket
itself, and the second should be an integer token correlating to the size of the array. The lexeme
is translated into a real integer with atoi (), and the value is saved in iSize. Finally, the closing
bracket is verified and the process continues as normal.

Param
Although you wouldn’t initially assume it, Param is an exception to the usual convention of pars-
ing all directives in the first pass. The reason you have to save this until the second pass is because
a parameter’s location on the stack is entirely relative to the final size of the function’s local data.
For example, if a function declares four variables, the last local variable will reside on the stack at
index -5 (remember, local variables start at index -2), the return address will be at -6, and the first
parameter will be at -7. If the function declares only two local variables, the first parameter will be
found at -5. If the function declares eight variables and an array of 12 elements, the parameters
won’t start until index -23. The total size of the function’s local data isn’t known until the func-
tion has been fully scanned, which means you’ll have already missed the Param directives, and
thus, have to wait until the second pass. The parser does make a note of Param instances in the
first pass simply to count them and increment g_FuncParamCount, but the parameters themselves
are not recorded to the symbol table until the second. Figure 9.44 should help the brain swelling
go down.

What this also means is that unlike variables, parameters cannot be forward referenced. Of
course, you shouldn’t be using forward parameter references to begin with, so this won’t be a
problem. :)
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Just as in the first pass, the second pass will keep track of which function it’s in, which is helpful
so you can assign it to the parameter with the proper scope. You’ll also need to once again keep
track of iCurrFuncParamCount for each function, because the current parameter count will help
you determine the stack index. The stack index for a parameter is always relative to the function’s
local data size (as usual, the extra 1 is for the return address). Therefore, if the local data size is 6,
the parameter’s stack address is (-7 - 2), or -9. The Param directive has the same form of a single
variable declaration, so here’s an example:

Param Y

The lexer will reduce this line of code to TOKEN_TYPE_PARAM, and TOKEN_TYPE_IDENT. Here’s some
code for parsing parameter declarations:

case TOKEN_TYPE_PARAM:
{

// Read the next token to get the identifier
if ( GetNextToken () != TOKEN_TYPE_IDENT )

ExitOnCodeError ( ERROR_MSSG_IDENT_EXPECTED );

// Read the identifier, which is the current lexeme
char * pstrIdent = GetCurrLexeme ();

// Calculate the parameter's stack index
int iStackIndex = -( pCurrFunc->iLocalDataSize + 2 +

( iCurrFuncParamCount + 1 ) );

// Add the parameter to the symbol table
if ( AddSymbol ( pstrIdent, 1, iStackIndex, iCurrFuncIndex ) == -1 )

ExitOnCodeError ( ERROR_MSSG_IDENT_REDEFINITION );

// Increment the current parameter count
++ iCurrFuncParamCount;

break;
}

This simple parser first makes sure that the current token is an identifer, much like Var did. Once
the identifier has been validated, the parameter’s stack index is calculated by adding two to the
local data size, plus the current number of parameters, plus one (to make room for the return
address).

And there you have it—parsing code for handling each directive.
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Line Labels
Line labels will first appear to the parser in the form of an identifier token, since that’s what a label
is. This means that any time your initial token is TOKEN_TYPE_IDENT, the look-ahead character can be
used to find out if the following token is a colon. If so, it’s definitely a line label declaration.

Here’s an example of a line label:

MyLabel:

It’s yet another simple structure to parse. The lexer will spit this out as TOKEN_TYPE_IDENT and
TOKEN_TYPE_COLON, which makes your job pretty easy. Here’s the code:

case TOKEN_TYPE_IDENT:
{

// Make sure it's a line label
if ( GetLookAheadChar () != ':' )

ExitOnCodeError ( ERROR_MSSG_INVALID_INSTR );

// Make sure we're in a function, since labels can only appear there
if ( ! iIsFuncActive )

ExitOnCodeError ( ERROR_MSSG_GLOBAL_LINE_LABEL );

// The current lexeme is the label's identifier
char * pstrIdent = GetCurrLexeme ();

// The target instruction is always the value of the current
// instruction count, which is the current size - 1
int iTargetIndex = g_iInstrStreamSize - 1;

// Save the label's function index as well
int iFuncIndex = iCurrFuncIndex;

// Try adding the label to the label table, and print an error if it
// already exists
if ( AddLabel ( pstrIdent, iTargetIndex, iFuncIndex ) == -1 )

ExitOnCodeError ( ERROR_MSSG_LINE_LABEL_REDEFINITION );

break;
}

The code begins by making sure a colon follows the identifier. If not, we can assume that it actu-
ally wasn’t a label, but rather an invalid instruction. The label’s scope is then checked to make
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sure it’s not being declared globally, which is illegal. Both of these cases result in errors. The cur-
rent lexeme contains the label itself, and the current instruction (which is always equal to the cur-
rent size of the instruction stream minus one) is locally saved as the label’s target instruction
index. The function in which the label resides is also recorded, and all of this information is
saved in a new entry in the label table using AddLabel (). If the label already exists, a label redefi-
nition error is reported.

Done and done. At this point, the only thing your theoretical parser can’t do is handle instruc-
tions. Of course, I’ve saved the biggest job for last.

Instructions
Like the parsing of Param directives, instruction parsing takes place in the second pass. During
this pass, with the exception of parameter information, you know everything you need to know
about the script. You know all about its functions, what instructions each line label targets, and
have information on all of the script’s local and global variables. In other words, you’re capable
of resolving any operand you come across and reducing instructions to machine code.

Generally speaking, there are two basic ways to approach the interpretation of an instruction set.
Rather than introduce them here, I’ll let them speak for themselves in the following subsections.

The Brute Force Approach
The first and most obvious approach is just to use brute force. Whenever an instruction needs to
be parsed, you enter a giant if-else if-else block that compares the lexeme to each instruction
mnemonic in the language. Once the mnemonic has been matched, it’s just a simple matter of
parsing the instruction’s operands like you’ve parsed everything else.

Here’s a pseudo-code example of parsing a Mov instruction:

// Save the instruction's mnemonic
string InstrMnemonic = GetCurrLexeme ();
// Are we dealing with a Mov instruction?
if ( InstrMnemonic == "MOV" )
{

// Parse first operand
// Parse comma
if ( GetNextToken () != TOKEN_TYPE_COMMA )

ExitOnCharExpectedError ( ',' );
// Parse second operand
// etc.

}
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Notice that I’ve pretty much glossed over the process of parsing the operands. This is because
operand parsing is a rather huge job and would only end up cluttering this example. In fact, it’s
easily the most complex part of parsing an instruction. In fact, therein lies the problem.

Think about it—any given operand can be one of any number of types. Some of these involve sin-
gle tokens; others involve many. There are some simple ones, like integer and float literals, the
_RetVal register, and line labels and function calls, all of which are deterministic and simple to
parse. Then there are deterministic operands that take up multiple tokens; for example, strings
that always start with a double quote, followed by a string literal value, followed by a closing dou-
ble quote. And lastly, there are multiple-token operands that are non-deterministic; namely, vari-
able references (which are themselves single-token) and array references. And within array refer-
ences you’ve got two further “subtypes”, because you have to differentiate between integer literal
array indices and variable indices! In a word, it’s complicated.

However, parsing line labels and every supported directive was complicated too, and you solved it
relatively easily with a simple, methodical parsing approach. You can do the same here. The prob-
lem, however, is that you have a lot of instructions, and if each is represented individually by its
own else if block, you’re going to have to physically duplicate the potentially huge operand-
parsing logic countless times, which is unacceptable.

This is why it’s generally a bad idea to manually write parsing code for each instruction.
Furthermore, it’s a rigid approach as well. If you want to add, remove, or worst of all, change a
given instruction, you have to mess with this huge, unruly block of code. This in itself is an error-
prone and laborious process that I think we’d all like to avoid if possible.

Fortunately, there’s a solution that’s not only elegant and easy to implement, but infinitely more
robust, flexible, and compact.

A Generic Instruction Parser
If for no other reason, you probably knew from the start that the brute force approach outlined
previously wasn’t going to be the final word on instruction parsing because it ignores one of the
first things you learned about how assemblers work—the instruction lookup table. There’s no
need for such a table if each instruction is represented with its own block of code, but I probably
wouldn’t have wasted everyone’s time mentioning it in the first place if you weren’t going to use
it, right?

Your intuition has served you well, because this is exactly right. Rather than directly code an indi-
vidual parser for each instruction, you’ll instead write a single generic one. However, the “single
instruction” that this parser understands can be changed based on a number of input values,
which it’ll read from the master instruction lookup table. These values will tell it which instruc-
tion to parse and what sort of operands to anticipate. Check out Figure 9.45.
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Since we’ve already designed and implemented the instruction lookup table, we have everything
we need to get started. Just as a refresher, the each entry in the instruction lookup table contains:

■ The instruction’s mnemonic, which is used to map instructions in the source file to their
entries in the table.

■ The opcode.
■ The number of operands the instruction accepts.
■ A dynamic array of 4-byte bitfields, each of which contains a series of 1-bit flags that

determine which data types the corresponding operand can accept.

Let’s see how this data can be applied to a generic instruction parser.

Assembling the Opcode

The first and most obvious step in assembling an instruction is translating the mnemonic to 
an opcode. This is accomplished with a simple call to GetInstrByMnemonic (), which fills an
InstrLookup structure with information regarding the instruction. Here’s the initial code for the
instruction parser:

case TOKEN_TYPE_INSTR:
{

// Get the instruction's info using the current lexeme (the mnemonic )
GetInstrByMnemonic ( GetCurrLexeme (), & CurrInstr );

// Write the opcode to the stream
g_pInstrStream [ g_iCurrInstrIndex ].iOpcode = CurrInstr.iOpcode;

This code is invoked when the lexer returns an instruction token, and begins by using the cur-
rent lexeme (which contains the instruction mnemonic) to retrieve the instruction’s lookup

IMPLEMENTING THE ASSEMBLER

Figure 9.45

A generic instruction

parser.



546

structure. This is why we declared the CurrInstr structure when the parser was initialized. This
structure is initially used to write the opcode to the instruction stream at the index specified by
g_iCurrInstrIndex.

The parser thus far will produce an assembled instruction stream that represents each source
code instruction as an opcode. There aren’t any operands yet, but it’s definitely a start and pro-
vides a true, assembled “skeleton” of the final script.

Assembling the Operand Count

The next logical step in your instruction parser is the ability to add the operand count to the
assembled instruction stream. If you recall earlier discussions, each instruction in the stream is
composed of the following components: the opcode, the operand count, and the operand data
itself. Because the operands are easily the most complex aspect of assembling instructions, you
can work your way up by first adding the operand count field.

// Write the operand count to the stream
g_pInstrStream [ g_iCurrInstrIndex ].iOpCount = CurrInstr.iOpCount;

// Allocate space to hold the operand list
Op * pOpList = ( Op * ) malloc ( CurrInstr.iOpCount * sizeof ( Op ) );

This next block of code in the instruction parser reads the iOpCount field from the CurrInstr
structure and writes it to the corresponding field in the current instruction in the assembled
stream. In addition, it also goes ahead and allocates the space for the assembled operands; once
we have the operand count, we have enough information to do this. This new array will be used
by the remainder of the instruction parser to hold the assembled operands’ types and data.

At this point, two thirds of the instruction has been assembled, so let’s check out the final step.

Assembling the Operands

Handling the operands of an instruction is a two-fold process. First, and most obviously, there’s
the issue of parsing and assembling them. However, before you do this, you need to know exactly
which operands you’re looking for in the first place. For example, you’ll parse a line label differ-
ently than you will a string or array index, so if you’re parsing a jump instruction’s line label
operand, there’s no need to waste time looking for other operand types.

Since each operand in the instruction lookup table is defined with a bitfield, we created a num-
ber of masks that could be used to read and write individual bits. Table 9.18 reiterates these
masks to refresh your memory.

9. BUILDING THE XASM ASSEMBLER
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I mentioned originally that these masks don’t match up directly with the specific operand types
we’ve established because the parser only needs a general idea of which operands are acceptable,
as opposed to the exact type that was used. The XVM, however, will need to know exactly what
type of operand was actually used at runtime, because variables, arrays indexed with integer liter-
als, and arrays indexed with variables are all handled differently. In fact, you’ll need a new set of
constants to handle the outgoing operand types that are written to the instruction stream. These
will correspond with the operand types we decided upon in the description of the .XSE format.
Table 9.19 lists these types.

You can now begin the implementation of your operand parser. Because each instruction can
have N number of operands, you need to write your parser in the form of a loop. On a basic
level, the loop should iterate through each operand specified by the iOpCount field we read from
CurrInstr, and read the OpList [] array to determine which types are supported by that particular
operand.

With the opcode and operand count written to the stream, the next part of the instruction parser
is the operand parsing loop. The loop starts by reading out the operand type bitfield, reading in
the operand’s initial token processing the operand, and ensuring that each operand except for
the last is followed by a comma. Here’s the general skeleton:

IMPLEMENTING THE ASSEMBLER

Table 9.18  Operand Type Bitfield Masks
Constant Value Description

OP_FLAG_TYPE_INT 1 Integer literal value

OP_FLAG_TYPE_FLOAT 2 Floating-point literal value

OP_FLAG_TYPE_STRING 4 String literal value

OP_FLAG_TYPE_MEM_REF 8 Memory reference (variable or array index)

OP_FLAG_TYPE_LINE_LABEL 16 Line label (used in jump instructions)

OP_FLAG_TYPE_FUNC_NAME 32 Function name (used in the Call instruction)

OP_FLAG_TYPE_HOST_API_CALL 64 Host API call (used in the CallHost
instruction)

OP_FLAG_TYPE_REG 128 A register, which is always the _RetVal regis-
ter in our case
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// Loop through each operand, read it from the source and assemble it
for ( int iCurrOpIndex = 0; iCurrOpIndex < CurrInstr.iOpCount;

++ iCurrOpIndex )
{

// Read the operand's type bitfield
OpTypes CurrOpTypes = CurrInstr.OpList [ iCurrOpIndex ];

// Read in the next token, which is the initial token of the operand
Token InitOpToken = GetNextToken ();

// --- Process the operand

// Make sure a comma follows the operand, unless it's the last one
if ( iCurrOpIndex < CurrInstr.iOpCount - 1 )

if ( GetNextToken () != TOKEN_TYPE_COMMA )
ExitOnCharExpectedError ( ',' );

}
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Table 9.19  Operand List Type Constants
Constant Description

OP_TYPE_INT Integer literal value

OP_TYPE_FLOAT Floating-point literal value

OP_TYPE_STRING String literal index

OP_TYPE_ABS_STACK_INDEX An absolute stack index (for variables and arrays
indexed with integer literals)

OP_TYPE_REL_STACK_INDEX A relative stack index (for arrays indexed with 
variables)

OP_TYPE_INSTR_INDEX An instruction index (used for jump targets)

OP_TYPE_FUNC_INDEX Function index (used for Call instructions)

OP_TYPE_HOST_API_CALL_INDEX Host API call index (used for CallHost instructions)

OP_TYPE_REG A register, which in our case always means the
_RetVal register
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// Make sure there's no extraneous stuff ahead
if ( GetNextToken () != TOKEN_TYPE_NEWLINE )

ExitOnCodeError ( ERROR_MSSG_INVALID_INPUT );

// Copy the operand list pointer into the assembled stream
g_pInstrStream [ g_iCurrInstrIndex ].pOpList = pOpList;

// Move along to the next instruction in the stream
++ g_iCurrInstrIndex;

This actually brings you closer than you might think to a working operand parser and assembler.
You also might notice that this code listing includes the completion of the instruction; the parser
makes sure there’s nothing following the end of the instruction on the line, the operand list
pointer is copied into the assembled instruction stream, and g_iCurrInstrIndex is incremented.

So now, all that’s really left is to identify and parse the operands as they exist in the source code.
The framework around which this process can be carried out is already in place, so you’re only
one step away from completion. Once you’re inside the operand loop, the next token you read is
the first token of the operand. This is like a new “initial token”, and so your parsing strategy will
be based on whatever its type happens to be.

The easiest operands to parse are of the deterministic, single-token variety. These include:

■ Integer literals
■ Floating-point literals
■ The _RetVal register

All of these operands exist as single tokens. The basic strategy here, then, is to read the initial
token and determine what its type is. You can use a switch construct to compare this type to each
of the possible operand types until you find a match. When you find a match, you first validate
the operand type against the current instruction; in other words, you make sure that the operand
of the instruction you’re dealing with supports the operand type you’ve found. If this checks out,
you can proceed to parse and translate the operand into its assembled state and write it to the
instruction stream. If it’s not supported, you can of course exit on an error.

// --- Process the operand
switch ( InitOpToken )
{

// An integer literal
case TOKEN_TYPE_INT:

// Make sure the operand type is valid
if ( CurrOpTypes & OP_FLAG_TYPE_INT )
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{
// Set an integer operand type
pOpList [ iCurrOpIndex ].iType = OP_TYPE_INT;

// Copy the value into the operand list from the current
// lexeme
pOpList [ iCurrOpIndex ].iIntLiteral = atoi ( GetCurrLexeme () );

}
else

ExitOnCodeError ( ERROR_MSSG_INVALID_OP );

break;
}

This code implements an integer operand parse-and-assemble sequence. Of course, that leaves a
number of other operand types, but you get the idea. The process is virtually the same for all
operands; the basic process is to use the same type of parsing strategies you’ve used for every-
thing else to read out the operand itself. Analysis of the lexemes associated with each token can
then be converted to the data that needs to be written out to the executable in the instruction
stream.

Rather than just give you a code dump, let’s explore the actual process behind parsing each type
of operand. These algorithms, when coded, form the remaining cases in the switch block.
Implementation of each of these can be found in the XASM source, of course.

■ Integer literals. This operand type was also listed in the previous code, but here’s the ver-
bal explanation. Because integers are simple, deterministic tokens, you need only read
out the initial token. If it’s of type TOKEN_TYPE_INT, you know the operand is already fully
read from the token stream. You then use atoi () to convert the lexeme (which is a
string representation of the number) to its numeric equivalent and write that to the
operand list. The operand type is set to OP_TYPE_INT.

■ Floating-point literal. Floating-point literals are treated in the exact same way integers
are, except you need to read a TOKEN_TYPE_FLOAT token. The lexeme is then converted to
a floating-point numeric with atof (), which is written to the operand list. The operand
type is set to OP_TYPE_FLOAT.

■ String literal. This is a relatively easy operand to parse (which is ironic, given how com-
plicated it was to lex), but it does require more than one token to express. If the initial
token is TOKEN_TYPE_QUOTE, you know a string is on the way. The next token is read, which
should be of type TOKEN_TYPE_STRING. This token’s lexeme is the string value itself, which
is immediately written to the string table. AddString () will return the string’s index,
which is then written out to the operand list. The operand type is set to OP_TYPE_STRING.
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■ The _RetVal register. _RetVal is another easy one. It exists as a single, deterministic token,
which means all you need to do is make sure the initial token is TOKEN_TYPE_REG, and write
the register code zero to the operand list. The operand type is set to OP_TYPE_REG.

■ Line labels. This is the first operand type that involves an identifier, which makes it non-
deterministic. The reason for this is that labels, function names, host API calls, variables,
and arrays indices all either begin with identifiers or are solely defined as identifiers.
Fortunately, you can easily resolve this situation by checking the supported operand type
bitfield for that particular operand. If a line label is accepted, the identifier must be the
label. You then get the label’s target index from the label table and write this to the
operand list. The operand type is set to OP_TYPE_INSTR_INDEX.

■ Variables. Variables are the first operands you need to check for when the operand type
bitfield contains an OP_TYPE_MEM_REF flag. If the look-ahead character does not reveal an
open bracket, you know there’s no array reference to worry about. You then use the vari-
able name as a search key for the symbol table to retrieve the variable’s stack index, and
write that to the operand list. Note also that local variables, global variables, and parame-
ters are all taken care of with this simple process—the only difference between all three
of these are their stack indices, which is handled transparently by the symbol table. The
operand type is set to OP_TYPE_ABS_STACK_INDEX.

■ Array indices. Arrays can be indexed with both integer literals and variables, two cases
that must be handled separately. Array index operands always start out as variables until
the open bracket is discovered with the look-ahead. The parser then focuses on the
structure of the array index, which is always one of two token sequences, depending on
the index type: TOKEN_TYPE_OPEN_BRACKET, TOKEN_TYPE_INT and TOKEN_TYPE_CLOSE_BRACKET,
or TOKEN_TYPE_OPEN_BRACKET, TOKEN_TYPE_IDENT, TOKEN_TYPE_CLOSE_BRACKET. In the first
case (an integer index), the integer is added to the base address of the array (using the
symbol table to find the stack index) and written to the operand as an absolute stack
index operand. In the second case (variable index), the arrays base index is written out
to the operand list along with the index of the variable and the operand type is set to rel-
ative stack index. The operand type is set to OP_TYPE_REL_STACK_INDEX.

■ Function names. Function names are used as operands to the Call instruction and are a
single TOKEN_TYPE_IDENT token. This token’s lexeme contains the function name itself,
which is used as a search key into the function table to retrieve the function’s index. This
index is then written to the operand list. The operand type is set to OP_TYPE_FUNC_INDEX.

■ Host API calls. Calls to the host API are treated much like string literal values in the
sense that they’re added to the host API call table and replaced with an index.
AddHostAPICall () is used to add the call, which returns the index that must be written
to the operand table. The operand type is set to OP_TYPE_HOST_API_CALL_INDEX.

This sums up the operand-parsing process. This list should go hand in hand with a personal exam-
ination of the XASM source, which provides a complete explanation of how the assembler works.

IMPLEMENTING THE ASSEMBLER
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Building the .XSE Executable
The source file has been fully assembled, so all that remains is dumping everything into an .XSE
file. We already know what the structure of the file is like, so let’s look at some code. To get start-
ed, the file is opened for binary output (assume pstrFilename) contains the name of the exe-
cutable file):

FILE * pExecFile;
if ( ! ( pExecFile = fopen ( pstrFilename, "wb" ) ) )

ExitOnError ( "Could not open executable file for output" );

With the file open, we can begin writing data.

The Header
The header is written first:

// Write the ID string (4 bytes)
fwrite ( XSE_ID_STRING, 4, 1, pExecFile );

// Write the version (1 byte for each component, 2 total)
char cVersionMajor = VERSION_MAJOR,

cVersionMinor = VERSION_MINOR;
fwrite ( & cVersionMajor, 1, 1, pExecFile );
fwrite ( & cVersionMinor, 1, 1, pExecFile );

// Write the stack size (4 bytes)
fwrite ( & g_ScriptHeader.iStackSize, 4, 1, pExecFile );

// Write the global data size (4 bytes )
fwrite ( & g_ScriptHeader.iGlobalDataSize, 4, 1, pExecFile );

// Write the _Main () flag (1 byte)
char cIsMainPresent = 0;
if ( g_ScriptHeader.iIsMainFuncPresent )

cIsMainPresent = 1;
fwrite ( & cIsMainPresent, 1, 1, pExecFile );

// Write the _Main () function index (4 bytes)
fwrite ( & g_ScriptHeader.iMainFuncIndex, 4, 1, pExecFile );

9. BUILDING THE XASM ASSEMBLER
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Notice that the function makes a number of local copies of the data before writing it. This is
done to ensure that the variable written to the file occupies the exact number of bytes specified
by the format. Even though 32-bit integers are used to store most integer values internally, many
of these values are represented more efficiently in the file as 8- and 16-bit values. In these cases,
the values are temporarily stored in char and short variables.

Everything beyond that should speak for itself. Each field is written from its structure, one by
one.

The Instruction Stream
The instruction stream comes next, and is probably the most complex structure to write. Much
like we saw in the parsing phase, the writing of the instruction stream is complicated by the fact
that each operand type must be handled differently.

The general strategy when writing the stream is this:

■ Start by writing the instruction count.
■ Loop through each instruction in the stream and write out its opcode and operand

count.
■ Loop through each operand in the instruction’s operand array and write out its type.

Following the type, use a switch block to write out the specific operand data based on
the type.

Here’s the code:

// Output the instruction count (4 bytes)
fwrite ( & g_iInstrStreamSize, 4, 1, pExecFile );

// Loop through each instruction and write its data out
for ( int iCurrInstrIndex = 0;

iCurrInstrIndex < g_iInstrStreamSize;
++ iCurrInstrIndex )

{
// Write the opcode (2 bytes)
short sOpcode = g_pInstrStream [ iCurrInstrIndex ].iOpcode;
fwrite ( & sOpcode, 2, 1, pExecFile );

// Write the operand count (1 byte)
char iOpCount = g_pInstrStream [ iCurrInstrIndex ].iOpCount;
fwrite ( & iOpCount, 1, 1, pExecFile );
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// Loop through the operand list and print each one out
for ( int iCurrOpIndex = 0; iCurrOpIndex < iOpCount; ++ iCurrOpIndex )
{

// Make a copy of the operand pointer for convenience
Op CurrOp = g_pInstrStream

[ iCurrInstrIndex ].pOpList [ iCurrOpIndex ];

// Create a character for holding operand types (1 byte)
char cOpType = CurrOp.iType;
fwrite ( & cOpType, 1, 1, pExecFile );

// Write the operand depending on its type
switch ( CurrOp.iType )
{

// Integer literal
case OP_TYPE_INT:

fwrite ( & CurrOp.iIntLiteral, sizeof ( int ), 1, pExecFile );
break;

// Floating-point literal
case OP_TYPE_FLOAT:

fwrite ( & CurrOp.fFloatLiteral, sizeof ( float ), 1,
pExecFile );

break;

// String index
case OP_TYPE_STRING_INDEX:

fwrite ( & CurrOp.iStringTableIndex, sizeof ( int ), 1,
pExecFile );

break;

// Instruction index
case OP_TYPE_INSTR_INDEX:

fwrite ( & CurrOp.iInstrIndex, sizeof ( int ), 1, pExecFile );
break;

// Absolute stack index
case OP_TYPE_ABS_STACK_INDEX:

fwrite ( & CurrOp.iStackIndex, sizeof ( int ), 1, pExecFile );
break;
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// Relative stack index
case OP_TYPE_REL_STACK_INDEX:

fwrite ( & CurrOp.iStackIndex, sizeof ( int ), 1, pExecFile );
fwrite ( & CurrOp.iOffsetIndex, sizeof ( int ), 1, pExecFile );

break;

// Function index
case OP_TYPE_FUNC_INDEX:

fwrite ( & CurrOp.iFuncIndex, sizeof ( int ), 1, pExecFile );
break;

// Host API call index
case OP_TYPE_HOST_API_CALL_INDEX:

fwrite ( & CurrOp.iHostAPICallIndex, sizeof ( int ), 1,
pExecFile );

break;

// Register
case OP_TYPE_REG:

fwrite ( & CurrOp.iReg, sizeof ( int ), 1, pExecFile );
break;

}
}

}

The String Table
Immediately following the instruction stream is the string table, which consists almost entirely of
raw string data. Since this is the first linked list we’ll be writing to a file, we need to create a
dummy node pointer to traverse the list. We’ll also use this node pointer for the remaining lists
in the table.

int iCurrNode;
LinkedListNode * pNode;
Now for the table itself:
// Write out the string count (4 bytes)
fwrite ( & g_StringTable.iNodeCount, 4, 1, pExecFile );

// Set the pointer to the head of the list
pNode = g_StringTable.pHead;
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// Create a character for writing parameter counts
char cParamCount;

// Loop through each node in the list and write out its string
for ( iCurrNode = 0; iCurrNode < g_StringTable.iNodeCount; ++ iCurrNode )
{

// Copy the string and calculate its length
char * pstrCurrString = ( char * ) pNode->pData;
int iCurrStringLength = strlen ( pstrCurrString );

// Write the length (4 bytes), followed by the string data (N bytes)
fwrite ( & iCurrStringLength, 4, 1, pExecFile );
fwrite ( pstrCurrString, strlen ( pstrCurrString ), 1, pExecFile );

// Move to the next node
pNode = pNode->pNext;

}

The table is written in a very straightforward way-- the list is traversed from start to finish, and at
each node the string is written out. Notice however that we never stored the length of each string
in the table itself, which is why it’s calculated here.

The Function Table
The next table to write is the function table, which describes each of the script’s functions. This is
another linked list, so we’ll use the same node pointer declared above. Like the string table, it
should all be reasonably straightforward:

// Write out the function count (4 bytes)
fwrite ( & g_FuncTable.iNodeCount, 4, 1, pExecFile );

// Set the pointer to the head of the list
pNode = g_FuncTable.pHead;

// Loop through each node in the list and write out its function info
for ( iCurrNode = 0; iCurrNode < g_FuncTable.iNodeCount; ++ iCurrNode )
{

// Create a local copy of the function
FuncNode * pFunc = ( FuncNode * ) pNode->pData;

// Write the entry point (4 bytes)
fwrite ( & pFunc->iEntryPoint, sizeof ( int ), 1, pExecFile );
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// Write the parameter count (1 byte)
cParamCount = pFunc->iParamCount;
fwrite ( & cParamCount, 1, 1, pExecFile );

// Write the local data size (4 bytes)
fwrite ( & pFunc->iLocalDataSize, sizeof ( int ), 1, pExecFile );

// Move to the next node
pNode = pNode->pNext;

}

For convenience the function creates a local copy of the function at each iteration of the loop,
and once again creates individual local copies of certain fields to ensure that they occupy the
proper number of bytes in the output file.

The Host API Call Table
Last in line is the host API call table, which is the third and final linked list to write the file.

// Write out the call count (4 bytes)
fwrite ( & g_HostAPICallTable.iNodeCount, 4, 1, pExecFile );

// Set the pointer to the head of the list
pNode = g_HostAPICallTable.pHead;

// Loop through each node in the list and write out its string
for ( iCurrNode = 0; iCurrNode < g_HostAPICallTable.iNodeCount; ++ iCurrNode )
{

// Copy the string pointer and calculate its length
char * pstrCurrHostAPICall = ( char * ) pNode->pData;
char cCurrHostAPICallLength = strlen ( pstrCurrHostAPICall );

// Write the length (1 byte), followed by the string data (N bytes)
fwrite ( & cCurrHostAPICallLength, 1, 1, pExecFile );
fwrite ( pstrCurrHostAPICall, strlen ( pstrCurrHostAPICall ), 1,

pExecFile );

// Move to the next node
pNode = pNode->pNext;

}
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Since the host API call table is really just a glorified string table,
the procedure is more or less identical. Also like the string
table, the length of each host API call string is calculated just
before being written out.

With this table written, the entire .XSE file is complete, along
with the rest of the assembly process for that matter! It’s been a
pretty long road, but at this point we’ve seen how almost everything works from the loading of
the initial source file to the writing of the executable.

The Assembly Process
Now that you’ve created all of the internal structures you need, and learned how the lexing and
parsing phases are used to interpret and translate the source code, let’s apply everything to the
big picture and see the process of turning a source script into an assembled executable from start
to finish. I’m going to move through this part pretty quickly, so make sure you’ve paid attention
throughout the chapter so far and know your stuff.

This section won’t really teach you anything new, but it does illustrate how everything you’ve
learned in this chapter fits together and presents it in a fast-paced manner.

Loading the Source File
The first thing XASM does is validate the command-line parameters and filenames. If everything
checks out, the source file is opened; otherwise, an error message is printed and the program
exits. An initial scan through the file is performed to count the total number of lines it contains.
The source code array is then allocated with a number of strings equivalent to the number of
lines in the source file, and a simple loop is executed that loads each line of the script file into its
corresponding array index. Check out Figure 9.46.
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The initialization of the program then begins.
This is where the master instruction lookup
table is initialized. This can either be done in
the code itself by an initialization function, or
loaded from a file containing a description of
the instruction set. The lexer is also reset with a
call to ResetLexer ().

The First Pass
With the source code loaded into memory, the first pass begins. This pass is solely concerned with
directives—primarily variables, functions and line labels, although it counts instructions as well.
Whether or not the instruction is valid is not checked in this phase.

Variables declared with Var can be found both inside and outside of functions. Instances of the
directive found outside a function are added to the global symbol table, which also increments
the global data size.

Each time a new function is detected, its
code is scanned and its local variables and
parameters are counted based on the
number of Param and Var directives found
within its curly braces (in other words, its
scope). This information, along with the
function’s name and entry point, are
saved to the function table. Whenever a
function is added to the table, correspon-
ding local symbol and label tables are cre-
ated as well. Each variable found within
the scope is added to the function’s local
symbol table.

Line labels can only be found inside func-
tions, so right off the bat any label declaration encountered in the global scope causes an error
and terminates the assembly process. As line labels within functions are found, their names and
corresponding instruction indices are written to the function’s local label table.

Upon the completion of the first pass, the script’s functions, global and local variables, and line
labels have been identified and recorded for reference in the second pass. The number of
instructions has also been counted. This last piece of information is used to allocate a new array
to hold the assembled instruction stream, which will be generated in the second pass.

The first pass is illustrated in Figure 9.47.
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function.
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560

The Second Pass
The second pass is responsible for actually assembling the code into an instruction stream capa-
ble of being dumped into the executable file. This pass makes heavy use of data collected in the
first pass, but, all things considered, is the more vital of the two.

Directives are largely ignored in the second pass, and regardless of function declarations, instruc-
tions are almost treated as one contiguous block. In other words, the vertical order in which func-
tions are declared in the file is also the exact order in which the instructions will be found in the
assembled executable (see Figure 9.48). The function table is expected to tell the VM where each
function’s entry point lies, which is why the assembler can collapse the entire script into a single,
contiguous stream without worrying about losing track of what code belongs to which function.
Among the only real use of directives is tracking the current function to validate the scope of vari-
able and line label references, and handling parameters.

Instructions are read sequentially, and are compared to the master lookup table that contains
each instruction’s mnemonic, opcode, and operand list. This table gives you the information you
need to both assemble and validate the instruction and its operands. Any syntax errors, invalid
instructions, or improper operand lists found during this process terminate the assembly process
and generate an error message that’s displayed for the user.

As each instruction is translated into an opcode and an assembled operand list, the operands are
resolved primarily through references to the tables built in the first pass. Parameter, variable, and
array references are replaced with their respective absolute or relative stack indices, labels in
jump instructions are replaced with instruction indices, and function names in Call instructions
are replaced with indices into the function table. Any instance of _RetVal is also replaced with the
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proper register code. Any reference to a variable, parameter, array, function, or line label that’s
either not in the current scope or doesn’t exist results in an error that terminates the assembly
process and is displayed for the user.

That brings you to literal values. Integer and float literals are dumped directly into the instruc-
tion stream, whereas strings are identified and added to the string table (note that strings were
not collected in the first pass, because that would’ve involved parsing the instructions in full,
which only the second pass is responsible for). The function that adds the string to the table
automatically calculates and returns the string’s index, which is immediately output to the instruc-
tion stream. This allows the conversion of string literal to index to be done quickly and easily.

Lastly, there’s the collection of host API calls, which are treated much like string literals in that
the string data composing each host API function name is removed from the instruction stream,
placed in a separate table, and replaced within the stream as an index into that table.

With the second pass complete, all necessary tables have been filled, and the assembled instruc-
tion stream has been generated. The assembled script is complete, albeit in a somewhat disjoint-
ed form that resides in memory rather than in a file.
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Producing the .XSE
The last step in the assembly process is dumping everything into the executable. This process
begins by writing out the main header, including the ID string, major and minor version num-
bers, requested stack size, and a single integer value representing whether a _Main () method was
implemented.

After the main header, the instruction stream is dumped virtually as-is from the global instruction
stream array. Followed by the instruction stream is the string table, the function table, and the
host API call table. As each table is written to the file, it’s prefixed with the proper header data
like the number of elements it contains. These structures complete the executable, and leave you
with a ready-to-use, assembled XVM script. Check out Figure 9.49.
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The tables are up next: the string table, function table, and host API call table. These can be writ-
ten to the file almost verbatim.

To finish things up, a small summary of stats collected during the assembly process is displayed
for the user (number of lines processed, number of labels, functions and variables, and so on)
along with a success message. The output file, either given the same name as the input file or
overridden with a user-specified name, can be found in XASM’s working directory. Check out 
Figure 9.50 for a screenshot of these statistics.

The last step involves manually freeing every structure (and nested structure) allocated during the
assembly process. Once you’ve cleaned up, the program can exit and your job is done! Woohoo!
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SUMMARY
You’ve done well, apprentice. Against all odds, you rose to the challenge and took your first major
step towards attaining scripting mastery by building your own assembler (or, at least, you read
about how it’s done and hopefully understood it). If you haven’t already, I strongly urge you to
check out the working XASM implementation on the accompa-
nying CD. Take a look at the source, try assembling some scripts
of your own, and, for some real fun, load the resulting .XSE
files in a hex editor and see if you can follow the structure.

The assembler is pretty slick, don’t you think? You pass it a file
containing human-readable code written in its own custom-
designed assembly language, and it’ll spit out a ready-to-run
XVM executable, or print out a reasonably verbose error mes-
sage explaining what went wrong. How cool is that? Of course, you can’t actually do anything with
the compiled scripts just yet, but the good news is that the next chapter (which begins the next
section of the book) will get you started in the construction of the XtremeScript Virtual Machine.
By the end of the next section, you’ll have both this working assembler, and an embeddable VM
that can hold its own against even the existing scripting systems you worked with in Chapter 6.
This means that for the first time, you’ll be able to do serious game scripting with your own home-
grown software.

I can’t emphasize enough that even without the high-level compiler, the stuff you’re building in
these chapters alone can be employed as a useful game-scripting system. I don’t mean to down-
play the importance of the compiler you’ll eventually make, of course—that’ll still be the coolest
part of the whole project by far—but I do want you to understand that you’re free to only go as
far as you want. If you’d like to jump right into game scripting as soon as the XVM is done and
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don’t mind (or even enjoy) coding in assembly, nothing will stop you from immediately putting
the system to use. That’s why I made sure you designed the language with human coders in mind
as well. Remember-- the syntax may be a bit funky, but assembly languages can do everything
higher level languages can. That means XASM and the XVM alone will be enough to satisfy most,
if not all, of your game scripting needs.

ON THE CD
As I’ve mentioned numerous times so far, it will be highly beneficial for you to browse the fin-
ished, working XASM implementation included on the CD. You can find it in the
Programs/Chapter 9/XASM 0.4/ directory, in both source and executable form.

The program is a simple Win32 console application, so you shouldn’t have much trouble compil-
ing it. Simply load the workspace file into Visual C++ and build. For simplicity’s sake, and because
it really isn’t all that big, the entire program is contained in xasm.cpp. The source file is highly
commented, and I encourage you to try compiling it and even making changes and enhance-
ments. For some specific ideas, try the challenges listed below.

CHALLENGES
■ Easy: Add new instructions to the assembler’s vocabulary and compile scripts that use

them. Try these for example: Sqrt (for computing square roots), RoL (for rotating bits to
the left) and RoR (for rotating bits to the right).

■ Intermediate: Implement the language definition file feature I mentioned in the section
on populating the instruction lookup table externally.

■ Difficult: Implement at least a simplified version of the state machine-based lexical analyz-
er I introduced above. You’ll learn how this is done first hand in a few chapters, but it’ll
be interesting to see how far you can get now.

9. BUILDING THE XASM ASSEMBLER
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XASM is up and running, which means you’re now capable of turning XVM Assembly
scripts into executables. However, despite your ability to create neat-looking binary files

that amaze and confuse your friends, you can’t actually do anything with them. Fortunately, this
chapter is all about changing that.

An executable produced by the XASM assembler is designed for a runtime environment called
the XVM, or XtremeScript Virtual Machine. The XVM is designed in many ways to mimic a generic
hardware processor, which makes it ideal for executing the sort of code you’ve just learned to
assemble. This chapter is only about the basics, however. You’re going to be introduced to the
XVM, but won’t actually finish it until Chapter 11. Instead, you’ll build a small prototype that
encapsulates the majority of its overall functionality, but in a simplified way. Don’t let your guard
down, though—you’re still going to cover a lot of important ground in this chapter, including

■ How a virtual machine works, and how it fits into the XtremeScript system.
■ A detailed structural overview of the XVM prototype’s major facilities and structures.
■ Step-by-step explanations of how the simplified runtime environment prototype will be

built.

This chapter will follow the basic format of the last. Rather than dump page after page of code
on you, I’m going to give a detailed tour of how the XVM will be built that incrementally teaches
the ins and outs of the machine, with many small code examples. Also, like the last chapter, it’s
highly recommended that you check out the source code to the XtremeScript Virtual Machine on
the accompanying CD. This is the best way to solidify the material this chapter teaches.

GHOST IN THE VIRTUAL MACHINE
Let’s start with an introduction to the theory behind a virtual machine, or VM. A VM is a type of
runtime environment, which is a piece of software designed to facilitate the execution of some other
piece of software or data—usually executable code. Runtime environments come in many forms;
for example, 3ds max, a high-end 3D modeling and animation package from Discreet contains a
built-in runtime environment for its proprietary scripting language, MAXScript. The Apache Web
server can be expanded with runtime environments for a variety of scripting languages, such as
Perl and PHP, which can control the server’s output for the purpose of generating dynamic
responses for HTTP requests. Even Microsoft Word has a built-in runtime environment for its
own simple scripting system, WordBASIC (which you can actually write games with!)

10. BASIC VM DESIGN AND IMPLEMENTATION
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The common thread among all of these examples is that without using the hardware processor
itself, these pieces of software are capable of executing programs in the form of scripts and pro-
viding them with the necessary memory address space and other such facilities. This is exactly
what the virtual machine will do. Check out Figure 10.1.

GHOST IN THE VIRTUAL MACHINE

Figure 10.1

The virtual machine is

a runtime environment

that executes code

“above” the physical

hardware.

Mimicking Hardware
The distinguishing quality of a virtual machine as opposed to other types of runtime environ-
ments is that it’s specifically designed to mimic the layout and functionality of a real computer—
complete with a virtual processor, virtual memory address space, and even virtual registers in
some cases. Just as a real computer streams compiled opcodes through its processor and main-
tains random-access memory and a runtime stack, so too does the virtual machine. The only dif-
ference is that instead of building these components with silicon, you’re writing them in C.
Check out Figure 10.2 for an example of the VM’s layout.

The beauty of the VM approach to a runtime environment is that it automatically comes with
countless examples upon which to base your design strategies. Computer architecture has been a
rapidly developing field for decades, which means you can leverage the diligent work of thou-
sands of engineers who’ve found out exactly what works and what doesn’t work when implement-
ing a computing system. You can directly apply much of this hard-earned knowledge and perspec-
tive in the hopes of quickly building a robust and efficient system for executing code.
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But much like Blade, with his combination of human and vampire blood, your VM will enjoy most
of the strengths and few of the weaknesses of a real computing system. On the one hand, you can
take advantage of the tried-and-true architecture that already runs so well on real hardware. On
the other hand, however, you can discard many of the low-level complexities of real hardware and
replace them with high-level abstractions that both enhance the system’s ease of use and reduce
its tendency for errors. For example, unlike nearly all real hardware, this VM is typeless, allowing
you to focus on the logic of your scripts without worrying about data types and compatibility.

Of course, you can’t forget the one major weakness of any scripting system—the significant speed
overhead. Remember, every instruction that the runtime environment processes will in turn
require a much larger number of native instructions to be executed by the actual hardware. For
example, a Mov instruction running inside your VM will take considerably longer to execute than
a Mov instruction executed by the physical CPU itself. Scripting can make designing and structur-
ing a large game project orders of magnitude easier and more robust, but it does come at a per-
formance price that shouldn’t be taken lightly.

The VM’s Major Components
A virtual machine can be thought of primarily as a collection of large, interconnected compo-
nents. Let’s take a brief look at each of the major data structures a virtual machine must maintain
in order to execute a script.

10. BASIC VM DESIGN AND IMPLEMENTATION

Figure 10.2

A basic virtual

machine’s architecture.

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



571

The Instruction Stream
The first and most obvious, of course, is the instruction stream— an array of compiled opcodes
and operands that describes the logic of the script. The instruction stream embodies the script’s
runtime activity— as execution progresses, the script’s opcodes determine exactly what will hap-
pen. Figure 10.3 illustrates the instruction stream.

GHOST IN THE VIRTUAL MACHINE

Figure 10.3

The instruction stream.

The Runtime Stack
Another highly dynamic structure is the runtime stack, which is both read from and written to by
the instruction stream as the script executes. It grows, it shrinks, its values are in a constant state
of change, and thus, the stack is among the most vital components the virtual machine maintains.
Without it, function calls and complex expressions would be nearly impossible to implement.
Figure 10.4 illustrates the runtime stack.

Global Data Tables
Following these two major structures are the global data tables; namely, tables containing profiles
of each function and the host API call table, which consists of strings containing host API func-
tion names. These tables are also read from and written to by instructions, and are heavily refer-
enced by the stack. Figure 10.5 illustrates these tables.

Together, these components comprise just about everything you’ll need to describe and encapsu-
late a single script. If, for example, two scripts were loaded at one time, you’d need two instruc-
tion streams, two runtime stacks, and two copies of each global data table. These structures are
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Figure 10.4
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Figure 10.5

Global data tables.

generally not shared; rather, scripts exist within their own self-contained universe, which makes
conceptualization and implementation of the system easier, cleaner, and safer. It strongly reduces
the possibility of errors and the general corruption of data by buggy script code, because it simu-
lates the memory protected address spaces offered by operating systems like Microsoft Windows
and Linux.
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Multithreading
Especially in the context of game scripting, it’s extremely important that a VM support multi-
threading to allow the concurrent execution of multiple scripts. If each enemy on the screen is
controlled by a separate script, and the level environment is scripted as well, it’s obvious that all
of these entities must be able to execute at once without stepping on each other’s toes. Just as any
decent modern operating system supports multitasking, a VM should be strongly multithreaded.
See Figure 10.6.

GHOST IN THE VIRTUAL MACHINE

Figure 10.6

A multithreaded VM

can run multiple

scripts concurrently.

As mentioned, multiple scripts can be loaded into memory at once by duplicating the structures
that are used to describe a single script. This usually means that everything a script needs to
run—the instruction stream, runtime stack, global data tables, and other miscellanies—is
wrapped up into a single, high-level structure. Each thread of execution in the VM can then sim-
ply be described by these high-level structures.

I’ll discuss multithreading in more detail in the next chapter.

Integration with the Host Application
Of course, no matter how long the feature list of the VM gets, none of it matters if you can’t com-
municate with the host application. After all, the whole purpose of game scripting in the first
place is to control a game engine with external script code, so an interface between scripts and
the host is of the utmost importance.
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As you saw in Chapter 6, this usually comes down to a translation mechanism that can facilitate
intra-language function calls—in other words, an abstraction layer that lets the host call script
functions, and vice versa, without either side knowing the details of the other. See Figure 10.7.

Like multithreading, I’ll also discuss the host/script interface in the next chapter.
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Figure 10.7

The VM allows commu-

nication between the

script and the host.

A BRIEF OVERVIEW OF A
VM’S LIFECYCLE
A VM operates much like many other types of programs. It opens a source file, reads in the data,
processes that data in some way, and frees its resources before exiting. In this case, the data file is
a compiled script, and the “processing” is the execution of its code.

The lifecycle of a VM can be broken into a number of discreet phases. Let’s have a look:

■ Loading the script and initializing the major data structures.
■ Locating the script’s entry point and beginning the execution cycle.
■ Perpetuating the execution cycle by processing the next instruction in the stream.
■ Terminating execution and freeing major data structures.

Nothing too surprising, I hope. Let’s dig a little deeper and explore each of these phases in a bit
more depth.

Loading the Script
Before anything can happen, a script has to be loaded into memory. This involves locating the
file on the disk, reading its contents into memory, and distributing this data among the major
data structures.
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This process starts by reading the script’s header data. In the case of your predefined .XSE exe-
cutable format, you begin by reading the four-byte ID string and comparing it to "XSE0". This is
done to ensure that the file in question is indeed a valid XVM executable. Once the ID string is
validated, you can proceed to read out the version number, which lets you know how to process
the file specifically. This version information lets you know if the rest of the format should be
read and/or executed differently than others. After the version information is confirmed the rest
of the header is read—general information about the rest of the script, such as the presence of
the Main () function and the stack size, among other things.

With the header read, you’re ready to get into the real guts of the executable. You move on to
the instruction stream next, which is almost the exact reverse of the process used by XASM to ini-
tially dump its assembled code into the file. The VM’s instruction stream is composed of the same
hierarchical structure—wherein the instruction is the highest level, composed of the opcode,
operand count and operand list, which is in turn composed of individual operands defined by a
type and data field. The data in the file is loaded directly from the disk into this structure.

With the instruction in memory, a stack is then allocated to the size specified by the executable’s
header.

This takes care of your two major runtime structures, so you can move on to the global data
tables. The string tables and host API call tables are read in similar ways; the string data is loaded
into memory and stuffed into a string array and then dispersed throughout the instruction
stream’s operands. The host API call table is simply loaded into a table and left alone. The func-
tion table is loaded a bit more carefully, as it must be loaded into an array of function-defining
structures. When this phase is over with, the entire script has been read into memory and is ready
for execution. Figure 10.8 illustrates the loading of an executable script.

A BRIEF OVERVIEW OF A VM’S LIFECYCLE

Figure 10.8

Loading an executable.
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Beginning Execution at the Entry Point
Every script with a _Main () function has an entry point by nature, whereas those without _Main ()
do not. This term refers to the first instruction of _Main (), which is where the automatic execu-
tion of the script begins. Not every script needs an entry point. In the case of these scripts, execu-
tion doesn’t begin until a specific function is called.

No matter how execution begins, there is an entry point involved somehow. It’s either the entry
point of the _Main () function, or that of the one specified by the host in the form of a manual
function call. This entry point is used to initialize an
instruction pointer, which is how you keep track of
the currently executing instruction. Once the
instruction is executed, the instruction pointer is
incremented to point to the next in the stream,
and the process continues. This is how scripts are
executed in a sequential fashion. Of course, the
jump instruction family, as well as Call, can be used
to cause the pointer to jump around the script
non-sequentially, thus enabling conditional logic,
iteration, and function calls.

The Execution Cycle
Once the script is running, either automatically because of the presence of _Main (), or manually
through a function call from the host, the execution of the instruction stream begins. At each
iteration of the virtual machine’s main loop, the current instruction is found by indexing into the
instruction stream with the instruction pointer. The instruction at this index is then executed.

The processing of an instruction may seem simple at first, but just as assembling the instruction
stream proved complicated, so will its execution. Most instructions are implemented using the
same multi-phase process, which is described here:

■ Opcode Identification. The opcode is first read from the stream, which lets you know
which instruction you need to execute. This value can be used as the criteria for a switch
block, where each case implements its own instruction, or perhaps as the index into an
array of function pointers, wherein the instructions are implemented as separate functions.
Regardless of the implementation, however, interpreting the opcode is the first step.

■ Operand Resolution. An instruction’s operands are necessary to guide its behavior, so
you need to read them from the stream next. Reading the instruction’s operand list
from the stream in its entirety is a rather involved process, which makes this phase one of
the most complex in the overall execution of an instruction. For example, because this

10. BASIC VM DESIGN AND IMPLEMENTATION
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language is largely typeless, an Add instruction may be required to “add” an integer to a
string, because of the data types of the operands. Because of cases like this, the first step
in dealing with operands is converting them to a common type. Because the integer and
string values can’t actually be added, you’ll need to temporarily cast the string to an inte-
ger. Furthermore, operands aren’t always immediate values; more often than not an
instruction will be presented with variables and array indices, which point to offsets with-
in the stack. This means you also have to locate these values and store them locally
before they can be processed. Overall, this process of identifying, locating, and convert-
ing operand values is called operand resolution, because the operand is resolved from a pos-
sibly disjointed or scattered form to a much simpler one.

■ Instruction Execution. Once your operand data is locally stored and ready to go, you can
execute the actual instruction’s logic. This might mean adding two integers, extracting a
character from a string, making a function call, or whatever. Although this is definitely
the most important phase of an instruction, it’s usually one of the easier to implement.

■ Store Results. Many instructions produce some sort of results; perhaps most obviously,
instructions like Mov and the arithmetic family are designed to change the values of their
destination operands. This means that the last phase of the execution process is storing the
results of the instruction’s operation in the specified destinations (usually a stack index).

As is the case with most aspects of computer science, the actual implementation of something
that may have initially seemed trivial is, in fact, rather complex. Remember, you may be executing
thousands of instructions per second as your script flies through the VM, but each time one of
those instructions is processed, this entire process must be completed. Check out Figure 10.9 for
a more visual idea of the execution cycle.

A BRIEF OVERVIEW OF A VM’S LIFECYCLE

Figure 10.9

The execution cycle.
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Function Calls
One major aspect of a script’s runtime behavior is the calling of and returning from functions.
Naturally, since the XtremeScript system is based around a procedural language, a reliable
method of handling function calls is crucial. Up until now, we’ve learned quite a bit about stack
frames, how functions are described and stored in the .XSE executable, and other issues. Now,
let’s take a general look at how the XVM specifically handles function calls.

Calling a Function
The first step in calling a function is getting its information from the function table. The return
address is then pushed onto the stack, followed by the stack frame (whose size is equal to the
function’s local data). Figure 10.10 illustrates this.
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Figure 10.10

A basic function call

procedure.

Two problems exist with this method, however. Firstly, remember how a function returns-- the Ret
instruction reads the return address from the stack, clears off the stack frame, and makes a jump
back to the caller. The problem is, the return address is buried N elements deep into the stack,
where N is the size of the function’s local data. Therefore, the address at which the return
address resides is the top of the current stack frame minus N. Ret can get the index of the current
stack frame, but where’s it going to get N? The only way to get the value of N (the function’s local
data size) is to somehow get the function’s information from the function table. The problem is,
Ret would have no way of knowing which function it is, thereby making the return address
unreachable. Check out Figure 10.11.
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So, we can solve this problem by pushing another stack element on after the stack frame. This
element will have the index of the function to which the frame belongs written to its iFuncIndex
field, which means that all Ret has to do is read the element at the top of the current stack frame,
grab the value of its iFuncIndex field, and use that to get the function’s Func structure from the
function table. Once it has this structure, it can determine the size of the function’s local data
and locate the return address. This also lets it know how large of a frame to pop off the stack.
This finally explains what we need that extra element on top of the stack frame for, and in turn
explains why local data always starts at -2 rather than -1.

Secondly, when popping the stack frame, the stack structure’s iFrameIndex pointer has to be
updated to point to the location of the previous stack frame. We could assume that after popping
the current frame, the new top of the stack will be equal to the top of the last function’s stack
frame, and this may be correct most of the time. However, if that function’s code used the Push
instruction to push anything onto the stack, and called the current function before Popping them
off, the stack frame will actually reside N number of elements below the new top of the stack.

The easiest way to resolve this issue is to simply save the current value of iFrameIndex on the stack
as well before calling the function. That way, Ret can be sure that it’s restoring the old frame
index exactly as it was, and none of the data the function may have pushed onto the stack will be
disturbed. And the best part is, we already have a place to store this value-- we can just use one of
the other fields in the stack element we pushed on to hold the function’s index. Of course, we
have to be careful not to use one of the other union fields, because that would overwrite the func-
tion index. Rather, we’ll use the iOffsetIndex field since that resides outside of the union and
won’t corrupt iFuncIndex. This way, this single element stores both the function index of the previ-
ous function, and the top of that function’s stack frame. This process is illustrated in Figure 10.12.

A BRIEF OVERVIEW OF A VM’S LIFECYCLE
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We now have all the information we need to safely call a function, so let’s review. When calling a
function:

■ The function’s information is retrieved in the form of a Func structure from the function
table.

■ The return address is pushed onto the stack.
■ The stack frame is pushed. The size of this frame is large enough to hold the function’s

local data, as well as one extra element to hold the information Ret will need to properly
restore the previous function.

■ The top element of the stack is filled with two values: iFuncIndex is set to the function
index of the new function, and iOffsetIndex is set to the top index of the previous stack
frame.

Returning From a Function
The explanation of how a function is called overlapped pretty heavily with how a function
returns, so this will be quick. To return from a function, the top of the stack is popped off. This
element contains both the index of the function we’re returning from, as well as the location of
the previous stack frame. The first of these two pieces of information is used to retrieve the cur-
rent function’s Func structure from the function table.

The size of the function’s local data is subtracted from the location of the current stack frame to
calculate the location of the return address. This is illustrated in Figure 10.13.
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With the return address saved, the entire stack frame—meaning the function’s local data, return
address, and parameters—is popped off. The function’s stack frame is now entirely removed, so
the stack structure’s iTopIndex and iFrameIndex values are updated. With the stack in the state it
was in before the function was called, an unconditional jump is made to the return address, rout-
ing the flow of execution back to the caller. The stack is restored, the caller has control of the
script again, and the process is complete.

Sounds good, huh? We’ll come back to all this when we implement the Call and Ret instructions,
but we’ve pretty much got it all here.

Termination and Shut Down
Like all good programs, your VM has to play nice with its operating environment and properly
clean up after itself. A script can terminate for a number of reasons, ranging from the last instruc-
tion being reached to the game engine sending a specific request to shut down. In both cases,
major structures like the instruction stream, stack, and all global data tables must be freed. This
of course is one of the easier phases of the VM’s lifecycle, but it’s extremely important.
Remember that a real-world game may load, run, and terminate thousands of scripts as it pro-
gresses, which means you can easily clog up the system’s resources if each one of these aren’t
properly removed.

A BRIEF OVERVIEW OF A VM’S LIFECYCLE

Figure 10.13
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STRUCTURAL OVERVIEW OF
THE XVM PROTOTYPE
A VM’s structure is extremely important. Because scripting is already daunted by a considerable
performance overhead, you should do all you can to design your runtime environment to minimize
bottlenecks and maximize efficiency. You’ve already taken a brief tour of the virtual machine’s
major components, so let’s take a deeper look and explore exactly how they’re implemented.

We’re now going to examine each major structure that the VM must keep track of in order to
encapsulate a single script. As you read, note the similarities between these and the structure of
the .XSE file. Also, as you’ll see more clearly as the chapter progresses, what I’m describing here
is only a prototype version of the XVM. The actual XVM will be considerably more powerful than
what’s described in this chapter, so its data structures will differ somewhat. However, what you’re
learning here is mostly a subset of what you’ll find in the final XVM, so it’s nonetheless important
to understand. Your future XVM development will be based on the foundation this information
will be used to create.

Figure 10.14 illustrates the final overview of the XVM prototype, which will be explained in more
detail in the following subsections.

10. BASIC VM DESIGN AND IMPLEMENTATION
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The Script Header
Just as an executable file maintains a script header area, a script’s representation in memory will
involve a header-like structure that manages miscellaneous high-level attributes. Here’s a list of
what a script in the XVM prototype will need to properly maintain itself:

■ A Pause Flag. The Pause instruction can be used at any time to temporarily halt the exe-
cution of the script, which means you’ll need to maintain a flag that tells you, at each
iteration of the VM’s main loop, whether or not the script should continue executing.

■ The Pause End Time. Of course, a simple flag isn’t enough to implement the Pause
instruction, because you’d have no idea when the script should resume execution. This
is why you also need to maintain a timestamp that can be repeatedly compared to the
current time in order to determine whether the pause time has elapsed. This value will
always be based on Pause’s duration operand.

■ The Presence of _Main (). Self-explanatory; whether or not the script defines a _Main ()
function.

■ _Main ()’s Function Index. In addition to knowing whether or not a _Main () function is
present, we need to know where it is in the function table.

■ Global Data Size. Especially during initialization, it’s important to know how large the
script’s global data is. Remember, global data is always stored at the bottom of the stack,
which means that all other data on the stack will be stored relative to the end of the
global data’s block.

■ The _RetVal Register. Because _RetVal is global to the entire script, it should also be
global within the VM. Let’s set aside a special structure within the header specifically for
holding its current value.

Runtime Values
Because this language is typeless, you can’t just use the built-in C primitive types like int, float
and char * to represent your script’s data. Instead, even single values must be wrapped in larger
structures to allow those values to change from one type to another without the need to reallo-
cate anything. Both immediate operands and the contents of the stack are instances of structures
I call runtime values.

A runtime value is the term I use to describe any value that exists within the script at runtime; this
may be an immediate operand value in the instruction stream, or the value residing in the stack.
All of these values are typeless, which means they need the ability to switch from integer to float-
ing-point to string and so on, whenever necessary. This is implemented with a simple union, just as
you did in XASM. Check it out:

STRUCTURAL OVERVIEW OF THE XVM PROTOTYPE
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typedef struct _Value                  // A runtime value
{

int iType;                         // Type
union                              // The value
{

int iIntLiteral;               // Integer literal
float fFloatLiteral;           // Float literal
char * pstrStringLiteral;      // String literal
int iStackIndex;               // Stack Index
int iInstrIndex;               // Instruction index
int iFuncIndex;                // Function index
int iHostAPICallIndex;         // Host API Call index
int iReg;                      // Register code

};
int iOffsetIndex;                  // Index of the offset

}
Value;

The Value structure will be the basis for virtually all of the script’s data storage.

The Instruction Stream
The structure of the instruction stream within an .XSE executable is rather complex, and its run-
time representation is no different. It more or less follows the same structure you created in
XASM for holding the instruction stream as it was assembled. Regardless, I’ll recap it quickly.

The first aspect of the structure is the instructions themselves, of which a global array is allocated
to fit the size of script. Instructions are represented with the Instr structure, which looks like this:

typedef struct _Instr                    // An instruction
{

int iOpcode;                         // The opcode
int iOpCount;                        // The number of operands
Value * pOpList;                     // The operand list

}
Instr;

The structure contains the code, the operand count, and a pointer to the list of operands. The
operand list is now represented with the Value structure, which you’ll see more of shortly.

You also need to maintain the number of instructions in the stream, so you wrap it in a larger
structure. Here’s the final instruction stream; note that the script’s instruction pointer resides
here as well:

10. BASIC VM DESIGN AND IMPLEMENTATION



585

typedef struct _InstrStream              // An instruction stream
{

Instr * pInstrs;                    // The instructions themselves
int iSize;                          // The number of instructions in the

// stream
int iCurrInstr;                     // The instruction pointer

}
InstrStream;

Figure 10.15 illustrates the instruction stream.

STRUCTURAL OVERVIEW OF THE XVM PROTOTYPE

Figure 10.15

An instruction in 

memory.

The Runtime Stack
The stack is one of the simpler structures your runtime environment will require, as it’s really just
a dynamically allocated array of runtime values. Each element of the array is a stack element,
which makes things rather simple.

Of course, the stack doesn’t actually grow and shrink at runtime. Although a truly dynamic run-
time stack would make the issue of stack overflow nearly non-existent (as long as system memory
holds out, that is), it’d ultimately bring with it a huge performance overhead. Remember that the
stack will have to grow literally every time a function is called, and shrink every time a function
returns. Because this may happen tens, hundreds, or even thousands of times per frame in a game,
dynamically allocating even part of the stack would be yet another case of frame rate homicide.

Of course, you don’t have to worry about this, because it’s up to the script itself to provide the
ideal stack size. You just give the script the amount it asks for and assume it knows what it’s doing.
This means you only have to allocate the space once at script load-time, eliminating the perform-
ance penalty.
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Ultimately, the stack is just an array of runtime values. However, because it doesn’t have the ability
to physically grow or shrink as the script executes, you must augment this otherwise simple struc-
ture with an extra data member— a simple integer value that tracks the current top index. This
value will initially be set to zero, as the stack will start off empty. As functions are called and values
are pushed on, however, this number will be incremented by the appropriate amount. Likewise,
when values are popped off, the value will decrease.

So, the final stack structure contains an array of Values and two integer fields (you’ll also need to
keep track of the stack’s size):

typedef struct _RuntimeStack             // A runtime stack
{

Value * pElmnts;                     // The stack elements
int iSize;                           // The number of elements in the stack
int iTopIndex;                       // The top index
int iFrameIndex;                     // Index of the top of the current

// stack frame.
}

RuntimeStack;

The Frame Index
You may be wondering what the iFrameIndex field is all about-- why do we need to keep track of
the top of the current stack frame? To answer this question, consider the following example.
Imagine that a function is called, which causes its frame to be pushed on to the stop of the stack.
When a variable is manipulated that resides on a stack, say as the result of a Mov instruction, the
address of that variable will be relative to the top of that function’s frame. As we’ll see shortly,
these addresses always begin at -2 and work their way down from there, which is why local data is
always addressed in relative terms.

Now imagine that a Push instruction is executed, which pushes a new element onto the stack. -2,
relative to the top of the stack, is no longer equal to -2 relative to the current stack frame. A variable
that was located at index -2 before the push is now relative to -3 because of the extra element on
top. This is why, even though we conceptually think of negative indices being relative to the top
of the stack itself, they’re actually relative to the top of the current stack frame. Therefore, if
iFrameIndex is updated each time a new stack frame is pushed, and all negative stack indices are
calculated relative to this value, the function can push and pop all it wants and never disturb the
locations of its local data.

10. BASIC VM DESIGN AND IMPLEMENTATION
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The Function Table
Fortunately, the function table marks the first of the easy structures. The function table never
changes during the execution of the script, which means you can allocate it once at the time the
script is loaded and can forget about it. A script won’t somehow add, remove, or change its func-
tions, so once it’s initialized, the table is good to go throughout the script’s lifespan.

The XVM will once again borrow from XASM in its representation of functions. Fortunately, how-
ever, the runtime environment only needs a static function table. As a result, you no longer need
the FuncNode structure, but rather a subset of that structure with the linked-list capabilities
removed. Here’s the Func structure:

typedef struct _Func                   // Function table element
{

int iEntryPoint;                   // The entry point
int iParamCount;                   // Number of parameters to expect
int iLocalDataSize;                // Total size of all local data
int iStackFrameSize;               // Total size of the stack frame

}
Func;

Pretty simple. Notice again that even though the StackFrameSize element is always defined as
ParamCount + 1 + LocalDataSize, you keep it here anyway so you can compute the final stack size
at load-time rather than doing it every time a function is called. Given the frequency at which
functions will be invoked when scripts are running in an actual game, it’s a good idea to have the
stack frame size worked out beforehand.

Because you have to allocate the function table only once, there’s no need to wrap the Func array
in a larger structure. Figure 10.16 illustrates the function table.

The Host API Call Table
The host API call table is reasonably simple in that all it really needs to manage is an array of
strings. Of course, when we shut everything down, we’ll need to know how big this array is in
order to free it properly, so the table boils down to a two-field structure:

typedef struct _HostAPICallTable         // A host API call table
{

char ** ppstrCalls;                  // Pointer to the call array
int iSize;                           // The number of calls in the array

}
HostAPICallTable;

STRUCTURAL OVERVIEW OF THE XVM PROTOTYPE
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The Final Script Structure
All of these structures I’ve discussed are brought together to describe the script as a whole. It’s
therefore convenient to wrap them into a single main structure that allows you to refer to each of
the script’s elements relative to a common name. This structure is simply called Script, and looks
like this:

typedef struct _Script                   // Encapsulates a full script
{

// Header data
int iGlobalDataSize;                 // The size of the script's global

// data
int iIsMainFuncPresent;              // Is _Main () present?
int iMainFuncIndex;                  // _Main ()'s function index
int iIsPaused;                       // Is the script currently paused?
int iPauseEndTime;                   // If so, when should it resume?

// Register file
Value _RetVal;                       // The _RetVal register

// Script data
InstrStream InstrStream;             // The instruction stream
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RuntimeStack Stack;                  // The runtime stack
Func * pFuncTable;                   // The function table
HostAPICallTable HostAPICallTable;   // The host API call table

}

For now, this is just an easy way to refer to your single script, but as you’ll see in the next chapter,
wrapping everything like this makes multithreading much easier. For the purpose of the follow-
ing sections, let’s assume you declare a global script instance like this:

Script g_Script;

From here on out, g_Script will be the focus of all your script-manipulation tasks.

BUILDING THE XVM PROTOTYPE
With the structural overview of the XVM over with, you have enough information to start build-
ing this thing. Of course, you don’t know all of the details of how it’ll actually run once the script
starts executing, but you can figure that out along the way.

So what exactly is this “XVM prototype” I keep mentioning? Well, to put it simply, it’s a com-
mand-line application that loads a single script, prints some basic statistics, and then executes the
file and prints out the instructions as they’re processed. Assuming the script employs some sort of
main loop, this output should continue indefinitely until a key is pressed.

Sure, it’s not exactly mind blowing, but trust me--it’ll be cool when you see your first batch of
instructions come scrolling down the screen. What’s important, though, is that this lets you devel-
op the core of the XVM without getting too bogged down with other details. You won’t have to
worry about a host application or multithreading; all you need to worry about is getting the
instructions to execute and properly manipulate the VM’s structures.

Before getting started, let’s run down the major phases of the VM just one more time:

■ The script is loaded and its contents are used to initialize the script structure.
■ The entry point of the _Main () function is found and the execution cycle begins.
■ Execution terminates when a key is pressed, at which point all major structures are freed

and the program shuts down.

Notice the second bullet point states that execution will begin in _Main (). This means that in
order to get any sort of meaningful results from this program, you’ll have to load scripts that
define a _Main () function. Scripts without the function won’t cause anything bad to happen, but
because a function will never be called, they won’t do anything.

BUILDING THE XVM PROTOTYPE
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Loading an .XSE Executable
The first thing to do, naturally, is write a function that will give you the ability to load executable
script files and populate the VM script structure’s major structures with their data. This will
account for the first major phase of the XVM prototype’s lifecycle.

An .XSE Format Overview
To get things started, refresh yourself on the details of the .XSE format with a quick overview.
Tables 10.1 through 10.11 provide a full .XSE format reference. The contents of each table
directly follow the contents of the table that precedes them, which means each element of each
table can be read in vertical order and assumed to be one contiguous data stream.

Table 10.1 is the main header.

Tables 10.2 through 10.5 comprise the instruction stream.

Following the instruction stream is the string table, displayed in Tables 10.6 and 10.7.

Next up is the function table, in Tables 10.8 and 10.9.

Last up is the host API call table, in Tables 10.10 and 10.11.

10. BASIC VM DESIGN AND IMPLEMENTATION

Table 10.1  .XSE Main Header
Name Size (in Bytes) Description

ID String 4 Four-character string containing the .XSE
ID,“XSE0”

Version 2 Version number; (first byte is major, second
byte is minor)

Stack Size 4 Requested stack size (set by SetStackSize
directive; 0 means use default)

Global Data Size 4 The total size of all global data

Is _Main () Present? 1 Set to 1 if the script implemented a _Main
() function, 0 otherwise

_Main () Index 4 Index into the function table at which _Main
() resides
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Table 10.2  The Instruction Stream Structure
Name Size (in Bytes) Description

Size 4 The number of instructions in the stream
(not the stream size in bytes)

Stream N A variable-length stream of instruction
structures

Table 10.3  The Instruction Structure
Name Size (in Bytes) Description

Opcode 2 The instruction’s opcode, corresponding to
a specific VM action

Operand Stream N Contains the instruction’s operand 
data

Table 10.4  The Operand Stream Structure
Name Size (in Bytes) Description

Size 1 The number of operands in the stream (the
operand count)

Stream N A variable-length stream of operand 
structures
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Table 10.5  The Operand Structure
Name Size (in Bytes) Description

Type 1 The type of operand (integer literal, vari-
able, and so on)

Data N The operand data itself, which may be any
size

Table 10.6  The String Table Structure
Name Size (in Bytes) Description

Size 4 The number of strings in the table (not the
total table size in bytes)

Strings N String data

Table 10.7  The String Structure
Name Size (in Bytes) Description

Size 4 The number of characters in the string

Characters N Raw string data itself (not null terminated)

Table 10.8  The Function Table Structure
Name Size (in Bytes) Description

Size 4 The number of functions in the table

Functions N Function data
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Table 10.9  The Function Structure
Name Size (in Bytes) Description

Entry Point 4 The index of the first instruction of the
function

Parameter Count 1 The number of parameters the function
accepts

Local Data Size 4 The total size of the function’s local data
(the sum of all local variables and arrays)

Table 10.10  The Host API Call Table Structure
Name Size (in Bytes) Description

Size 4 The number of host API calls in the table
(not the total table size in bytes)

Host API Calls N Host API calls

Table 10.11  The Host API Call Structure
Name Size (in Bytes) Description

Size 1 The number of characters in host API func-
tion name

Characters N The host API function name string (not null
terminated)
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The Header
The header is probably the easiest part of the executable to load. It’s read from the file simply by
reading the first four elements and saving a few of them. Here’s the XVM prototype’s implemen-
tation:

// Create a buffer to hold the file's ID string
// (4 bytes + 1 null terminator = 5)
char * pstrIDString;
pstrIDString = ( char * ) malloc ( 5 );

// Read the string (4 bytes) and append a null terminator
fread ( pstrIDString, 4, 1, pScriptFile );
pstrIDString [ strlen ( XSE_ID_STRING ) ] = '\0';

// Compare the data read from the file to the ID string and exit on an error
// if they don't match
if ( strcmp ( pstrIDString, XSE_ID_STRING ) != 0 )

return LOAD_ERROR_INVALID_XSE;

// Free the buffer
free ( pstrIDString );

// Read the script version (2 bytes total)
int iMajorVersion = 0,

iMinorVersion = 0;
fread ( & iMajorVersion, 1, 1, pScriptFile );
fread ( & iMinorVersion, 1, 1, pScriptFile );

// Validate the version, since this prototype only supports version 0.4 scripts
if ( iMajorVersion != 0 || iMinorVersion != 4 )

return LOAD_ERROR_UNSUPPORTED_VERS;

// Read the stack size (4 bytes)
fread ( & g_Script.Stack.iSize, 4, 1, pScriptFile );

// Check for a default stack size request
if ( g_Script.Stack.iSize == 0 )

g_Script.Stack.iSize = DEF_STACK_SIZE;
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// Allocate the runtime stack
int iStackSize = g_Script.Stack.iSize;
g_Script.Stack.pElmnts = ( Value * )

malloc ( iStackSize * sizeof ( Value ) );

// Read the global data size (4 bytes)
fread ( & g_Script.iGlobalDataSize, 4, 1, pScriptFile );

// Check for presence of _Main () (1 byte)
fread ( & g_Script.iIsMainFuncPresent, 1, 1, pScriptFile );

// Read _Main ()'s function index (4 bytes)
fread ( & g_Script.iMainFuncIndex, 4, 1, pScriptFile );

BUILDING THE XVM PROTOTYPE

NOTE
These code excerpts are from the XVM prototype’s LoadScript ()
function.This function returns a number of error codes to the caller if
something goes wrong during the loading process, like
LOAD_ERROR_UNSUPPORTED_VERS for example.They should be self explana-
tory, but check out the XVM source on the accompanying CD for more
information if you’re interested.

That does it. Notice that I also went ahead and allocated the stack at this stage in the loading
process. Now is as good a time as any to take care of it.

The Instruction Stream
Immediately following the header data is the instruction stream. Before reading the instruction
data, however, you must first read the instruction count and properly allocate space for it. Here’s
the code:

// Read the instruction count (4 bytes)
fread ( & g_Script.InstrStream.iSize, 4, 1, pScriptFile );

// Allocate the stream
g_Script.InstrStream.pInstrs = ( Instr * )

malloc ( g_Script.InstrStream.iSize * sizeof ( Instr ) );
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That was easy, but loading the stream itself is considerably more complex. For the most part, it’s
just a simple loop, but just like always, the details of the operand lists are going to make things
tough. The basic idea is to start a loop that will iterate through each instruction in the stream. At
each iteration, the opcode and operand count are read from the file. This is easy enough, but the
operands themselves pose a slight problem.

Because operand data is neither of a fixed type (floating-point data can be mixed in with inte-
gers), nor is it a constant size, each different operand type must be given its own loading code.
This is most easily accomplished with a switch block that is evaluated at each iteration of another
loop that runs inside the first loop to read each operand.

Check it out:

for ( int iCurrInstrIndex = 0;
iCurrInstrIndex < g_Script.InstrStream.iSize;
++ iCurrInstrIndex )

{
// Read the opcode (2 bytes)
g_Script.InstrStream.pInstr [ iCurrInstrIndex ].iOpcode = 0;
fread ( & g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].iOpcode,

2, 1, pScriptFile );

// Read the operand count (1 byte)
g_Script.InstrStream.pInstr [ iCurrInstrIndex ].iOpCount = 0;
fread ( & g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].iOpCount,

1, 1, pScriptFile );

int iOpCount = g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].iOpCount;

// Allocate space for the operand list in a temporary pointer
Value * pOpList;
pOpList = ( Value * ) malloc ( iOpCount * sizeof ( Value ) );

// Read in the operand list (N bytes)
for ( int iCurrOpIndex = 0; iCurrOpIndex < iOpCount; ++ iCurrOpIndex )
{

// Read in the operand type (1 byte)
pOpList [ iCurrOpIndex ].iType = 0;
fread ( & pOpList [ iCurrOpIndex ].iType, 1, 1, pScriptFile );

// Depending on the type, read in the operand data
switch ( pOpList [ iCurrOpIndex ].iType )
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{
// Integer literal
case OP_TYPE_INT:

fread ( & pOpList [ iCurrOpIndex ].iIntLiteral,
sizeof ( int ), 1, pScriptFile );

break;

// Floating-point literal
case OP_TYPE_FLOAT:

fread ( & pOpList [ iCurrOpIndex ].fFloatLiteral,
sizeof ( float ), 1, pScriptFile );

break;

// String index
case OP_TYPE_STRING:

// Since there's no field in the Value structure for string
// table
// indices, read the index into the integer literal field
// and set
// its type to string index
fread ( & pOpList [ iCurrOpIndex ].iIntLiteral, sizeof ( int ),

1, pScriptFile );
pOpList [ iCurrOpIndex ].iType = OP_TYPE_STRING;

break;

// Instruction index
case OP_TYPE_INSTR_INDEX:

fread ( & pOpList [ iCurrOpIndex ].iInstrIndex,
sizeof ( int ), 1, pScriptFile );

break;

// Absolute stack index
case OP_TYPE_ABS_STACK_INDEX:

fread ( & pOpList [ iCurrOpIndex ].iStackIndex,
sizeof ( int ), 1, pScriptFile );

break;

// Relative stack index
case OP_TYPE_REL_STACK_INDEX:

fread ( & pOpList [ iCurrOpIndex ].iStackIndex, sizeof ( int ),
1, pScriptFile );

BUILDING THE XVM PROTOTYPE
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fread ( & pOpList [ iCurrOpIndex ].iOffsetIndex,
sizeof ( int ), 1, pScriptFile );

break;

// Function index
case OP_TYPE_FUNC_INDEX:

fread ( & pOpList [ iCurrOpIndex ].iFuncIndex, sizeof ( int ),
1, pScriptFile );

break;

// Host API call index
case OP_TYPE_HOST_API_CALL_INDEX:

fread ( & pOpList [ iCurrOpIndex ].iHostAPICallIndex,
sizeof ( int ), 1, pScriptFile );

break;

// Register
case OP_TYPE_REG:

fread ( & pOpList [ iCurrOpIndex ].iReg, sizeof ( int ),
1, pScriptFile );

break;
}

}

// Assign the operand list pointer to the instruction stream
g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].pOpList = pOpList;

}

Each iteration of the loop begins by reading the instruction’s opcode and operand count. This
count is immediately used to allocate space for the operand’s data. Another loop is started, which
reads each opcode from the file. The actual opcode reading is handled with a switch block that
provides code to read each different operand type. Once each operand has been read, the point-
er to the operand list is assigned to the instruction stream, and the instruction is fully loaded.
Check out Figure 10.17.

Notice that the majority of operands were implemented simply by reading a single integer index.
Notice also that string table indices are loaded into the IntLiteral field of the Value structure.
This is because Value does not contain a field for storing string table indices, because the string
table doesn’t exist at runtime. Rather, strings will be stored directly in the structure and as such,
you only need to hold onto the string indices temporarily. For that reason, you just stuff them
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into the integer’s slot and forget about them it. In the next section, when you load the string
table, you’ll put this information to use.

The String Table
At runtime, strings are stored directly in the Value structure, which is different than their storage
on the disk wherein strings are organized in a separate table and only indirectly referenced in the
instruction stream. Therefore, once the strings have been read from the file, you need to distrib-
ute them throughout the instruction stream so that each operand’s Value structure contains the
string itself.

Basically, the process is as follows: first each string is read from the file into a single array of
strings. This creates an in-memory copy of the executable’s string table. You then scan through
the instruction stream and look for any operand whose type is set for OP_TYPE_STRING. Due to the
way the file was loaded in the last section, you know that any string operand will have a string
table index stored in its Value structure’s IntLiteral field. You just grab this value, use it as an
index into the string table, and copy that string literal value into the operand’s StringLiteral
field. You can then delete the table.

Let’s begin by allocating the temporary in-memory string table:

// Run through each operand in the instruction stream and assign copies
// of string operands' corresponding string literals
for ( int iCurrInstrIndex = 0; iCurrInstrIndex < g_Script.InstrStream.iSize;

++ iCurrInstrIndex )

BUILDING THE XVM PROTOTYPE
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{
// Get the instruction's operand count and a copy of its operand list
int iOpCount = g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].iOpCount;

Value * pOpList = g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].pOpList;

// Loop through each operand
for ( int iCurrOpIndex = 0; iCurrOpIndex < iOpCount; ++ iCurrOpIndex )
{

// If the operand is a string index, make a local copy of
// its corresponding string in the table
if ( pOpList [ iCurrOpIndex ].iType == OP_TYPE_STRING )
{

// Get the string index from the operand's integer literal field
int iStringIndex = pOpList [ iCurrOpIndex ].iIntLiteral;
// Allocate a new string to hold a copy of the one in the table
char * pstrStringCopy;
pstrStringCopy = ( char * )

malloc ( strlen ( ppstrStringTable [ iStringIndex ] ) + 1 );

// Make a copy of the string
strcpy ( pstrStringCopy, ppstrStringTable [ iStringIndex ] );

// Save the string pointer in the operand list
pOpList [ iCurrOpIndex ].pstrStringLiteral = pstrStringCopy;

}
}

}

With each string in memory, you then run through the instruction stream and replace the
OP_TYPE_STRING operands:

// Loop through each instruction in the stream
for ( int CurrInstr = 0; CurrInstr < g_Script.InstrCount; ++ CurrInstr )
{

// Get the instruction's operand count
int OpCount = g_Script.InstrStream.Instrs [ CurrInstr ].OpCount;
// Loop through each operand in the instruction
for ( int CurrOp = 0; CurrOp < OpCount; ++ CurrOp )
{
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// Get the current operand type
int OpType = g_Script.InstrStream.Instrs    \

[ CurrInstr ].OpList [ CurrOp ].Type;
// Is this a string operand?
if ( OpType == OP_TYPE_STRING )
{

// The string index is in the IntLiteral field
int StringIndex = g_Script.InstrStream    \

[ CurrInstr ].OpList [ CurrOp ].IntLiteral;
// Get the string from the table
string StringOp = StringTable [ StringIndex ];
// Save the string value in the operand
g_Script.InstrStream.Instrs [ CurrInstr ].OpList    \

[ CurrOp ].StringLiteral = OP_TYPE_STRING;
}

}
}

Of course, we can’t just copy the pointers into the instructions’ string operands; we have to physi-
cally copy the string itself. This is done for two reasons-- first, and most obviously, because we’re
going to free the string table as soon as this loop ends. Also, strings only occur once in the string
table; XASM ensures that duplicates are not written to the executable to eliminate needless
redundancy. This means that a string literal that appeared four times in the source code will only
be represented once in the string table, so each of its four references in the instruction stream
will need its own physical copy.

With the strings safely copied to the instruction stream, the string table itself can be disposed of:

// Free the original strings
for ( iCurrStringIndex = 0; iCurrStringIndex < iStringTableSize;

++ iCurrStringIndex )
free ( ppstrStringTable [ iCurrStringIndex ] );

// Free the string table itself
free ( ppstrStringTable );

The Function Table
The function table contains information about each of the script’s functions and is loaded rather
easily. First up is the allocation:
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// Read the function count (4 bytes)
int iFuncTableSize;
fread ( & iFuncTableSize, 4, 1, pScriptFile );

// Allocate the table
g_Script.pFuncTable = ( Func * ) malloc ( iFuncTableSize * sizeof ( Func ) )

Next is a loop that reads each function from the file:

// Read each function
for ( int iCurrFuncIndex = 0; iCurrFuncIndex < iFuncTableSize;

++ iCurrFuncIndex )
{

// Read the entry point (4 bytes)
int iEntryPoint;
fread ( & iEntryPoint, 4, 1, pScriptFile );

// Read the parameter count (1 byte)
int iParamCount = 0;
fread ( & iParamCount, 1, 1, pScriptFile );

// Read the local data size (4 bytes)
int iLocalDataSize;
fread ( & iLocalDataSize, 4, 1, pScriptFile );

// Calculate the stack size
int iStackFrameSize = iParamCount + 1 + iLocalDataSize;

// Write everything to the function table
g_Script.pFuncTable [ iCurrFuncIndex ].iEntryPoint = iEntryPoint;
g_Script.pFuncTable [ iCurrFuncIndex ].iParamCount = iParamCount;
g_Script.pFuncTable [ iCurrFuncIndex ].iLocalDataSize = iLocalDataSize;
g_Script.pFuncTable [ iCurrFuncIndex ].iStackFrameSize = iStackFrameSize;

}

The Host API Call Table
The last structure to load from the executable is the host API call table. This, like the string table,
is simply a sequence of strings and is loaded like virtually everything else you’ve read from the
executable file so far.
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I’ll just let the code speak for itself. Here’s the allocation:

// Read the host API call count
fread ( & g_Script.HostAPICallTable.iSize, 4, 1, pScriptFile );

// Allocate the table
g_Script.HostAPICallTable.ppstrCalls = ( char ** )

malloc ( g_Script.HostAPICallTable.iSize * sizeof ( char * ) );

Next is a loop that reads each function from the file:

for ( int iCurrCallIndex = 0; iCurrCallIndex < g_Script.HostAPICallTable.iSize;
++ iCurrCallIndex )

{
// Read the host API call string size (1 byte)
int iCallLength = 0;
fread ( & iCallLength, 1, 1, pScriptFile );

// Allocate space for the string plus the null terminator in a
// temporary pointer
char * pstrCurrCall;
pstrCurrCall = ( char * ) malloc ( iCallLength + 1 );

// Read the host API call string data and append the null terminator
fread ( pstrCurrCall, iCallLength, 1, pScriptFile );
pstrCurrCall [ iCallLength ] = '\0';

// Assign the temporary pointer to the table
g_Script.HostAPICallTable.ppstrCalls [ iCurrCallIndex ] = pstrCurrCall;

}

Structure Interfaces
So you’ve got the script loaded into memory. Now what? You aren’t quite prepared to begin exe-
cution just yet, but you’re getting there. Let’s turn the focus of our discussion to the interfaces
you’ll need to read and write these major structures you’ve worked so hard to initialize.

The interfaces to these structures are of prime importance; they’ll be the deciding factor in the
overall elegance and simplicity of the rest of your VM. The more work and headache involved in
interfacing with these structures, the worse your VM’s code will ultimately turn out. Priority one is
therefore making these interfaces as easy to use as possible.

BUILDING THE XVM PROTOTYPE
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Figure 10.18 illustrates the concept of adequate interfaces for script structures:

10. BASIC VM DESIGN AND IMPLEMENTATION

NOTE
The details and purpose of this section may be somewhat confusing at
first, so you might have to take some of this on faith.The following sec-
tion,“The Execution Cycle,” will be considerably easier to understand
and implement with this under your belt, however. So, do your best to
work through it—if it all makes sense, great, but if you don’t get why
you’re doing everything here, understand that it’ll become clear shortly.
You may even want to reread this section after you finish the one that
follows it.

Figure 10.18

Interfaces make 

structures easy to 

work with.

The Instruction Stream
As the VM progresses through the instruction stream, it’ll frequently need to access and manipu-
late operand values. Because all instructions (or all of the instructions that take parameters) will
need to access their operands in roughly the same way, it’d be silly to duplicate that logic for each
instruction handler.

Operands need to be accessed in a number of ways. For example, the code that implements Mov
will need to determine the stack index pointed to by the destination operand so it knows where



605

to move the source data. It’d be nice to make a single function call that essentially tells the VM
“give me the stack index of the first operand”. Of course, because the destination may also be the
_RetVal register, which doesn’t reside on the stack, you might first want to say “tell me the type of
the first operand.” This would just be a simple function that would return constants representing
different types of operand values, such as OP_TYPE_STACK_INDEX or OP_TYPE_REG in this case. Once
you know the type, you can use the first function to find out where in the stack to copy the data,
or just assign it to _RetVal.

Of course, there’s also the issue of relative and absolute stack indices. You may want to make
another single call that’ll fully resolve a relative stack index, because the value of the offset index
variable can now be determined. The Mov handler then wouldn’t even need to know whether the
destination operand was an absolute or relative stack index, because it’d all be handled transpar-
ently. The point to all this is again that the more functions you create here, the easier the imple-
mentation of your instruction set will be later. Check out Figure 10.19 to see how this automatic
index resolution works.

Remember, at any given time, the instruction pointer will tell you where in the instruction stream
you are. You can use this to write a set of functions that will return information regarding the
operands of the current instruction. Because IP is global it will always track the instruction for
you; you can call these functions at any time and be certain you’re getting the proper operands.
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First, you’ll need a function that will simply return the type of a given operand in the current
instruction:

int GetOpType ( int iOpIndex )
{

// Get the current instruction
int iCurrInstr = g_Script.InstrStream.iCurrInstr;

// Return the type
return g_Script.InstrStream.pInstrs

[ iCurrInstr ].pOpList [ iOpIndex ].iType;
}

Simple, huh? All you had to do was grab the iType field of the operand in the pOpList [] array,
which resides in the current instruction of the instruction stream, which itself is stored in
g_Script. Calling this function at any time will return the same constants you defined in XASM
for describing operand types. Table 10.12 repeats this list, just for reference:
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Table 10.12  Operand List Type Constants
Constant Description

OP_TYPE_INT Integer literal value

OP_TYPE_FLOAT Floating-point literal value

OP_TYPE_STRING String literal index

OP_TYPE_ABS_STACK_INDEX An absolute stack index (for variables and arrays
indexed with integer literals)

OP_TYPE_REL_STACK_INDEX A relative stack index (for arrays indexed with 
variables)

OP_TYPE_INSTR_INDEX An instruction index (used for jump targets)

OP_TYPE_FUNC Function index (used for Call instructions)

OP_TYPE_HOST_API_CALL Host API call index (used for CallHost instructions)

OP_TYPE_REG Used for registers references; namely _RetVal
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So you can read the type of the current instruction’s operands. What about the operand values
themselves? You can start by writing a function that returns exactly that:

int GetOpType ( int iOpIndex )
{

// Get the current instruction
int iCurrInstr = g_Script.InstrStream.iCurrInstr;

// Return the type
return g_Script.InstrStream.pInstrs

[ iCurrInstr ].pOpList [ iOpIndex ].iType;
}

All you really had to do was take the reference to the Type field out, and now it returns the entire
Value structure. Of course, getting the whole structure is going to be more than you’re interested
in a lot of situations. For example, consider the index operands of the GetChar instruction (see
Chapter 8 for a reference). The index operands of this instruction are always integers, which
means you’ll always want the IntLiteral field from the Value structure. Let’s write a function
that’ll always return the integer literal component of an operand, regardless of whether it’s the
active data type:

int GetOpAsInt ( int iOpIndex )
{

// Get the current instruction
int iCurrInstr = g_Script.InstrStream.iCurrInstr;

// Return the type
return g_Script.InstrStream.pInstrs

[ iCurrInstr ].pOpList [ iOpIndex ].iIntLiteral;
}

This is much more convenient. All you have to do now is write versions that do the same thing
for each of the other types, which might look like this:

// Return a floating-point literal
float GetOpAsFloat ( int OpIndex );
// Return a string literal
string GetOpAsString ( int OpIndex );
// Return a stack index, and automatically resolve relative indices
int GetOpAsStackIndex ( int OpIndex );
// Return an instruction index
int GetOpAsInstrIndex ( int OpIndex );

BUILDING THE XVM PROTOTYPE
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// Return a function table index
int GetOpAsFuncIndex ( int OpIndex );
// Return a host API call index
string GetOpAsHostAPICallIndex ( int OpIndex );
// Return a register code
string GetOpAsReg ( int OpIndex );

These functions are only so useful, however. Remember, most instructions not only accept literal
values, but also _RetVal and variables that refer to values on the stack. For this reason, these func-
tions will return Value structures whose active data types are relative operands and stack indices
most often, rather than the actual values themselves. What would be ideal would be a set of func-
tions just like the GetOp* () ones, but instead of just returning whatever operand was found in the
instruction stream, would also track down the final values in the case of relative stack values,
absolute stack values, and references to _RetVal. This way, a single function call would give us an
operand’s final, ready-to-use value. Since these functions actually resolve stack indices, they
should be called ResolveOp* (), and match the GetOp* () function for function. To get things
started, here’s the code for ResolveOpValue (), which will return the final value of an operand:

Value ResolveOpValue ( int iOpIndex )
{

// Get the current instruction
int iCurrInstr = g_Script.InstrStream.iCurrInstr;

// Get the operand type
Value OpValue = g_Script.InstrStream.pInstrs

[ iCurrInstr ].pOpList [ iOpIndex ];

// Determine what to return based on the value's type
switch ( OpValue.iType )
{

// It's a stack index so resolve it
case OP_TYPE_ABS_STACK_INDEX:
case OP_TYPE_REL_STACK_INDEX:
{

// Resolve the index and use it to return the corresponding
// stack element
int iAbsIndex = ResolveOpStackIndex ( iOpIndex );
return GetStackValue ( iAbsIndex );

}

10. BASIC VM DESIGN AND IMPLEMENTATION
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// It's in _RetVal
case OP_TYPE_REG:
return g_Script._RetVal;

// Anything else can be returned as-is
default:

return OpValue;
}

}

How cool is this function? Just pass it an operand index, and it’ll return the Value structure that con-
tains it, no matter where it is-- directly in the instruction stream, on the stack via both absolute and
relative indices, or in _RetVal. The only issue worth mentioning is the call to a yet-undefined func-
tion called GetStackValue (). Don’t worry, we’ll define this function in the next section, and it’s
extremely simple anyway-- all it does is return the stack value at the index you specify. No big deal.

Of course, again, we usually won’t want an entire Value structure when dealing with operands.
Rather, we’d like direct values we can immediately plug into expressions when implementing
instructions. So, we’ll have to create a whole family of functions that resolve operands as specific
data types. Here’s an example for resolving operands as integers:

int ResolveOpAsInt ( int iOpIndex )
{

// Resolve the operand's value
Value OpValue = ResolveOpValue ( iOpIndex );

return OpValue.iIntLiteral;
}

Now that we can leverage ResolveOpValue (), these functions are trivial to say the least. Just resolve
the value structure and return the proper field. We’ll easily be able to use this framework to cre-
ate the following:

// Return an integer literal
int ResolveOpAsInt ( int OpIndex );
// Return a floating-point literal
float ResolveOpAsFloat ( int OpIndex );
// Return a string literal
char * ResolveOpAsString ( int OpIndex );

Now we can resolve operands of any type, which nearly completes the set of functions we’ll need
when implementing instructions. There is another detail worth exploring, however.

BUILDING THE XVM PROTOTYPE
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Being able to load a specific data type from any operand with a single call is a great help, but you
need to take it one step further for it to do everything you’ll ultimately need. In addition to sim-
ply reading a given field from an operand’s Value structure, you’ll also need these functions to
automatically perform coercions. For example, imagine you’re executing an Add instruction. Now
imagine that the source operand is an integer, whereas the destination operand is the string
"256". These can’t be directly added for obvious reasons, so you might just default to temporarily
converting the string to the integer value zero so the two can be added. It won’t produce the
most meaningful results, but it’s not like it was a particularly intelligent instruction to begin with.

You can do better, however. Imagine if ResolveOpAsInt () would always produce a valid integer,
whether or not the active data type of the operand was an
integer. This means that if the operand were the value
256, you’d get 256 as the return value. If the operand
were the floating-point value 256.4, you’d still get 256.
You’d even get 256 if the operand was the string literal
"256". This is an example of data type coercion, and
makes your system much more robust by transparently
giving instructions exactly the data they need without
them having to worry about its original form. Figure
10.20 describes this process visually.
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NOTE
The previous reference to the
Add instruction was just an
example.The real Add imple-
mentation will only be
designed for adding numbers.

Figure 10.20
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The way our ResolveOpAs* () functions are currently implemented, ResolveOpValue () is called
first, then the proper field is extracted and returned from the caller. So, rather than directly
adding the coercion code to each ResolveOpAs* () function, which would be virtually the same in
all cases and therefore redundant, we can create a separate function that coerces Value structures
to a specified type. We can then use this on the Value returned by ResolveOpValue () and nearly
complete our set of operand resolution functions. Here’s a function for coercing Value structures
to integer values:
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int CoerceValueToInt ( Value Val )
{

// Determine which type the Value currently is
switch ( Val.iType )
{

// It's an integer, so return it as-is
case OP_TYPE_INT:

return Val.iIntLiteral;

// It's a float, so cast it to an integer
case OP_TYPE_FLOAT:

return ( int ) Val.fFloatLiteral;

// It's a string, so convert it to an integer
case OP_TYPE_STRING:

return atoi ( Val.pstrStringLiteral );

// Anything else is invalid
default:

return 0;
}

}

This function accepts a single Value structure, determines what its active data type is, and coerces
it to the specified type. In this case, integers are returned as-is since they’re already in the proper
form, floats are cast to integers, and strings are converted to numeric values with the ever-handy
atoi (). Since these functions are so straightforward and not particularly huge, let’s look at the
other two we’ll need, CoerceValueToFloat () and CoerceValueToString ():

float CoerceValueToFloat ( Value Val )
{

// Determine which type the Value currently is
switch ( Val.iType )
{

// It's an integer, so cast it to a float
case OP_TYPE_INT:

return ( float ) Val.iIntLiteral;

// It's a float, so return it as-is
case OP_TYPE_FLOAT:

return Val.fFloatLiteral;
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// It's a string, so convert it to a float
case OP_TYPE_STRING:

return ( float ) atof ( Val.pstrStringLiteral );

// Anything else is invalid
default:

return 0;
}

}

Looks simple enough. Here’s the string version:

char * CoerceValueToString ( Value Val )
{

char * pstrCoercion;
if ( Val.iType != OP_TYPE_STRING )

pstrCoercion = ( char * ) malloc ( MAX_COERCION_STRING_SIZE + 1 );

// Determine which type the Value currently is
switch ( Val.iType )
{

// It's an integer, so convert it to a string
case OP_TYPE_INT:

itoa ( Val.iIntLiteral, pstrCoercion, 10 );
return pstrCoercion;

// It's a float, so use sprintf () to convert it since there's
// no built-in function for converting floats to strings
case OP_TYPE_FLOAT:

sprintf ( pstrCoercion, "%f", Val.fFloatLiteral );
return pstrCoercion;

// It's a string, so return it as-is
case OP_TYPE_STRING:

return Val.pstrStringLiteral;

// Anything else is invalid
default:

return NULL;
}

}

10. BASIC VM DESIGN AND IMPLEMENTATION
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Now this function is a bit different and
deserves some explanation. The issue here
is that unlike primitive data types int and
float, strings are not allocated statically and
therefore, whenever an operand must be
converted to a string, its space must be allo-
cated immediately. Unfortunately, we can’t
very easily tell how long the string needs to
be that will hold the converted version of a
numeric value. Fortunately, we do know that
almost no number will be more than six to
ten digits at the most, so allocating even a
string as small as 16-24 characters will be
enough. I like to play it really safe though, so
we’ll use a default string coercion size of 64 characters, a value stored in
MAX_COERCION_STRING_SIZE. Sixty-four characters is way more than enough, so there shouldn’t be
any possibility for trouble. The function allocates such a string if the type to which the data needs
to be coerced isn’t already a string. It then performs the coercion and returns the string’s pointer.

The coercion functions can be applied to the operand resolution functions to create some really
useful stuff. Let’s look at the new version of ResolveOpAsInt ():

inline int ResolveOpAsInt ( int iOpIndex )
{

// Resolve the operand's value
Value OpValue = ResolveOpValue ( iOpIndex );

// Coerce it to an int and return it
int iInt = CoerceValueToInt ( OpValue );
return iInt;

}

Slick, huh? All you have to make is one call, and no matter where the operand resides, and
regardless of its data type, you get the optimal integer value. Very cool. Writing one of these for
each of the major data types would give you an arsenal of functions making the implementation
of your VM’s instruction set much easier. All of these instructions will need to be able to easily
read operands, and these functions will do exactly that. To wrap this all up, check out Figure
10.21, which illustrates the process of resolving and coercing an operand from start to finish.

For the most part, the ResolveOp* () functions will replace the GetOp* () versions entirely. After
all, why waste your time with functions that won’t automatically resolve the operand’s location?
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For the sake of performance, you might
find that converting strings to integers
and back is just needless overhead. In the
case of Web scripting like Perl and PHP,
this is an invaluable feature, but I must
admit it has limited use in the game pro-
gramming world. My suggestion is to eval-
uate it on a per-game basis; if you’re mak-
ing a text heavy game that requires a lot
of numeric/text conversion, go for it.
Otherwise, keep things simple and fast.
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There is one exception, however, and that’s GetOpType (), which must actually exist in two forms.
The reason for this is an operand can potentially have two types at once, in a manner of speak-
ing. On the one hand, all values ultimately come down to one of the direct types— integers,
strings, line labels, whatever. However, the single level of indirection allowed by your language
means that two Value objects may be associated with a given operand. The first is the one found
in the instruction stream itself, which, in the case of an indirect operand, will be one of the fol-
lowing: a relative stack index, an absolute stack index, or _RetVal. This value represents the first
“type” of the operand. Once you follow that indirection to the value it points to, however, you
find the next “type”, which is the value itself. So, for example, one type of operand might be 1)
an integer 2) on the stack, whereas another is 1) an integer 2) in _RetVal. So, even though both
are of the integer data type, their locations differ. This is why you need functions for returning
both the operand type as it exists in the stream (the method of indirection), and for returning
the resolved type (the final value), which is whatever the indirection points to. I’ll call them
GetOpType () and ResolveOpType (), respectively. Check out Figure 10.22.

There is one last detail, though. We’ve spent a lot of time writing functions that help us read
operands, but what about writing them? Once an instruction has finished its job and is ready to
write the destination, it should have an equally powerful set of functions for making this process
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easy and automated. Fortunately, this part of the job is easier by nature, and we’ll only need to
write one new function to handle it.

Reading operands is complicated because their location within the runtime environment must be
resolved, and their data types must be coerced. Writing them, however, is quite a bit simpler
because they can only go to one of two places: the stack or _RetVal, and there’s no coercion or
data type issues to worry about-- the destination will take on whatever data type you stuff in it. So,
all we really need is an easy way to write a Value anywhere, that transparently handles stack indices
and _RetVal.

I solved this problem by writing a function that simply returns a pointer to wherever the Value
needs to be written, whether it’s on the stack or not. The Value object is then written to this point-
er, and the job is done. The function is called ResolveOpPntr (), and looks like this:

Value * ResolveOpPntr ( int iOpIndex )
{

// Get the method of indirection
int iIndirMethod = GetOpType ( iOpIndex );

// Return a pointer to wherever the operand lies
switch ( iIndirMethod )
{

// It's on the stack
case OP_TYPE_ABS_STACK_INDEX:
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case OP_TYPE_REL_STACK_INDEX:
{

int iStackIndex = ResolveOpStackIndex ( iOpIndex );
return & g_Script.Stack.pElmnts

[ ResolveStackIndex ( iStackIndex ) ];
}

// It's _RetVal
case OP_TYPE_REG:

return & g_Script._RetVal;
}

// Return NULL for anything else
return NULL;

}

With this function, any destination operand can be easily written to by writing a Value structure to
the pointer it returns. With these functions under our belt, we’ve mastered the instruction stream
and can move on.

The Runtime Stack
The runtime stack is usually manipulated by the script itself, using the Push and Pop instructions.
The VM will have to interface directly with the stack on a frequent basis too, however; namely,
when creating and destroying the stack frames that enable your language’s nested function calls.

In addition, stack values will be frequently read from and written to by the implementation of var-
ious instructions, so you’ll need to easily be able to do this. Of course, you can already access the
stack with a single line of code, but having to type g_Script.Stack.Blah.Blah [ iBlah ] every time
gets old after a while. It’s just cleaner to wrap stack access in a set of simple functions, and once
again, will allow you to add error handling (perhaps to gracefully detect and avoid stack over-
flow) and other improvements later. Besides, the functions need to be able to automatically inter-
pret negative indices as a sign to index relative to the top of the current stack frame, rather than
the bottom of the stack. It’d be a pain to duplicate this logic every time you access the stack.
Speaking of which, we should write a macro for resolving stack indices (translating negatives to
positives) immediately, since every stack interface function will need to do this:

#define ResolveStackIndex( iIndex )    \
( iIndex < 0 ? iIndex += g_Script.Stack.iFrameIndex : iIndex )

10. BASIC VM DESIGN AND IMPLEMENTATION
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The way this works is simple-- if iIndex is less than zero, meaning it’s a negative stack index and is
therefore relative to the top of the current stack frame, it’s added to the stack’s iFrameIndex index.
Otherwise, it’s left alone because positive indices are already in their fully resolved form.
Remember, negative stack indices are relative to the top of the current stack frame, not the actual
top of the stack (although these two values are often equal). The whole point of negative indices
is to easily access a function’s local values.

Now that we can translate stack indices painlessly, let’s write some general, random access stack
manipulation functions:

Value GetStackValue ( int iIndex )
{

// Use ResolveStackIndex () to return the element at the specified index
return g_Script.Stack.pElmnts [ ResolveStackIndex ( iIndex ) ];

}
void SetStackValue ( int iIndex, Value Val )
{

// Use ResolveStackIndex () to set the element at the specified index
g_Script.Stack.pElmnts [ ResolveStackIndex ( iIndex ) ] = Val;

}

Simple, but quite useful. This explains the GetStackValue () function from the last section, by the
way. Figure 10.23 illustrates its use.

Of course, the real way to access a stack is through the traditional push and pop interface. You’ll
write two functions, Push () and Pop (), that can push and pop Value structures onto and off of
the stack. You’ll even be able to use these functions directly in the implementation of their corre-
sponding instructions.
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To push a runtime value onto the stack, you copy the Value structure into the array index pointed
to by the iTopIndex field of the Stack structure, and then increment that value. Here’s an example:

void Push ( Value Val )
{

// Get the current top element
int iTopIndex = g_Script.Stack.iTopIndex;

// Put the value into the current top index
g_Script.Stack.pElmnts [ iTopIndex ] = Val;

// Increment the top index
++ g_Script.Stack.iTopIndex;

}

To pop a value off, you need only reverse the process. One thing to note, however, is that you
won’t actually erase the index. Rather, you’ll simply decrement the top index so that the next
Push operation will overwrite it.

Value Pop ()
{

// Decrement the top index to clear the old element for overwriting
-- g_Script.Stack.iTopIndex;

// Get the current top element
int iTopIndex = g_Script.Stack.iTopIndex;

// Use this index to read the top element
Value Val = g_Script.Stack.pElmnts [ iTopIndex ];

// Return the value to the caller
return Val;

}

So you’ve got random stack access in addition to the traditional interface. You’re almost there,
but while you’re at it you might as well add two more simple functions for aiding in the construc-
tion and destruction of stack frames.

Stack frames can really just be thought of as sequential blocks of stack elements. When a new
function is invoked, the parameter list will have already been pushed on by the script, which
means all that’s left is the return address and local data space. This is handled by the VM, so you
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need a good way to quickly push a large block of new elements onto the stack. You can create a
function called PushFrame () to do the job for you:

void PushFrame ( int iSize )
{

// Increment the top index by the size of the frame
g_Script.Stack.iTopIndex += iSize;

// Move the frame index to the new top of the stack
g_Script.Stack.iFrameIndex = g_Script.Stack.iTopIndex;

}

Just pass it the desired stack size with the Stack parameter and you’re done. But wait a second; is
that everything? Yes, all you need to do is increment iTopIndex and update iFrameIndex, and the
frame becomes available on the stack. This is because when dealing with a stack, all that really
matters is where these two indices are. Any subsequent calls to Push () or even PushFrame () (as
well as any further execution of the Push instruction from within the script) will create new ele-
ments on top of the frame, because their locations will be based on the new value of iTopIndex.
Therefore, the area within the frame will remain safe to use for your purposes. Of course, what
this also means is that your newly allocated stack frame will be filled with potential garbage val-
ues, which in turn means that XVM variables are not automatically initialized to zero. You could
manually scan through each element of our new frame and clear it, but it’s just more overhead
you don’t need. Again, think about how often functions will be called as a script executes—if you
can eliminate the overhead of clearing out every one of those functions’ stack frames simply by
making sure to initialize your own variables, you can save a lot of time. Figure 10.24 illustrates
how this works.
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Once an empty frame has been established with PushFrame (), you can use the random access
SetStackValue () and GetStackValue () to manipulate its elements.

But, like everything you push onto the stack, stack frames must eventually be popped back off
when the function returns. This is just as easy as the PushFrame () function—all you do is decre-
ment TopIndex by the specified frame size, and that entire area of the stack will immediately be
cleared for overwriting by the next stack operation. You also won’t return any of the frame’s data,
instead just leaving it up to the caller to use GetStackValue () to save anything important before-
hand. Check it out:

void PopFrame ( int iSize )
{

g_Script.Stack.iTopIndex -= iSize;
}

Remember also, unlike PushFrame (), PopFrame () shouldn’t mess with the stack’s frame pointer
(iFrameIndex). As we saw in an earlier section, the Call and Ret instructions will manually handle
iFrameIndex, so the PopFrame () function itself shouldn’t mess with it.

As usual though, there’s a very important detail we haven’t addressed yet that needs to be dealt
with before moving on. This particular issue rears its head initially in the implementation of Push
()-- specifically, where the next element of the stack is overwritten by the supplied Value structure.
Here’s an example to help you understand the problem:

Imagine that a string value is pushed onto the stack. This means that the top element on the stack
has a string pointer in its pstrStringLiteral field, which points to a pre-allocated string buffer in
memory. Now imagine that this value is popped off along with a stack frame, which means that the
string is never freed; rather, the stack’s top index is just decremented so that this particular value
will eventually be overwritten. The problem is, once this stack element is filled with another Value
structure, the XVM will lose track of the string to which it points, preventing it from ever being
freed and thus starting a possibly large series of dangling string pointers. If this problem persists,
the system’s memory will slowly lock up as more and more strings are allocated but never released.

To solve this problem, we need to abstract the process of writing one Value structure to another
by wrapping it in a separate function. This way, we can write the function to intelligently handle
this string pointer issue, and defuse the situation. This function will be called CopyValue () and
will look like this:

void CopyValue ( Value * pDest, Value Source )
{

// If the destination already contains a string, make sure to free it first
if ( pDest->iType == OP_TYPE_STRING )

free ( pDest->pstrStringLiteral );
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// Copy the object
* pDest = Source;

// Make a physical copy of the source string, if necessary
if ( Source.iType == OP_TYPE_STRING )
{

pDest->pstrStringLiteral = ( char * )
malloc ( strlen ( Source.pstrStringLiteral ) + 1 );

strcpy ( pDest->pstrStringLiteral, Source.pstrStringLiteral );
}

}

Cool, huh? Now, instead of directly assigning anything to the stack or _RetVal, we just pass the
source Value, and a pointer to the destination Value, and we’ll be guaranteed a safe copy.

This should be everything you need to intelligently handle the script’s runtime stack, so let’s
move on.

The Function Table
Finally, an easy structure to work with! Unlike everything else you’ve seen so far, the function
table is extremely simple and only requires a single function. The function table is an entirely
static structure—it doesn’t change in any way during the runtime of a script. This must mean the
script never writes to it, which in turn means you only need to create a function for reading func-
tions from the table. Here it is:

Func GetFunc ( int iIndex )
{

return g_Script.FuncTable [ iIndex ];
}

The Host API Call Table
I won’t be discussing communication with the host application until the next chapter, but you’ll
create the necessary host API call table interface now due to its simplicity. Much like the function
table interface, all you need is the ability to read a host API call. There won’t be any time you
need to make changes to this table, so this single function will suffice. Here it is:

char * GetHostAPICall ( int iIndex )
{

return g_Script.HostAPICallTable.ppstrCalls [ iIndex ];
}

BUILDING THE XVM PROTOTYPE
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Summary
Just to round out the discussion and provide a reference, here are all of the functions you’ve cre-
ated (directly or indirectly) in this section:

The Instruction Stream
The following code returns the type of the specified operand in the current instruction. Note the
difference between GetOpType () and ResolveOpType (). The first returns the type of the operand
as it exists in the instruction stream, which may simply be a stack index or reference to _RetVal.
ResolveOpType (), however, always returns the final type of the value itself.

int GetOpType ( int OpIndex );
int ResolveOpType ( int OpIndex );

The following function returns a Value structure representing the specified operand in the cur-
rent instruction. The returned Value structure is always the actual value itself; if the operand ref-
erences it in _RetVal or the stack, this function will locate it. This process is called resolving.

Value ResolveOpValue ( int OpIndex );

The following code returns the value of the specified operand in the current instruction in a spe-
cific data type. It automatically performs coercions to ensure that the returned value is always
optimal given the operand’s active data type. These functions use ResolveOpValue () to initially
locate the real Value structure, which means they too always return the real value in the case of
indirection.

int ResolveOpAsInt ( int OpIndex );
float ResolveOpAsFloat ( int OpIndex );
string ResolveOpAsString ( int OpIndex );
int ResolveOpAsStackIndex ( int OpIndex );
int ResolveOpAsInstrIndex ( int OpIndex );
int ResolveOpAsFuncIndex ( int OpIndex );
string ResolveOpAsHostAPICallIndex ( int OpIndex );
string ResolveOpAsReg ( int OpIndex );

These functions also make use of the Value structure coercion functions:

int CoerceValueToInt ( Value Val );
float CoerceValueToFloat ( Value Val );
char * CoerceValueToString ( Value Val );
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Lastly, once we’ve done all of our operand reading, it’s time to do some writing. We can do this
easily with ResolveOpPntr (), which returns a pointer to the Value structure of any operand:

Value * ResolveOpPntr ( int iOpIndex );

The Runtime Stack
Above all else, stack indices need to be interpreted properly since they can come in positive and
negative forms. This is handled via the ResolveStackIndex () macro.

The following functions set and return the value of specific stack indices, thus providing random
access to the runtime stack.

void SetStackValue ( int iIndex, Value Val );
Value GetStackValue ( int iIndex );

These functions provide a traditional stack interface by allowing Value structures to be pushed on
and popped off.

void Push ( Value Val );
Value Pop ();

The following functions are used to push and pop variable-sized blocks of elements without ini-
tializing or clearing them. They’re primarily used when constructing and destructing a function
call’s stack frame, but can be used any time the creation or destruction of a contiguous block of
stack elements relative to the top of the stack is necessary.

void PushFrame ( int iSize );
void PopFrame ( int iSize );

Lastly, in order to safely move one Value structure into another, use this:

void CopyValue ( Value * pDest, Value Source );

The Function Table
This returns a Func structure describing the specified function.

Func GetFunc ( int Index );

The Host API Call Table
This returns the host API function name at the specified index.

char * GetHostAPICall ( int iIndex );

BUILDING THE XVM PROTOTYPE



624

This wraps up the interfaces the XVM prototypes major structures will need. With these in place,
we can get back to executing scripts.

Initializing the VM
Before the script can begin execution, the runtime environment must be prepared, which is a sim-
ple but vital process. Here’s a rundown of what must be done to set the stage for the script to run:

■ The script’s entry point must be found and placed in the instruction pointer. Check out
Figure 10.25.

■ The stack must be cleared; in other words, the stack’s top index and frame index must
both be set to zero.

■ Each element of the stack must be nulled out.
■ The script’s pause flag must be cleared by explicitly setting it to FALSE.
■ Space for the script’s global variables must be allocated by pushing a frame equal to the

script’s global data size onto the stack.
■ _Main ()’s stack frame must be pushed onto the stack as well, to provide space for its

local variables.
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Using the function

table to determine

_Main ()’s entry point.

Once these steps are completed, the VM will be ready to roll. Let’s take a look at ResetScript (),
an XVM prototype function used to do exactly this:

void XS_ResetScript ()
{

// Get _Main ()'s function index in case we need it
int iMainFuncIndex = g_Script.iMainFuncIndex;
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// If the function table is present, set the entry point
if ( g_Script.FuncTable.pFuncs )
{

// If _Main () is present, read _Main ()'s index of the function
// table to get its entry point
if ( g_Script.iIsMainFuncPresent )
{

g_Script.InstrStream.iCurrInstr = g_Script.FuncTable.pFuncs
[ iMainFuncIndex ].iEntryPoint;

}
}

// Clear the stack
g_Script.Stack.iTopIndex = 0;
g_Script.Stack.iFrameIndex = 0;

// Set the entire stack to null
for ( int iCurrElmntIndex = 0; iCurrElmntIndex < g_Script.Stack.iSize;

++ iCurrElmntIndex )
g_Script.Stack.pElmnts [ iCurrElmntIndex ].iType = OP_TYPE_NULL;

// Unpause the script
g_Script.iIsPaused = FALSE;

// Allocate space for the globals
PushFrame ( g_Script.iGlobalDataSize );

// If _Main () is present, push its stack frame (plus one extra stack
// element to compensate for the function index that usually sits on top
// of stack frames and causes indices to start from -2)
PushFrame ( g_Script.FuncTable.pFuncs

[ iMainFuncIndex ].iLocalDataSize + 1 );
}

Just as I described in the list above, this code begins by locating the script’s entry point and initial-
izing the instruction pointer to point to it. The stack’s iTopIndex and iFrameIndex fields are then
zeroed out. The stack structure itself is then looped through and set to the OP_TYPE_NULL operand
type, which is a new constant added to the XVM that was not present in XASM and should be
reasonably self explanatory. The script is then explicitly unpaused.

BUILDING THE XVM PROTOTYPE
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The next two sections require a bit more explanation. The global data in a script always resides at
the bottom, which means that if there are four global variables and a global array of 12 elements,
declared like this:

Var GlobalVar0
Var GlobalVar1
Var GlobalVar2
Var GlobalVar3
Var GlobalArray [ 12 ]

The script will need to maintain a total of 16 stack indices, relative to the bottom, to hold them
(0-15). This is accomplished by pushing a stack frame equal in size to the script’s global data,
which explains this line:

PushFrame ( g_Script.iGlobalDataSize );

Figure 10.26 illustrates the space set aside from globals on the stack.
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Once the global data region has been added, the stack is almost ready to go. The only detail 
that remains is the _Main () function’s stack frame. _Main () may be a special function, but it
needs a stack frame just like any other function the script may define. The stack frame itself is
used for slightly simpler purposes, however. Since _Main () doesn’t have to “return” to anything,
there’s no need to make room for a return address. Also, you can’t pass _Main () parameters, so
parameter space isn’t necessary either. All you really need is room for its local data, hence the 
following line:

PushFrame ( g_Script.FuncTable.pFuncs [ iMainFuncIndex ].iLocalDataSize + 1 );

Wait a second, though, what’s with the + 1? We need to make room for an extra stack index
because, even though _Main () doesn’t use it, every function’s local data is indexed with -2
because any non-_Main () function requires the extra function index pushed onto the stack just
after the frame. Because of this, even though it doesn’t apply to _Main (), all of its local variables
will access the stack relative to the same -2 index. Rather than rigging XASM to handle this as a
special case when parsing variable declarations, we can solve the problem much more easily by
just pushing on a dummy stack element. This is all explained graphically in Figure 10.27.

The Execution Cycle
After much planning, the time is finally upon you. You’ve seen everything (more or less) this ini-
tial XVM prototype will have to manage, and are finally ready to explore the implementation of
its execution cycle.
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On a basic level, this primitive version of the VM will consist mainly of a while loop that encapsu-
lates the entire execution cycle and runs until a key is pressed. At each iteration of the loop, a
new instruction is processed in full; its effects on the stack and string table are managed and any
jumps or function calls it makes are handled. After executing the instruction, its instruction
mnemonic and operands are printed to the screen so you can watch the flow of execution
progress.

The loop itself will of course be simplistic. All you really need is this:

// Loop until a key is pressed
while ( ! kbhit () )
{

// Handle next instruction
}

Of course, it’s the guts you’re really interested in. The following sections deal with what will go on
inside this loop as it’s executing. It’s inside this loop that script execution finally gets off the
ground; this is really one of the major moments you’ve been working your way up to.

Figure 10.28 will help you visualize the execution cycle.
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The execution cycle.

Instruction Set Implementation
The most important part of each iteration of the main loop is the execution of the next instruc-
tion. Given the opcode of the current instruction, there are a number of ways to vector to the
proper instruction handler. The first and most obvious is simply a giant switch block, like you saw
earlier. Each case of the block implements a specific instruction in full. Another popular method
is to write individual functions for each instruction and group their pointers in an array that’s
indexed by their opcode. Figure 10.29 illustrates this.



629

In a lot of ways the function method is more flexible; for example, DLLs or other forms of dynam-
ic libraries could be written that allow the VM to “swap out” entire instruction sets. It also pro-
vides better overall encapsulation, because each instruction is in an isolated scope. However, I
prefer the switch method for smaller languages like this one and mostly for teaching purposes
because it’s easier to visualize and implement. One important advantage to this method is that
state information is easier to manage. In other words, a number of important variables must be
tracked during the progression of the main loop, variables that are often important to each
instruction implementation. If these are defined in the main loop’s local scope, the switch block
will have automatic access to all of them. However, in order for separate instruction-implement-
ing functions to access them, they must either be passed every time as a function or made global.
Check out Figure 10.30.

You may be wondering, however, why I suddenly recommend using a giant switch block when I
said just the opposite during the construction of XASM. This is because even though the two
switches are both concerned with handling instructions, they’re implemented in very different
ways. In XASM, the assembly of an instruction doesn’t vary much from one to the next, and what
does vary can be stored in an array or other similar structure. This isn’t the case at runtime.
Obviously, the functionality of one instruction will be considerably different than another. Add
and CallHost may be assembled in the same way, but they behave totally differently and are
designed for completely unrelated purposes.
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In order to switch to the proper instruction, it helps to assign each opcode to a constant that
gives it a more intelligible name. The code then becomes much more readable. Consider this:

switch ( Opcode )
{

case 0:
// Implement Mov
break;

case 1:
// Implement Add
break;

case 2:
// Implement Sub
break;

}

And compare it to this:

switch ( Opcode )
{

case INSTR_MOV:
// Implement Mov
break;

case INSTR_ADD:
// Implement Add
break;
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case INSTR_SUB:
// Implement Sub
break;

}

The latter is obviously a lot easier to follow and understand. Table 10.13 lists these constants.

BUILDING THE XVM PROTOTYPE

Table 10.13  Instruction Opcode Constants
Mnemonic Opcode Constant

Mov 0 INSTR_MOV

Add 1 INSTR_ADD

Sub 2 INSTR_SUB

Mul 3 INSTR_MUL

Div 4 INSTR_DIV

Mod 5 INSTR_MOD

Exp 6 INSTR_EXP

Neg 7 INSTR_NEG

Inc 8 INSTR_INC

Dec 9 INSTR_DEC

And 10 INSTR_AND

Or 11 INSTR_OR

XOr 12 INSTR_XOR

Not 13 INSTR_NOT

ShL 14 INSTR_SHL

ShR 15 INSTR_SHR

Concat 16 INSTR_CONCAT

GetChar 17 INSTR_GETCHAR

SetChar 18 INSTR_SETCHAR

Jmp 19 INSTR_JMP
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With this table, you can easily set up a basic instruction-handling skeleton, like so:

// Check the current opcode value
switch ( iOpcode )
{

case INSTR_MOV:
// Implement Mov
break;

case INSTR_ADD:
// Implement Mov
break;

case INSTR_SUB:
// Implement Mov
break;
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Table 10.13  Continued
Mnemonic Opcode Constant

JE 20 INSTR_JE

JNE 21 INSTR_JNE

JG 22 INSTR_JG

JL 23 INSTR_JL

JGE 24 INSTR_JGE

JLE 25 INSTR_JLE

Push 26 INSTR_PUSH

Pop 27 INSTR_POP

Call 28 INSTR_CALL

Ret 29 INSTR_RET

CallHost 30 INSTR_CALLHOST

Pause 31 INSTR_PAUSE

Exit 32 INSTR_EXIT
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// ...

case INSTR_PAUSE:
// Implement Pause
break;

case INSTR_EXIT:
// Implement Exit
break;

}

As you can see, you’re working your way in from the outside. You started with nothing but data
structures, and then created a main loop, and now you have an instruction-handling skeleton.
The next stop is each instructions’ behavior. But first, let’s take a quick detour into a few loose
ends that need to be tied up before jumping in.

Handling Script Pauses
Our execution cycle skeleton is starting to take shape, but we can’t get to the implementation of
instructions just yet. Remember, scripts can pause themselves for specified durations with the
Pause command. The actual Pause instruction handler can’t perform this delay itself, however,
because the loop needs to continually execute until the pause duration elapses. The XVM proto-
type really gains nothing from this, but the final version of the XVM, which is both multithreaded
and has to run smoothly alongside a host application, must be able to handle script pauses syn-
chronously (meaning, without stalling the rest of the game).

Because of this, the main execution loop must begin with a check for the script’s pause flag. If
the script is currently paused, the current time is compared to the time at which the pause is
scheduled to end. If these times are equal, or if the current time is greater, we know the pause
has elapsed and can clear the pause flag. Here’s some code:

// Update the current time
int iCurrTime = GetCurrTime ();

// Check the script's pause flag
if ( g_Script.iIsPaused )
{

// Has the pause duration elapsed yet?
if ( iCurrTime >= g_Script.iPauseEndTime )
{

BUILDING THE XVM PROTOTYPE
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// Yes, so unpause the script
g_Script.iIsPaused = FALSE;

}
else
{

// No, so skip this iteration of the execution cycle
continue;

}
}

Simple, huh? Either the pause is over and the flag is cleared, or we just skip this iteration of the
loop with continue. You may be wondering where the iCurrTime variable gets its value, however. 
At each iteration of the execution loop, iCurrTime is updated to contain the current time, so that
any code within the loop can refer to it. Its apparently gets this value from a function called
GetCurrTime (), but we haven’t seen that one yet.

GetCurrTime ()
At any point, the current time in milliseconds can be determined with GetCurrTime (). This isn’t a
platform-specific API call, however; it’s defined by the XVM. The implementation, however, is
completely platform dependent, which is why I created this function in the first place. It’s
designed to wrap whatever function the platform provides for getting the current time in millisec-
onds, so Windows-specific API calls wouldn’t have to be hard coded into the system. For example,
if you’re a Windows user and don’t mind a little inaccuracy, (and by “a little” I mean “up to 55
milliseconds”) you can use GetTickCount ():

int GetCurrTime ()
{

return GetTickCount ();
}

If you’re on another platform, you can fill this with whatever it provides.

Incrementing the Instruction Pointer
Naturally, the instruction pointer has to be incremented after the execution of each new instruc-
tion so that it points to the next and the process can repeat. At first, this seems like such a trivial
issue that you’re wondering why I’ve even bothered dedicating a section to it.

The instruction pointer is indeed easy to handle in the case of most instructions. However,
instructions like Call and the jump family cause the pointer to move around irregularly. After
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executing Call or Jmp (for example), IP will point to the function’s entry point or the jump’s tar-
get instruction. This means that IP shouldn’t be changed before the next instruction is executed,
because it’s already where it needs to be for the next cycle. However, if our code blindly incre-
ments IP after executing all instructions, we’re going to run into some problems because the
entry points and jump targets of these instructions will be skipped by one.

So, we need a way to know whether or not IP has changed during the execution of the instruc-
tion. If it has, it can be left alone. Otherwise, it needs to be incremented. The simplest way to do
this is to save the state of IP in a local variable before the instruction is executed, then compare it
to that variable afterwards. If the two values are equal, we know IP hasn’t been changed by the
instruction, and can be incremented safely. Otherwise, we ignore it and assume that the instruc-
tion has moved it to a location we shouldn’t mess with. Now that you understand the process,
here’s the code:

// Save IP
int iCurrInstr = g_Script.InstrStream.iCurrInstr;
// Execute the current instruction
switch ( iOpcode )
{

case INSTR_MOV:
// This instruction does not alter IP.
break;

case INSTR_JMP:
// This instruction DOES alter IP.
break;

case INSTR_CALL:
// This instruction DOES alter IP.
break;

case INSTR_PAUSE:
// This instruction does not alter IP.
break;

}

// Has IP changed during the instruction's execution?
if ( iCurrInstr == g_Script.InstrStream.iCurrInstr )

// No, so increment it
++ g_Script.InstrStream.iCurrInstr;
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With this final detail out of the way, the skeleton of the execution cycle is pretty much taken care
of, so we can get back to the real meat of things-- implementing the instruction set.

Operand Resolution
As you saw, each instruction’s implementation
resides in a case. Within this case, you can break the
implementation into phases, as discussed earlier, like
this:

case INSTR_MOV:
// Resolve operands
// Execute instruction logic
// Store results
break;

Note that the first and last phases, resolving operands and storing the results, involve interaction
with the script’s structures like the stack and its global data tables. These phases will be particular-
ly easy to handle due to the set of functions created in the last section (“Structure Interfaces”).
You took the time to wrap otherwise complex and inconvenient processes in single functions that
will prove more than beneficial in the following subsections.

It’s the first of these phases that concerns you now. Resolving an instruction’s operand is the term
I use to refer to locating their its values (whether it’s immediately in the instruction stream, in the
stack, or in a register like _RetVal), bringing a copy of these values into the local scope, and coerc-
ing their data types into compatibility with one another. Fortunately, this is almost entirely han-
dled by the set of functions you built specifically for this task in the last section. The ResolveOp*
() functions in particular will come in quite handy.

Let’s imagine the Add instruction. It takes two operands, Source and Destination. Source is then
added to Destination to compute and store the sum. The problem is an issue of data types—
because the language is typeless, the assembler won’t speak up if you try adding a string to an
integer, or an integer to a float, or whatever. It’s therefore up to the VM to straighten any incom-
patibilities between the source and destination operands, perform the necessary coercion, and
continue with the instruction’s logic.

The solution to this problem is quite simple: what really matters is the data type of the destina-
tion. If, for instance, the VM finds itself adding a string to an integer, the integer destination is
most likely what the user found more important (after all, it’s the operand that will be changed
after the instruction has executed; Source will remain unaffected). Therefore, you simply need to
use ResolveOpAsInt () when resolving the first operand to automatically cast it from a string to an
integer.
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Instruction Execution and Result Storage
You’ve seen a generic method for resolving operands, so you’re ready to move into the next
phase of the instruction’s implementation, which is the execution of its logic and the storage of
its results. As you’ll see, storing the results of an instruction is so simple it barely deserves its own
phase, so it’ll be almost implicitly mentioned from here on out.

The following sections each discuss the overall implementation of a major instruction family. I
won’t cover how every last member of the XVM instruction set works, but understanding the fol-
lowing will give you enough knowledge to implement the rest on your own. Of course, the XVM
prototype source code is also available on the accompanying CD, which contains a full implemen-
tation of all instructions. As a friendly reminder, don’t forget to check it out!

Lastly, I’d just like to point out that you’re almost done here—your VM is capable of quite a few
things, is heavily structured, and is ready to move forward with actual instructions. You’ve worked
your way through some of the more mundane planning phases, and have worked your way down
to the heart of it all. Instruction implementations really are the soul of a virtual machine, so keep
that in mind as you read.

Mov
Let’s get things started by taking a look at the quintessential instruction. Mov embodies virtually
everything the average instruction does—it accepts operands, performs logic, and produces out-
put. It’s an incredibly simple and generic instruction by nature, however, which makes it the per-
fect jumping-off point. Besides, Mov is generally the most commonly used instruction in assembly
language programming, so it’s always the one you should be most familiar with.

I almost feel kinda bad after that long-winded build-up, however, because the code behind Mov is
nothing short of anti-climactic. In fact, I’ll just shut up and show it to you:

case INSTR_MOV:
// Mov   Source, Destination

// Get a local copy of the destination operand (operand index 0)
Value Dest = ResolveOpValue ( 0 );

// Get a local copy of the source operand (operand index 1)
Value Source = ResolveOpValue ( 1 );

// Skip cases where the two operands are the same
if ( ResolveOpPntr ( 0 ) == ResolveOpPntr ( 1 ) )

break;
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// Copy the source operand into the destination
CopyValue ( & Dest, Source );

// Use ResolveOpPntr () to get a pointer to the destination Value
// structure and move the result there
* ResolveOpPntr ( 0 ) = Dest;

break;

Figure 10.31 illustrates how Mov works.
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Mov in action.

Pretty simple, huh? All it does is the following:

■ Resolves local copies of the source and destination operands.
■ Uses CopyValue () to safely write the source operand to the destination.
■ Writes the destination back out to memory (either the stack or _RetVal) using the point-

er returned by ResolveOpPntr ().

Binary Operation Implementation
Immediately following Mov are the binary operation instructions, because they follow a similar pat-
tern. This family of instructions includes arithmetic like Add and Exp, and bitwise operations like
And and XOr. As you’ll see, they follow a very similar pattern to Mov in that they accept source and
destination parameters and place the result in the destination.

Also like Mov, their implementation is reasonably simple and tends to speak for itself. So, I’ll once
again step back for the moment and let the code do the talking. Check out the implementation
of Add:



639

case INSTR_ADD:
Add   Op0, Op1

// Get a local copy of the destination operand (operand index 0)
Value Dest = ResolveOpValue ( 0 );

// Add the source to the destination
if ( Dest.iType == OP_TYPE_INT )

Dest.iIntLiteral += ResolveOpAsInt ( 1 );
else

Dest.fFloatLiteral += ResolveOpAsFloat ( 1 );

// Use ResolveOpPntr () to get a pointer to the destination Value
// structure and move the result there
* ResolveOpPntr ( 0 ) = Dest;

break;

Just about as easy, huh? The only difference between this and Mov is that it adds the source and
destination rather than simply performing copying. Also, the addition is of course broken down
by data type, since the final, raw values are not typeless like XtremeScript is.

The cool thing here is that all binary operation instructions follow the same format. The only
place they differ is the actual operation itself. Because of this, however, you can end up with a lot
of redundant code because the only major change you’re making is a single-character operator. I
generally like to condense all of the binary operation instructions into a single case and use
another, larger switch to determine which operation to perform once the operands have been
resolved. As you’ll see in the XVM source, all of the binary instructions, from Mov to XOr, are
implemented in a single instruction handler.

Figure 10.32 illustrates Add.
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Conditional Branching Implementation
The jump instructions are a little bit different than Mov and the binary operations, but they’re
nothing you can’t handle. To start things off, let’s look at what’s by far the simplest branch
instruction, Jmp— the unconditional jump.

case INSTR_JMP:
{

// Jmp    Label

// Get the index of the target instruction (opcode index 0)
int iTargetIndex = ResolveOpAsInstrIndex ( 0 );

// Move the instruction pointer to the target
g_Script.InstrStream.iCurrInstr = iTargetIndex;

break;
}

Tough stuff, huh? Seriously, this is about as simple as instructions get. All we have to do is resolve
the first operand (operand index 0) as an instruction index, and we immediately have the jump
target. We then set IP to this value and our job is done.

Moving on, the complexity increases when you get into the conditional jumps. Like most instruc-
tion families, however, all conditional jumps are coded in the same way, so once you get one fig-
ured out the rest come easily. Here’s the implementation for JE—jump if equal. As a quick
refresher, this instruction compares two operands, Op0 and Op1, and jumps to a target instruction
if their values are equal.

case INSTR_JE:
// JE    Op0, Op1, Target

// Get the two operands
Value Op0 = ResolveOpValue ( 0 );
Value Op1 = ResolveOpValue ( 1 );

// Get the index of the target instruction (opcode index 2)
int iTargetIndex = ResolveOpAsInstrIndex ( 2 );

// Perform the specified comparison and jump if it evaluates to true
int iJump = FALSE;

10. BASIC VM DESIGN AND IMPLEMENTATION

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



641

switch ( Op0.iType )
{

case OP_TYPE_INT:
if ( Op0.iIntLiteral == Op1.iIntLiteral )

iJump = TRUE;
break;

case OP_TYPE_FLOAT:
if ( Op0.fFloatLiteral == Op1.fFloatLiteral )

iJump = TRUE;
break;

case OP_TYPE_STRING:
if ( strcmp ( Op0.pstrStringLiteral, Op1.pstrStringLiteral ) == 0 )

iJump = TRUE;
break;

}

// If the comparison evaluated to TRUE, make the jump
if ( iJump )

g_Script.InstrStream.iCurrInstr = iTargetIndex;
break;

Things are still pretty straightforward. The two operands are read in, and the data type of the first
(Op0) is used as the basis for the comparison. You set a flag to FALSE beforehand that is only
changed to TRUE if the comparison evaluates to equality. You then use this flag to determine
whether to make the jump at the end of the instruction. Like I said, it’s not hard to do and once
you’ve got one conditional working, you can code the rest of them just as easily.

BUILDING THE XVM PROTOTYPE

NOTE
It’s true that pretty much all of the conditional jump instructions can
be coded with the same basic framework, and in that regard, should
probably be condensed into a single case like I mentioned in the sec-
tion on binary operations. However, remember that only JE and JNE
need to support strings; there’s really no such thing as a string that’s
“greater than” or “less than” another string, so JG, JL, JGE, and JLE
can be written to only work with numeric operands (integers and
floats). Check the XVM source for more information on how jump
implementations can be organized.
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Function Call Implementation
After all you’ve seen, you may be under the impression that the implementation of your function
call system will be right up there with the more complex aspects of your virtual machine.
Fortunately, this is not the case. You’ve written such a powerful base of helper functions already
for working with the stack and routing the flow of execution that Call and Ret will be borderline
trivial. Besides, we’ve already been through virtually the entire function call and return process,
so this is just an application of that material.

The implementation of function calls lies in two instructions: Call and Ret, which call and 
return from functions, respectively. The following two subsections explain these instructions’
implementation.

Call

Call is actually a reasonably simple instruction. Remember, all it does is fill out the remaining
components of the stack frame and make an unconditional jump to the function’s entry point.
The script itself will have already pushed the parameters onto the stack, so it’s just up to you to
push the instruction pointer’s value as an integer (the return address) and use PushFrame () to
allocate the necessary space for local data. You then use Jump () to enter the function.

Let’s take a look at the code:

case INSTR_CALL:
{

// Call    Func

// Get a local copy of the function index
int iFuncIndex = ResolveOpAsFuncIndex ( 0 );

// Get the destination function's info
Func DestFunc = GetFunc ( iFuncIndex );

// Save the current stack frame index
int iFrameIndex = g_Script.Stack.iFrameIndex;

// Advance the instruction pointer so it points to the instruction
// immediately following the call
++ g_Script.InstrStream.iCurrInstr;

// Push the return address, which is the current instruction
Value ReturnAddr;

10. BASIC VM DESIGN AND IMPLEMENTATION
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ReturnAddr.iInstrIndex = g_Script.InstrStream.iCurrInstr;
Push ( ReturnAddr );

// Push the stack frame + 1 (the extra space is for the function index
// we'll put on the stack after it)
PushFrame ( DestFunc.iLocalDataSize + 1 );

// Write the function index and old stack frame to the top of the stack
Value FuncIndex;
FuncIndex.iFuncIndex = iFuncIndex;
FuncIndex.iOffsetIndex = iFrameIndex;
SetStackValue ( g_Script.Stack.iTopIndex - 1, FuncIndex );

// Let the caller make the jump to the entry point
g_Script.InstrStream.iCurrInstr = DestFunc.iEntryPoint;
break;

}

This instruction gives you the ability to call functions, and thanks to its use of the runtime stack, it
has automatic support for nesting and recursion. Despite its incredible utility value, however, all
its implementation took was a few calls to your helper functions. In that regard, building an oth-
erwise complex instruction was just like snapping together a couple Legos. See how easy these
helper functions have made things?

The instruction begins by reading a Func structure from the function table using the single
operand as the index. Once you have this structure, you have the information you need to com-
plete the stack frame and make the jump to the entry point. You then save the create a new Value
structure, set its integer literal field to the current instruction pointer, and push it onto the stack.
Ret will need this in order to find its way back to the caller. The next step is to get the target func-
tion’s local data size and complete the stack frame by allocating a contiguous region of space for
it with a call to PushFrame ().

Before making the jump, however, you need to also save the function’s index and the location of
the current stack frame, which Ret will need later on. Once again, this is why your assembler
always generated local data stack indices starting from -2; the element at index -1 contains this
value which cannot be disturbed. Lastly, you finish it all up by using the function’s entry point as
the target for the jump. Figure 10.33 depicts an XVM stack frame.

BUILDING THE XVM PROTOTYPE
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Ret

Of course, you don’t want to strand your script inside a function. Once a Ret instruction is
encountered by the VM, it’s time to go home. Take a look at the implementation:

case INSTR_RET
// Ret

// Get the current function index off the top of the stack and use it to
// get the corresponding function structure
Value FuncIndex = Pop ();

Func CurrFunc = GetFunc ( FuncIndex.iFuncIndex );
int iFrameIndex = FuncIndex.iOffsetIndex;

// Read the return address structure from the stack, which is stored one
// index below the local data
Value ReturnAddr = GetStackValue ( g_Script.Stack.iTopIndex -

( CurrFunc.iLocalDataSize + 1 ) );

// Pop the stack frame along with the return address
PopFrame ( CurrFunc.iStackFrameSize );

// Restore the previous frame index
g_Script.Stack.iFrameIndex = iFrameIndex;
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// Make the jump to the return address
g_Script.InstrStream.iCurrInstr = ReturnAddr.iInstrIndex;

break;

The instruction begins by popping the function table index off the top of the stack that Call
placed there just before it invoked the function. Remember, this value must be on top of the stack
when Ret is called, or else none of its logic will work. Because of this, functions must always
remember to preserve the structure of the stack by popping everything they push. This index is
required to complete the rest of the implementation; you need to know which function you’re
returning from in order to get its relevant information from the function table. This element also
contains the previous frame index, which is saved as well.

Once you have the function structure, you can use the information it contains to locate the
return address on the stack. The distance of the return address from the top of the stack is always
the size of the local data, so you just use that size as a negative offset to obtain it. You then save
the return address in a local integer variable.

The stack frame is then taken down: parameters, the return address, the local data, everything.
This is done with a single call to PopFrame (), using the StackFrameSize field of the Func structure.
The stack’s iFrameIndex is then restored to its previous value. The function no longer exists on the
stack at this point, so all that’s left to do is jump back to the caller using the return address you
saved. Figure 10.34 sums up the logic behind Ret.

BUILDING THE XVM PROTOTYPE

Figure 10.34

The logic behind Ret.
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Pause Implementation
The last instruction I want to take a look at is Pause, because it has more of an effect on the main
loop of the virtual machine than the other functions. Once Pause is called, the execution cycle will
ignore the current instruction until the pause duration has elapsed. Here’s the implementation:

case INSTR_PAUSE:
{

// Pause    Duration

// Get the pause duration
int iPauseDuration = ResolveOpAsInt ( 0 );

// Determine the ending pause time
g_Script.iPauseEndTime = iCurrTime + iPauseDuration;

// Pause the script
g_Script.iIsPaused = TRUE;

break;
}

We’ve already seen how the VM’s execution cycle handles script pauses, so we’re good to go; exe-
cuting this instruction will cause the script’s activity to halt for the specified duration, but in a syn-
chronous manner that doesn’t cause the overall program to stall in an empty loop.

The Rest
I haven’t covered every instruction here, but you’re by no means on your own. The first and most
important thing to do is check out the XVM prototype source. This contains a working imple-
mentation of every instruction, as well as full commenting, so that alone should be all you need.
But even without that, the techniques and principals you’ve already learned will provide enough
of a foundation to implement anything. Remember, once you’ve resolved your operands, the
implementation of an instruction can basically be thought of as writing a function. Just code the
logic while taking the operands into account and you’re done.

Termination and Shut Down
There’s not a whole lot to say about the termination phase, because it’s pretty easy in the XVM
prototype. Currently, the script will run until an Exit instruction is processed, or until a key is
pressed.

10. BASIC VM DESIGN AND IMPLEMENTATION
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The only real job left at this point is to free the dynamically allocated data structures. This
includes the following:

■ The instruction stream and each instruction’s operand list.
■ The runtime stack.
■ The function table.
■ The host API call table.

Note that some structures like the script header can be ignored in this phase due to their static
allocation.

One major caveat here is the freeing of string literals. Remember, between the stack and the
instruction stream, you’ve got a significant amount of strings allocated that all need to be individ-
ually released. Failure to do this will eat up memory extremely quickly. The strategy for handling
these strings is simple; first, scan through the instruction stream and check the operand type.
Anything set to OP_TYPE_STRING contains a string that must be freed. The same goes for the stack.

The following is the implementation of ShutDown (), an XVM prototype for freeing the script’s
resources:

// ---- Free The instruction stream
// First check to see if any instructions have string operands, and free them
// if they do

for ( int iCurrInstrIndex = 0; iCurrInstrIndex < g_Script.InstrStream.iSize;
++ iCurrInstrIndex )

{
// Make a local copy of the operand count and operand list
int iOpCount = g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].iOpCount;
Value * pOpList = g_Script.InstrStream.pInstrs [ iCurrInstrIndex ].pOpList;

// Loop through each operand and free its string pointer
for ( int iCurrOpIndex = 0; iCurrOpIndex < iOpCount; ++ iCurrOpIndex )

if ( pOpList [ iCurrOpIndex ].pstrStringLiteral )
pOpList [ iCurrOpIndex ].pstrStringLiteral;

}

// Now free the stream itself
if ( g_Script.InstrStream.pInstrs )

free ( g_Script.InstrStream.pInstrs );

// ---- Free the runtime stack

BUILDING THE XVM PROTOTYPE
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// Free any strings that are still on the stack
for ( int iCurrElmtnIndex = 0; iCurrElmtnIndex < g_Script.Stack.iSize;

++ iCurrElmtnIndex )
if ( g_Script.Stack.pElmnts [ iCurrElmtnIndex ].iType == OP_TYPE_STRING )

free ( g_Script.Stack.pElmnts [ iCurrElmtnIndex ].pstrStringLiteral );

// Now free the stack itself
if ( g_Script.Stack.pElmnts )

free ( g_Script.Stack.pElmnts );

// ---- Free the function table

if ( g_Script.FuncTable.pFuncs )
free ( g_Script.FuncTable.pFuncs );

// --- Free the host API call table

// First free each string in the table individually
for ( int iCurrCallIndex = 0; iCurrCallIndex < g_Script.HostAPICallTable.iSize;

++ iCurrCallIndex )
if ( g_Script.HostAPICallTable.ppstrCalls [ iCurrCallIndex ] )

free ( g_Script.HostAPICallTable.ppstrCalls [ iCurrCallIndex ] );

// Now free the table itself
if ( g_Script.HostAPICallTable.ppstrCalls )

free ( g_Script.HostAPICallTable.ppstrCalls );

SUMMARY
You’re on your way now, my young Padawan. The XVM prototype you built in this chapter marks
the first time you’ve successfully executed your own bytecode, which means you’re on the thresh-
old of a finished, working virtual machine. Of course, I’ve left out all the real fun, like multi-
threading and communication with the host application. But worry not, because they’re the focus
of the next chapter.

That’s right, by the end of the next chapter, you’ll be two thirds of the way through this quest 
for enlightenment of yours, bringing you ever closer to scripting mastery. Out of the compiler,
assembler, and virtual machine, the last two components will be finished and ready to go. The
next chapter will see you through the completion of the XVM, which will be nothing short of

10. BASIC VM DESIGN AND IMPLEMENTATION



649

awesome, and will give you plenty of power to play with for a while. The finished XtremeScript
Virtual Machine will be a fast, powerful, and best of all, multithreaded virtual machine that can
communicate easily with the host application.

Once the next chapter is finished, ending this section of the book, you’ll be rounding the home
stretch and find yourself hip-deep in the ultimate test: compiling the high-level XtremeScript
scripting language. As you build the XtremeScript compiler, you’ll use the tools you’ve developed
here—XASM and the XVM—to test and examine its output. As you’ll see, the order in which
you’re developing the system’s components (the assembler, and then the VM, and then the com-
piler) will come in quite handy.

ON THE CD
The XVM prototype is available on the CD, all greased up and ready to go. Check it out in the
Programs/Chapter 10/XVM Prototype/ directory. As always, it’s available in both source and exe-
cutable form, so you can play with it right away and browse the code at your leisure.

Like XASM, the XVM Prototype is a simple console application which makes things very easy.
Simply load the workspace file into Visual C++ and build. The only snag this time is that
GetCurrTime () is implemented in a Win32-specific way, so users of other platforms will have to
replace the Win32 API calls with corresponding ones from their own platform. All that’s neces-
sary is any function that returns the current time in milliseconds, so it shouldn’t be too much of
an issue.

CHALLENGES
■ Easy: Add more output information for each instruction; for example, arithmetic instruc-

tions could be printed with both operands, the operator they represent, and the result-
ing value.

■ Intermediate: This one relates to the easy challenge from the last chapter. Implement the
new instructions you added to XASM and see if you can get them to actually function.
The example instructions I suggested where Sqrt (for computing square roots), RoL (for
rotating bits to the left), and RoR (for rotating bits to the right).

■ Difficult: Using a graphics API of some sort (like DirectX, or the Wrapppuh API provided
with this book), write a graphical-front end for the VM that displays a constantly updated
memory map (showing the stack, _RetVal and the instruction stream) that allows you to
watch the exact behavior of the script as it executes, visually. Finishing this challenge
would actually leave you with a powerful low-level debugger.

CHALLENGES
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It’s on now. Chapter 10 introduced you to the design and implementation of a virtual
machine’s core logic, and now you’re going to finish the job by adding the much-needed fea-

tures that will allow your runtime environment to fully integrate itself with a game engine. By the
time this chapter is through, the XtremeScript Virtual Machine (XVM) will be finished and ready
to go. From there, all that will remain is the design and implementation of the high-level
XtremeScript compiler. Throughout the development of that final project, you’ll have the XVM
to test your results at every step of the way. This should help you understand why you’re develop-
ing the scripting system’s components in this order.

In this chapter, you’re going to

■ Add the ability to run multiple scripts concurrently, in a priority-based multithreaded
environment.

■ Add functions for fully integrating the virtual machine with the host application, allow-
ing scripts to call game engine functions and vice-versa.

■ Discuss other VM issues, such as basic security and porting.

A NEXT GENERATION VIRTUAL MACHINE
The virtual machine developed in Chapter 10 was definitely a worthwhile project. It could load
formatted .XSE executables, implement every instruction (except for CallHost), and was capable
of running scripts in their entirety. The only real issues were that it couldn’t handle more one
script at a time, and was a standalone program—there was no way to embed it in a larger pro-
gram and allow the two entities to easily communicate. This chapter will fill in these blanks, to
create the next generation of the virtual machine.

Two Versions of the Machine
Throughout the course of this chapter, you’re actually going to create two new virtual machines;
the first will demonstrate the basics of multitasking, whereas the second will make a few small
detail changes and introduce a host application interface. You can find both of these virtual
machine versions on the accompanying CD in the DIRECTORY_NAME_HERE directory.

11. ADVANCED VM CONCEPTS AND ISSUES
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MULTITHREADING
The current VM is single-threaded, which means that only one script’s bytecode can be executed
at once. Furthermore, the runtime environment’s internal structures only allow for a single script
to be stored in memory at any given time, using the g_Script structure. However, because games
are naturally based around large numbers of autonomous entities that all seem to move and exist
in parallel, this VM will need the capability to both store and execute as many scripts at one time
as the game demands, as shown in Figure 11.1.

MULTITHREADING

Figure 11.1

Most games require 

a large number of 

entities to exist 

concurrently.

You could add multithreading capabili-
ties by directly using the threading sys-
tem provided by Windows (or your OS
of choice), but this would force the
otherwise virtual and platform-neutral
runtime environment into a platform-
dependent solution. Furthermore,

NOTE
Using an operating system’s built-in thread
functionality, such as Windows threads, would
have virtually no discernable advantage over
the custom-built solution on a single-processor
system, but it would transparently run faster on
a multiprocessor system.
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these scripts are extremely lightweight—so much so, in fact, that a custom-built threading system
would be the best way to capitalize on their small footprints and maximize efficiency. Besides,
actually implementing threads is a far better learning experience.

Multithreading Fundamentals
Let’s start at the beginning. Virtually all operating systems these days are multitasking operating
systems. This means that they can distribute the workload of multiple programs evenly across the
system’s speed and memory resources, and across multiple physical processors if available. In the
case of single-processor systems, however, the concept of the multiple programs running in paral-
lel is an illusion made possible by the sheer speed of today’s processors. Naturally, a single proces-
sor machine can only do one thing at once, but by executing each running program for a very
brief period of time, in sequence, the user will perceive concurrent execution. Figure 11.2 illus-
trates the process of running multiple tasks in simulated parallel.
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Cooperative vs. Preemptive Multitasking
Generally speaking, multitasking can be implemented in one of two fundamental ways—coopera-
tive or preemptive. In a cooperative multitasking system, like Windows 3.x, individual programs are
allowed to run for as long as they feel is necessary before relinquishing control back to the oper-
ating system, and subsequently, to the next program waiting to run. For example, this means that
a rendering program may choose to render an entire scanline or portion of an image each time
the operating system gives it control, during which time the rest of the system is essentially frozen.
When this process is complete, the operating system will move on to the next task, known as a
context switch, which may be a text editor like notepad. This program, because it’s obviously less
intensive than the renderer, will probably just idle for a few milliseconds to give the users a
chance to input some text, and immediately let the operating system once again switch tasks. The
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problem with the cooperative approach is that it relies on programs to govern themselves. If
you’ve ever read Lord of the Flies, you know this can only end badly. Figure 11.3 displays the
uneven behavior of a cooperative multitasking system.

MULTITHREADING

Figure 11.3

Cooperative multitask-

ing leads to an uneven

distribution of proces-

sor time.

NOTE
The term context switch comes from the fact that in a real hardware
system, the currently active task must be saved before the next one
can be invoked.This means storing the status of each register, along
with the tasks instruction pointer and stack pointers.This information
is vital—the thread can’t be restored without it. This information—
the registers, instruction and stack pointers, and so on—is known as a
context, because it more or less defines the state of the system at a
given moment.Therefore, switching from one task to another means
switching the context. Fortunately, in the case of the XVM, you don’t
have to worry about this quite as much. Because the Script structure
automatically stores all of this information for you, a script’s context 
is implicitly saved at all times.
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Because of this lack of equality among tasks, a cooperative multitasking system tends to lag and
feel noticeably uneven. This is brought on by the fact that each program in memory can poten-
tially run at wildly varying intervals, resulting in certain programs with perfect responsiveness and
others that feel sluggish and jerky. This issue is significant when dealing with business applica-
tions, but it’s completely unacceptable when writing a game. Games need a liquid-smooth consis-
tency that maintains the players’ suspension of disbelief, constantly reassuring their subconscious
that they’re visiting a convincing alternate reality. Games need to mimic the real-world’s ability to
run everything within it at a constant rate—just because a powerful car drives by your house does-
n’t mean that your pets suddenly slow down or start skipping. Figure 11.4 illustrates the even
thread execution a game requires.
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Preemptive multitasking solves this problem. Rather than allow programs to decide their own
level of importance, the OS distributes very small, nearly uniform time slices among all running
tasks. A time slice is a very brief period of time, usually measured in milliseconds, that ensures
that all tasks will be evenly distributed across the processor’s capabilities. Within a preemptive sys-
tem, priorities can be assigned to tasks that increase or decrease their time slice, giving them a rela-
tive advantage or disadvantage based on their importance. This allows for a more intelligent dis-
tribution of processor power, because certain programs inevitably require more than others. Of
course, priorities are specifically designed to be subtle; only over time will a higher or lower prior-
ity task appear to run at a different rate than others. This allows a preemptive system to maintain
its smooth flow of execution while still providing more power to programs that need it and less to
those that don’t.

This approach to priorities varies the size of certain tasks’ time slices, but doesn’t affect the order
in which they execute. Assuming the system is currently running four tasks, numbered 0 to 3, the
system will always run the tasks in order, like this:

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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This is known as round-robin scheduling, because each thread is executed in the same sequence
every time, as illustrated in Figure 11.5. The mechanism within the operating system that man-
ages context switches among tasks and threads is known as the scheduler.

MULTITHREADING

Figure 11.5

Round-robin time slice

scheduling.

NOTE
The actual definition of a task’s priority can vary. Some implementa-
tions may define priorities as I have here—an increase or decrease in
the allotted time slice that gives a task more or less time to do its job
than others. Other implementations may give all tasks the same time
slice and instead vary the frequency at which a task is given control
based on its priority. In this case, high priority tasks may execute mul-
tiple times during an interval in which all other tasks only run once.
No matter how you approach the problem however, the overall result
is the same—high priority tasks are capable of accomplishing more in
a shorter time.

It’s important to understand that a time slice is in no way a guarantee that the program will get a
chance to finish what it’s doing before the next context switch occurs. In fact, programs rarely
start and finish even small tasks within their allotted time slices; rather, it’s the norm for programs
to be constantly interrupted by context switches. Of course, multitasking systems are designed to
be transparent to everyone but the scheduler, meaning the program never actually knows it’s
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being interrupted. Figure 11.6 illustrates how a single function or procedure can be transparently
broken into multiple time slices.
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From Tasks to Threads
Multitasking is great, but modern applications need even more flexibility from the operating sys-
tem. Just as the OS can split itself up into multiple programs, many of these programs need the
capability to further split themselves up into concurrently executing chunks. These are known as
threads, and are shown in Figure 11.7.

Because the VM will ultimately integrate itself with the host application to form a complete game,
you can consider the game as a whole to be a single operating system task. Within this task, how-
ever, multiple scripts need to coexist and appear to run in parallel. This is why the formerly singu-
lar game then needs to be split into multiple threads of execution. One thread will be set aside
for the game loop, and the rest will be divided among the currently loaded scripts. By assigning
fine-grained time slices to these threads, the game engine and each of its scripts will appear to
run at the same time. The result is a game engine with direct support for fully autonomous enti-
ties that manage their own behavior.
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Concurrent Execution Issues
Despite its obvious utility value and necessity for game development, multithreading is a technol-
ogy that brings with it a number of serious issues and caveats. Just as roommates sharing a single
bathroom and refrigerator tend to get in each other’s way, threads that share common or global
data run a significant risk of stepping on one another’s toes and causing problems for the system
as a whole. The inherent issues involved with multiple threads sharing common resources like
data, input devices and so on, all fall under the topic of synchronization. The following sections are
provided to quickly bring you up to speed on the key concepts behind thread synchronization,
starting with the crux of the matter—race conditions.

Race Conditions
Games consist of huge amounts of data. Aside from raw media like sprites, textures, sounds, 
and 3D meshes, games do huge amounts of bookkeeping, ranging from the location of enemies

MULTITHREADING

Figure 11.7
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within the game world to the player’s statistics like the amount of damage the ship has taken or
how much ammo is left in the sniper rifle. All of this data is vital to a game’s execution—if the
player’s on-screen Y-location were to suddenly jump 400 pixels, for example, it would have a sig-
nificant effect on the game’s overall playability.

Naturally, threads will need to access and modify this data, and on a frequent basis. A script
responsible for controlling a player-tracking enemy will need to constantly access both the play-
er’s and enemy’s X, Y position, whereas another script designed to handle an in-flight rocket will
need to constantly monitor and update the weapon’s velocity and location. The situation I’m
describing here is one in which multiple scripts share common data. This is where synchroniza-
tion becomes a top priority for the threading system. Check out Figure 11.8.
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Imagine if, within the same frame, two threads attempt to read and modify the player’s on-screen
X, Y location. Because each thread runs for a brief time slice wherein the context switch will almost
invariably interrupt whatever operation is currently being performed, it won’t be long before one
thread’s modification of the shared data is only partially complete when the next thread is invoked.
The second thread will now be working with partially updated data because the first thread hasn’t
yet finished its job—a serious problem known as data corruption. Simply put, data corruption
becomes a risk whenever two or more threads attempt to operate on the same data, an event known
as a race condition. Figure 11.9 demonstrates data corruption over the course of three time slices.

Race conditions are analogous to multiple users on a network attempting to modify the same file.
If each user were free to do whatever he or she liked at any time, the file would soon become
heavily corrupted by partial modifications that were interrupted by other users’ requests and
changes. Because of this, networked operating systems enforce strict file sharing rules, wherein
only one user can have a file open at one time. Although it’s fine for multiple users to read from a
file simultaneously, a file can only be open for writing by one user at once.
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Atomic Operations
One approach to the problem presented by race conditions is to wrap all modifications of shared
data in atomic operations. An atomic operation is a block of code that is guaranteed to execute in
full without fear of a context switch occurring. Atomic operations are implemented in many ways,
varying from one platform to the next, but I’ll discuss a highly simplified approach to better illus-
trate the concept.

Imagine that the following block of generic code is a script running in a virtual machine with
direct access to the game’s player data. If the script wanted to update the player’s X, Y location,
the code might look like this:

g_Player.iX += iXDiff;   // Add the X-axis differential
g_Player.iY += iYDiff;   // Add the Y-axis differential

As long as this script runs on its own, everything should be fine. Imagine introducing another
script, however, that runs in parallel to the first and tracks the player by moving an enemy closer
to the player’s location at each frame. Here’s how it might look:

// Move the enemy closer on the X-axis
if ( g_Enemy.iX < g_Player.iX )

++ g_Enemy.iX;

MULTITHREADING
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if ( g_Enemy.iX > g_Player.iX )
-- g_Enemy.iX;

// Move the enemy closer on the Y-axis
if ( g_Enemy.iY < g_Player.iY )

++ g_Enemy.iY;
if ( g_Enemy.iY > g_Player.iY )

-- g_Enemy.iY;

With these two threads running concurrently, it won’t be long before they slip out of sync (if
they’re even in sync to begin with, which is unlikely). When this happens, the comparisons and
updates made by the enemy’s script will take place after only partial updates are made to the play-
er’s position, which can result in all sorts of imperfections in the enemy’s ability to smoothly track
the player. The enemy may end up making too many comparisons to partially updated player
data, resulting in jagged and overcorrected movement.

The problem is that the tasks performed by these scripts must be executed in full, regardless of
context switches. Each script must be sure that the other was able to finish its job, resulting in
completely updated data to use as the basis for its own purposes. Imagine now that this generic
language offers an atomic keyword that can mark entire blocks of code as atomic operations.
Here’s the updated version of the first script:

atomic
{

g_Player.iX += iXDiff;    // Add the X-axis differential
g_Player.iY += iYDiff;    // Add the Y-axis differential

}

And here’s the second:

atomic
{

// Move the enemy closer on the X-axis
if ( g_Enemy.iX < g_Player.iX )

++ g_Enemy.iX;
if ( g_Enemy.iX > g_Player.iX )

-- g_Enemy.iX;

// Move the enemy closer on the Y-axis
if ( g_Enemy.iY < g_Player.iY )

++ g_Enemy.iY;
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if ( g_Enemy.iY > g_Player.iY )
-- g_Enemy.iY;

}

The scripting system knows now that both of these blocks are critical to the integrity of the game
engine’s data overall and will allow them to run in full before a pending context switch can take
effect. Figure 11.10 illustrates atomic operations.
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Critical Sections
In the previous examples, the two scripts both attempted to access a shared resource—in this
case, the player’s X, Y location within the game world—and are therefore examples of a critical
section. A critical section is the sum of all code blocks across all scripts that attempt to access the
same resource. Because shared resources cannot be modified by multiple threads at once, a criti-
cal section must enforce a mutual exclusion. Even though there were two separate blocks of code
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in the last example, neither of them can be active at the same time as the other. If there were
three such blocks in the example, two of them would have to remain inactive while the third was
performing its operation. No matter how many blocks of code attempt to access a single shared
resource, they’re all part of the same critical section and therefore cannot run in parallel with
one another. This is demonstrated in Figure 11.11.
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A critical section.

Mutexes
A mutex is a simple way to regulate critical sections. The term “mutex” is an abbreviation of
“Mutual Exclusion”, which is exactly what it provides. When a mutex is applied to a critical sec-
tion, it can be guaranteed that no thread will enter the section at the same time as another.

A mutex is really just a globally defined flag that is accessible from all scripts and is associated
with a particular critical section. Whenever a thread attempts to access a shared resource, an
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operation that takes place within its particular part of the critical section, this flag is read. If it’s
clear, the thread sets the flag and begins its operation. During this time, context switches will reg-
ularly occur and interrupt the thread with the time slices of other threads. These other threads
may themselves attempt to access the same resource, and therefore will enter their own parts of
the critical section. They too will check the mutex flag, which will now be set. Whenever the flag
is set, the thread that’s attempting to access it will enter an empty loop and wait until the flag is
cleared before entering. When all threads adhere to this policy, the shared resource will never be
accessed by more than one thread at a time.

Let’s look at an example of using a mutex with the first script in the previous example:

// If the mutex is currently locked, wait until it's unlocked
while ( g_iPlayerMutex )

;

// Now lock the mutex so other threads
// won't access the resource
g_iPlayerMutex = TRUE;

// Modify the shared resource safely
g_Player.iX += iXDiff;    // Add the X-axis differential
g_Player.iY += iYDiff;    // Add the Y-axis differential

// Unlock the mutex to restore access to the resource
g_iPlayerMutex = FALSE;

Astute readers may have already noticed a flaw in this approach, however. The actual process of
checking the status of the mutex and locking it can itself be interrupted by a context switch,
which would invalidate the whole process. It’s important to remember that even locking and
unlocking a mutex can be easily interrupted and therefore must be treated as an atomic opera-
tion. Because of this, the actual implementation of mutexes is done on the OS level——at the
same level as the scheduler—where it can be ensured that mutex operations will be performed
without interruption. Check out Figure 11.12 for a visual explanation of a mutex.

Semaphores
Semaphores are like mutexes, but are designed to support an aggregate of generic resources as
opposed to just one. I say generic because semaphores are used when multiple copies of a
resource are available, and it doesn’t matter which thread uses which copy as long as only a cer-
tain number of threads are allowed access at once. In other words, the only difference between a
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semaphore and a mutex is that a mutex treats a resource as either locked or unlocked, thereby
allowing only a single thread access to a resource at one time. A semaphore, on the other hand,
lets a specific number of threads access the resource concurrently before it denies subsequent
requests. Because of this, mutexes are often known as binary semaphores.

Race Conditions in the XVM
As you’ll see later in this chapter, race conditions won’t be a particularly serious issue in the XVM
because scripts can’t share data. Through the host API, however, it will become possible for multi-
ple scripts to attempt to change game engine data concurrently, which can result in race condi-
tions. I’ll revisit this issue later in the chapter.
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Loading and Storing Multiple Scripts
Now that you have a basic understanding of the concepts behind multithreading, it’s time to get
back to reality. Before I get into the serious stuff, I still have to address the basic issue of loading
and storing multiple scripts at once. All the multithreading theory in the world won’t matter if
you can’t even get more than one script into memory at one time, so expanding the XVM’s archi-
tecture is an important first step.

The g_Script Structure
The main reason you can’t load more than one script at one time is because you’re only declar-
ing a single g_Script structure. The obvious solution, then, is to replace this with an array or
linked list of g_Scripts, right? The question is, which type of aggregate structure is best?

Arrays or Linked Lists?
Scripts can be internally stored using any number of structures. But the question is, does the
structure need to be dynamic? If the answer is no, you can slap in a static array and be done with
it. You should be careful in answering this question, however.

Many programmers these days would simply go with a linked list because it theoretically offers
improved flexibility by supporting virtually unlimited numbers of elements and never using more
memory than it needs. Arrays, on the other hand, are just the opposite—they can only support a
fixed number of elements and are often using far more memory than is necessary to store a
quantity of items that is well below its limit.

Of course, the attitude that complex structures are always better than simpler ones can get you in
a lot of trouble, so let’s look at the facts. Storing your scripts in a linked list offers the following
advantages:

■ The ability for the game engine to load a virtually limitless number of scripts, resulting in
maximum flexibility—especially for games with lots of separate entities.

■ Efficient memory usage wherein script structures are allocated and freed on the fly to
adjust to the number of scripts in memory at the moment.

Of course, it also suffers from the following disadvantages:

■ Slow random access times, because linked lists must be partially or fully traversed in
order to reach specific elements.

■ Increased implementation complexity.

MULTITHREADING
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Straight C arrays, on the other hand, offer the following advantages:

■ Very easy implementation.
■ Extremely fast and simple random or sequential access.

And, as expected, the following disadvantages:

■ General inflexibility due to a limit being placed on the number of scripts that can theo-
retically be in memory at once.

■ Inefficient memory usage that doesn’t attempt to adjust allocated space to match or
approximate its contents.

So what’s it gonna be? Both approaches seem to make a strong case for themselves and against
the other. I personally have to side with arrays on this one, however, as shown in Figure 11.13.
Why? For starters, the g_Script structure is rather lightweight which means that even in the 
worst case scenario, a large static g_Script [] array will really never be a “waste” of memory. To
prove this, let’s do some basic analysis. You can determine the total size of a single g_Script struc-
ture by adding up the respective sizes of each of its fields, as long as you assume a 32-bit Windows
environment.
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Storing multiple scripts

in an array.

The g_Script structure looks like this:

typedef struct _Script        // Encapsulates a full script
{

// Header data
int iGlobalDataSize;      // The size of the script's global data
int iIsMainFuncPresent;   // Is _Main () present?
int iMainFuncIndex;       // _Main ()'s function index
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// Runtime tracking
int iIsPaused;            // Is the script currently paused?
int iPauseEndTime;        // If so, when should it resume?

// Register file
Value _RetVal;            // The _RetVal register

// Script data
InstrStream InstrStream;  // The instruction stream
RuntimeStack Stack;       // The runtime stack
Func * pFuncTable;        // The function table
HostAPICallTable HostAPICallTable;   // The host API call table

}
Script;

Right off the bat, you can see five ints, each of which occupies four bytes for an initial total of 20
bytes. The rest of the structure consists of other, nested structures, which will have to be added up
individually. Let’s start with the Value structure, of which the _RetVal field is an instance:

typedef struct _Value              // A runtime value
{

int iType;                     // Type
union                          // The value
{

int iIntLiteral;           // Integer literal
float fFloatLiteral;       // Float literal
char * pstrStringLiteral;  // String literal
int iStackIndex;           // Stack Index
int iInstrIndex;           // Instruction index
int iFuncIndex;            // Function index
int iHostAPICallIndex;     // Host API Call index
int iReg;                  // Register code

};
int iOffsetIndex;              // Index of the offset

}
Value;

iType and iOffsetIndex are both ints, starting you off at eight bytes. The union adds another four
bytes (it’s composed of 4-byte integers, a 4-byte float, and a 32-bit (4-byte) char pointer). This
means the Value structure is 12 bytes, which, when added to the existing size of g_Script, takes
the structure to a total of 32 bytes. Moving along, the InstrStream structure is next:
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typedef struct _InstrStream   // An instruction stream
{

Instr * pInstrs;          // The instructions themselves
int iSize;                // The number of instructions in the

// stream
int iCurrInstr;           // The instruction pointer

}
InstrStream;

Two ints and a 32-bit pointer add up to another 12 bytes for this structure, thereby bringing
g_Script from 32 to 44 bytes. Next up is the runtime stack:

typedef struct _RuntimeStack   // A runtime stack
{

Value * pElmnts;           // The stack elements
int iSize;             // The number of elements in the stack

int iTopIndex;         // The top index
int iFrameIndex;      // Index of the top of the current

// stack frame.
}

RuntimeStack;

One 32-bit Value pointer plus three integers means 16 bytes in total for RuntimeStack, bringing
g_Script up to 60 bytes. The function table is up next, but because it’s just a single Func pointer, it
only adds a single 32-bit pointer. g_Script is now 64 bytes. The last aspect of the structure is the
host API table, which is defined as follows:

typedef struct _HostAPICallTable  // A host API call table
{

char ** ppstrCalls;      // Pointer to the call array
int iSize;               // The number of calls in the array

}
HostAPICallTable;

A 32-bit pointer to a pointer and the iSize integer field add up to eight bytes. This, being the last
of g_Script’s members, means the total size of an unused script structure is 72 bytes, which is
nothing on today’s machines. So you now know that a single unused script isn’t going to make a
noticeable difference in a game’s available memory, but what about an entire array of them? To
answer that question, it helps to have an idea of how many scripts your game will need active at
once. Check out Table 11.1 to find out the total amount of memory required.
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And there you have it. For only 72KB, which isn’t even a tenth of a megabyte, you can support up
to 1024 scripts at once—more than enough for most games. So, the first moral of the story is that
arrays will hardly waste memory. Secondly, 1024 script structures is huge, which is hardly limiting
either. Chances are your game will never even approach that limit, so why worry about the “infi-
nite expansion” of linked lists? With both the memory and flexibility issues debunked, it’s safe to
say that arrays are the way to go.

So, the first order of business is expanding g_Script structure to an array called g_Scripts []:

Script g_Scripts [ MAX_THREAD_COUNT ];

Of course, MAX_THREAD_COUNT can be set to anything you want; I’ve chosen 1024.

Loading Scripts
Now that you can store multiple scripts, LoadScript () needs to be reworked enough to support
this. Rather than pass LoadScript () the index of g_Scripts [] you’d like to load the script into,
however, it’d be a nice touch if the function would automatically determine the next free script
index, automatically use it, and return it to the caller (like in Figure 11.14). Of course, you’re
already returning an integer error code, so the index can’t be directly returned. Rather, the func-
tion will accept an integer pointer and write the index to that. Here’s the new prototype:

int LoadScript ( char * pstrFilename, int & iThreadIndex );

Aside from this change, there isn’t much difference in the function’s definition, minus the
repeated use of g_Scripts [ iThreadIndex ] as opposed to g_Script.
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Table 11.1  Static g_Script [] Array Sizes
Scripts Size (in Bytes) Size (in Kilobytes)

32 2304 2KB

64 4608 4.5KB

128 9216 9KB

256 18432 18KB

512 36864 36KB

1024 73728 72KB
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More Robust Error Handling
LoadScript () has always returned an error code to the caller in the event that something went
wrong, but has glossed over the potential memory allocation errors that can occur when using
malloc (). For the time being this wasn’t an issue, but the XVM will soon be an embeddable mod-
ule, and therefore have a public interface. A module’s public interface should also feature robust
error handling, especially in the case of memory allocation. Furthermore, it’s entirely possible
that the g_Scripts [] array will become full, however unlikely, so an additional error code for this
situation will be necessary as well. Once you build your virtual machine, it’ll be nice to know that
it’ll run in any conditions and gracefully handle such problems by returning an error code for all
contingencies. Besides, you never know—after developing your ultimate scripting system, you
may want to make it publicly available like Lua and Python. In this case, stable error detection is a
must.

This is accomplished by first creating new error code constants for memory allocation errors and
a lack of available threads:

#define LOAD_ERROR_OUT_OF_MEMORY     4
#define LOAD_ERROR_OUT_OF_THREADS    5

Allocation error detection is simply a matter of checking the parameter returned by malloc () to
make sure it’s not NULL. For example, the following block of code from the original LoadScript ():

// Allocate the runtime stack
int iStackSize = g_Script.Stack.iSize;
g_Script.Stack.pElmnts =

( Value * )malloc ( iStackSize * sizeof ( Value ) );

Has been changed to:

// Allocate the runtime stack
int iStackSize = g_Scripts [ iThreadIndex ].Stack.iSize;
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if ( ! ( g_Scripts [ iThreadIndex ].Stack.pElmnts =
( Value * ) malloc ( iStackSize * sizeof ( Value ) ) ) )
return LOAD_ERROR_OUT_OF_MEMORY;

Note again the transition from g_Script to g_Scripts []. Let’s now take a look at the code for
determining the next free thread index:

// ---- Find the next free script index
int iFreeThreadFound = FALSE;
for ( int iCurrThreadIndex = 0;

iCurrThreadIndex < MAX_THREAD_COUNT; ++ iCurrThreadIndex )
{

// If the current thread is not in use, use it
if ( ! g_Scripts [ iCurrThreadIndex ].iIsActive )
{

iThreadIndex = iCurrThreadIndex;
iFreeThreadFound = TRUE;
break;

}
}
// If a thread wasn't found, return an out of threads error
if ( ! iFreeThreadFound )

return LOAD_ERROR_OUT_OF_THREADS;

The process is simple; each element of the array is scanned to determine whether it’s free. Upon
encountering the first free index, the loop sets
a flag indicating the find and breaks. Just out-
side the loop, the flag is checked to deter-
mine whether an index was found. If not, the
LOAD_ERROR_OUT_OF_THREADS error code is
returned. Otherwise, iThreadIndex contains
the valid index and the loading procedure
continues.

The rest of the source to LoadScript () is the
same as it was before the aforementioned
changes, so I decided not to waste the space
it’d take to print it here. You’re encouraged
to check out the source on the accompanying
CD, however, in the DIRECTORY_NAME_HERE
directory.
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TIP
If you do plan on either releasing your
scripting system for public use, or
would just like to maximize its flexibili-
ty for your own use, it might be a good
idea to dynamically allocate the
g_Scripts [] array, perhaps based on a
parameter specified to the Init ()
function.This allows the host to define
the maximum number of scripts that
can be loaded on a per-game basis with-
out the need to recompile anything.
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Initialization and Shutdown
In addition to LoadScript (), it’s now necessary to make some changes to the Init () and
ShutDown () functions. Because these functions are primarily responsible for initializing the script
structure to the proper default values and freeing it when the XVM exits, they’ll have to be rewrit-
ten to work with the entire g_Scripts [] array. Here’s the new Init ():

void Init ()
{

// ---- Initialize the script array
for ( int iCurrScriptIndex = 0;

iCurrScriptIndex < MAX_THREAD_COUNT;
++ iCurrScriptIndex )

{
g_Scripts [ iCurrScriptIndex ].iIsMainFuncPresent = FALSE;
g_Scripts [ iCurrScriptIndex ].iIsPaused = FALSE;
g_Scripts [ iCurrScriptIndex ].InstrStream.pInstrs = NULL;
g_Scripts [ iCurrScriptIndex ].Stack.pElmnts = NULL;
g_Scripts [ iCurrScriptIndex ].pFuncTable = NULL;

g_Scripts [ iCurrScriptIndex ].HostAPICallTable.ppstrCalls = NULL;
}

// ---- Set the current thread to index zero
g_iCurrThread = 0;

}

As you can see, it’s not much different than the original version; it’s all just taking place inside a
loop. The current thread index is then set to zero, and the stage is set. ShutDown () works in the
same way, and because it’s a much larger function, I won’t bog you down with a code dump.

Handling a Script Array
So you’ve got an array of scripts and a function for automatically populating that array as scripts
are loaded. There’s just one problem—every script-related function you wrote in Chapter 10 was
designed with a single, global script structure in mind. Do you have to go through every one of
those functions, add a thread index parameter to specify which thread to work with, and then go
through every one of the functions’ references and change the calls to reflect the new parameter
list? Figure 11.15 shows this type of function interface.

Well, you could. However, there’s a much easier way to alleviate the problem that can be deter-
mined by simply recognizing one key fact—virtually every one of the script-related functions, like
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PushFrame (), ResolveOpAsInt (), and so on and so forth, are designed to work with the same
script. I don’t mean the same script in the sense that they all work with the g_Script structure.
Rather, I mean that they all work with the script that is currently executing, which could be any of
the scripts in the new g_Scripts [] array. What this means is that instead of changing each func-
tion’s parameter list and subsequently all of its calls, you can instead replace instances of g_Script
with g_Scripts [ g_iCurrThread ], where g_iCurrThread is a global that tracks the currently active
thread. Every time a context switch occurs, g_iCurrThread is updated, and every function automat-
ically performs its task on the proper script. Check out Figure 11.16 to see this explained visually.
Sounds much easier, right?
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As an example, here’s the old version of PushFrame ():

void PushFrame ( int iSize )
{

// Increment the top index by the size of the frame
g_Script.Stack.iTopIndex += iSize;

// Move the frame index to the new top of the stack
g_Script.Stack.iFrameIndex = g_Script.Stack.iTopIndex;

}

Here’s the updated version:

void PushFrame ( int iSize )
{

// Increment the top index by the size of the frame
g_Scripts [ g_iCurrThread ].Stack.iTopIndex += iSize;

// Move the frame index to the new top of the stack
g_Scripts [ g_iCurrThread ].Stack.iFrameIndex =

g_Scripts [ g_iCurrThread ].Stack.iTopIndex;
}

See how much simpler it is to fix the problem at the root? Now, the majority of the VM will run
unaltered, without even knowing that these functions have been changed. Remember, these
changes need to be made to all functions that directly access script data, which include the
operand interface:

int GetOpType ( int iOpIndex );
int ResolveOpStackIndex ( int iOpIndex );
Value ResolveOpValue ( int iOpIndex );
int ResolveOpType ( int iOpIndex );
int ResolveOpAsInt ( int iOpIndex );
float ResolveOpAsFloat ( int iOpIndex );
char * ResolveOpAsString ( int iOpIndex );
int ResolveOpAsInstrIndex ( int iOpIndex );
int ResolveOpAsFuncIndex ( int iOpIndex );
char * ResolveOpAsHostAPICall ( int iOpIndex );
Value * ResolveOpPntr ( int iOpIndex );

The runtime stack interface:
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Value GetStackValue ( int iIndex );
void SetStackValue ( int iIndex, Value Val );
void Push ( Value Val );
Value Pop ();
void PushFrame ( int iSize );
void PopFrame ( int iSize );

And the function table/host API call table interface:

Func GetFunc ( int iIndex );
char * GetHostAPICall ( int iIndex );

There are, however, cases where g_iCurrThread won’t be enough, and a specific script index must
be acted upon arbitrarily. For example, ResetScript () needs to reset scripts as they’re loaded,
because you no longer have a single script structure to reset. In this case, the desired thread
index must be passed as a parameter, so its new prototype looks like this:

void ResetScript ( int iThreadIndex );

Once again, the changes are so minute and self-explanatory that it’d be a huge waste of pages to
print them all. Be sure to check them out on the accompanying CD instead in the
DIRECTORY_NAME_HERE directory.

Executing Multiple Threads
With the major structures and functions upgraded to the new multithreaded design, the last
major step is to revamp RunScript () as well. The first change, as you may have guessed, is chang-
ing the name to RunScripts () to reflect the fact that it now executes multiple scripts in (simulat-
ed) parallel. This first version of the multithreading scheduler will not support thread priorities.

The implementation of concurrent thread execution will actually be quite simple. Here’s the
process in a nutshell (see Figure 11.17 as well):

■ RunScripts () begins by saving the current time in a variable to represent the point at
which the first thread began execution.

■ At each iteration of the execution cycle, the difference between the current time and the
time saved in the first step is compared to a constant that determines the length of a
time slice. If the time slice hasn’t ended yet, the execution cycle iterates within the cur-
rent script, thereby executing its next instruction.

■ If the time slice has elapsed, the scheduler loops through each thread in the g_Scripts
[] array to find the next occupied script and sets that to the new active thread. The cur-
rent time is once again saved, representing the thread’s activation time.
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This process loops until either a key is pressed or every thread exits by reaching an Exit instruc-
tion. As you can see, this custom-built multithreading system is really quite simple; all it takes is
the capability to maintain a thread index and a time slice timer. Now that you understand the
overall strategy, let’s break down the details.

Tracking Active Threads
Before you discuss the implementation of time slicing, there’s one important detail worth mention-
ing. The problem with your current g_Scripts [] array is that there’s no explicit way to know whether
a given thread is in use. This is important information for the scheduler, which needs to know where
in the array the next occupied script structure can be found when a context switch occurs.

Although it’s true (more or less) that the fields of a C struct are initialized to zero at runtime, I
prefer creating an explicit flag within the structure that can be used to track active threads
(“active threads” being defined as Script structures that have had an .XSE loaded into them). In
addition, it’s important to know which threads among the active ones are still running. Even if a
Script structure has been loaded with a script, that function needs to stop executing if it encoun-
ters an Exit instruction. So, you’ll add two new fields to the Script structure to track these events.
Here’s the new structure definition with the added fields in bold:
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typedef struct _Script       // Encapsulates a full script
{

int iIsActive;           // Is this script structure in use?

// Header data
int iGlobalDataSize;     // The size of the script's global data
int iIsMainFuncPresent;  // Is _Main () present?
int iMainFuncIndex;      // _Main ()'s function index

// Runtime tracking
int iIsRunning;          // Is the script running?
int iIsPaused;           // Is the script currently paused?
int iPauseEndTime;       // If so, when should it resume?

// Register file
Value _RetVal;           // The _RetVal register

// Script data
InstrStream InstrStream; // The instruction stream
RuntimeStack Stack;      // The runtime stack
Func * pFuncTable;       // The function table
HostAPICallTable HostAPICallTable;

// The host API call table
}

Script;

Along with the addition of these two fields, it’s important to make changes to Init () and
LoadScript () to take them into account. Init () needs to set both iIsActive and iIsRunning to
FALSE, whereas LoadScript () needs to set them both to TRUE so the scheduler will know that not
only is the script structure loaded, but the script is ready to execute when RunScripts () is called.

The Scheduler
All that remains now is managing context switches as RunScripts () executes. This is accom-
plished by following the previous steps, so let’s go over them now in more detail.

Initializing the Time Slice Timer
In order to track the current time slice, the current time has to be recorded when the time slice
is invoked using GetCurrTime (). This is initially done outside of the main loop, like so:

MULTITHREADING
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// Set the activation time for the current thread
// to get things rolling
g_iCurrThreadActiveTime = GetCurrTime ();

Now that the first time slice has been invoked, the main loop can begin.

Performing a Context Switch
At each iteration of the main loop, the first order of business is to determine whether the current
time slice has elapsed, and perform a context switch if so. As explained previously, the end of a
time slice is detected when the difference between the current time and the time at which the
time slice was invoked is greater than some constant. This constant is called THREAD_TIMESLICE_DUR
and defines the standard duration of an XVM time slice, which I like to set to 20 milliseconds:

#define THREAD_TIMESLICE_DUR        20

Here’s the code for using this constant to detect the end of a time slice:

// Update the current time
iCurrTime = GetCurrTime ();

// If the current thread's time slice has elapsed, switch to the next
// valid thread
if ( iCurrTime > g_iCurrThreadActiveTime + THREAD_TIMESLICE_DUR )

As you can see, the actual code here is a somewhat backwards version of the previous explana-
tion, but it’s the same idea. Assuming the time slice has indeed elapsed, the next active thread in
the g_Scripts [] array must be found and invoked:

// Loop until the next thread is found
while ( TRUE )
{

// Move to the next thread in the array
++ g_iCurrThread;
// If you're past the end of the array, loop back around
if ( g_iCurrThread >= MAX_THREAD_COUNT )

g_iCurrThread = 0;
// If the thread you've chosen is active and running, break the loop
if ( g_Scripts [ g_iCurrThread ].iIsActive &&

g_Scripts [ g_iCurrThread ].iIsRunning )
break;

}
// Reset the time slice
g_iCurrThreadActiveTime = iCurrTime;

11. ADVANCED VM CONCEPTS AND ISSUES
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A while loop is entered that cycles through each element of the array. Notice that the current
thread is incremented at the top of the loop rather than the bottom; this is because when the
loop initially starts, g_iCurrThread will point to the thread that is currently ending, so you need to
immediately move past it. The thread index then wraps around to zero if it’s passed the end of
the array. This has to be done because unless the currently ending thread resides at index 0, the
next thread to be executed may very well come before it in the array. Finally, the loop analyzes the
new thread index to determine if it’s both active and running. If so, it’s the next thread to be exe-
cuted and the loop breaks with g_CurrThread set to its index. After the loop completes, the new
thread begins executing, so you reset the time slice timer to the current time in order to give it
the full duration.

Checking Thread Activity
Lastly, this particular XVM demo is designed specifically to run until either a key is pressed or all
threads stop running (which will only occur if none of the loaded threads define infinite loops).
To implement this, the Exit instruction should determine whether the iIsRunning field in every
currently active thread is clear. If so, the main loop can break. Here’s the entire implementation
of the Exit instruction:

case INSTR_EXIT:
// Resolve operand zero to find the exit code
Value ExitCode = ResolveOpValue ( 0 );

// Get it from the integer field
int iExitCode = ExitCode.iIntLiteral;

// Tell the XVM to stop executing the script
g_Scripts [ g_iCurrThread ].iIsRunning = FALSE;

// Check to see if all threads have terminated, and if so,
// break the execution cycle
int iIsStillActive = FALSE;
for ( int iCurrThreadIndex = 0;

iCurrThreadIndex < MAX_THREAD_COUNT;
++ iCurrThreadIndex )

{
if ( g_Scripts [ iCurrThreadIndex ].iIsActive &&

g_Scripts [ iCurrThreadIndex ].iIsRunning )
iIsStillActive = TRUE;

}

MULTITHREADING
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if ( ! iIsStillActive )
iExitExecLoop = TRUE;

// Print the exit code
PrintOpValue ( 0 );
break;

After extracting the exit code operand as usual, the instruction handler sets the current thread’s
iIsRunning flag to FALSE. It then creates a flag variable called iIsStillRunning, sets it to FALSE, and
loops through each thread in the g_Scripts [] array to find out if any of them are still running. If
so, the flag is set to TRUE and the loop breaks. Otherwise, the flag remains clear. After the loop,
this flag is checked, and unless it’s been set, the execution cycle ends.

The First Completed XVM Demo
This wraps up everything your first stab at a next-generation XVM is concerned with. You’ve
added a multitasking scheduler capable of handling an arbitrary number of scripts, which is a
great first step towards finishing the runtime environment once and for all. To demonstrate this
functionality, the new XVM demo allows you to specify any number of scripts on the command
line, which it’ll load and run concurrently. Just like the last demo, it’ll print each instruction to
the screen (along with a thread index), so you can see how it all works firsthand.

To help illustrate the difference between the two, I’ve included the same two .XSE files I used in
the Chapter 10 demo. Now you can load them at the same time and watch them run in parallel.
The demo can be found in Programs/Chapter 11/XVM Demo/ on the accompanying CD.

With this version of the XVM finished, you’re ready to move on to the next and final one. In the
following sections, you’re going to learn how to expand the multitasking system to support
thread priorities, which will allow you to balance the XVM’s processing load more intelligently
among its scripts. In addition, you’ll tackle the significant challenge of setting up a powerful
interface between the host application and the runtime environment, fully supporting inter-lan-
guage function calls—both from C to XtremeScript and vice-versa.

HOST APPLICATION INTEGRATION
The focus of the second version XVM, which actually isn’t a “version” at all but rather the fin-
ished, embeddable module, will revolve around the multithreading scheduler developed in the
last section and the host application interface you’ll implement here.

11. ADVANCED VM CONCEPTS AND ISSUES
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Running Scripts in Parallel
with the Host
So far, every incarnation of the XVM has been a standalone program that executes scripts in an
uninterrupted loop until they terminate, or until the user presses a key. This is fine for demos, as
well as standalone virtual machines, but it’s not particularly conducive to embeddable runtime
environments that need to execute in parallel with their host applications.

The XVM is designed to run alongside the main game loop. This means that, at each iteration, the
game is updated, the next frame is drawn and blit to the screen, and a small time slice is set aside
for the scripts to partially execute. Check out
Figure 11.18 to see this expressed visually. The
advantage to this approach is that scripted
game entities can execute in a much more nat-
ural form; rather than the host calling a specif-
ic script function at each iteration of the game
loop to update all of the script’s entities (like
you saw in Chapter 6), these entities can be in a
constant state of motion and action. In other
words, scripts can be written without any knowl-
edge of other scripts or the host—you write them as if they were the only thing executing, which
works out fine when they’re running in parallel with everything else.

HOST APPLICATION INTEGRATION

NOTE
Remember, just as you learned earlier
in the multithreading system, there’s
no true parallel execution going on
here. Everything is split into time slices
that are so small and execute so fast,
that they appear to be concurrent.

Figure 11.18
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Manual Time Slicing vs. Native Threads
There are two ways to go about implementing this approach. You could use the operating sys-
tem’s native threading system to physically run the game engine and virtual machine in separate
threads, allowing you to leave the XVM’s design as it is and forget about it entirely, or you can do
everything yourself and manually implement a time slicing system to do the same thing.

The pros and cons here are the same as they were earlier when developing the XVM’s multi-
threading scheduler. On the one hand, native threads may ultimately be easier to implement
(assuming you’re familiar with them), and always boast the advantage of providing true parallel
execution if you can run your game on a multiprocessor machine. On the other hand, managing
time slices on your own will be a better learning experience, illustrates the process more intuitive-
ly, and saves me the concern of alienating a sizable portion of the audience who happen to be
running on a non-Windows platform. So, I’ll go with the latter and show you how to do it all on
your own.

A New RunScripts () Function
The only real change that must be made to the XVM in order to allow scripts to be run in a time
sliced manner is that RunScript () can no longer enter an indefinite loop that hogs control of the
process until its scripts terminate. Rather, the function now needs to accept a time slice parame-
ter that tells it how many milliseconds it should run, and do everything within that duration.
Fortunately, all this really means is changing definition of the loop; all of the actual script execu-
tion logic you’ve already written can remain unchanged. You’ll see the details behind this process
later. What’s important now
is that you understand
that the scripting system
will no longer be one
continuous loop; instead,
it’ll run in small time
slices defined by whoever
calls RunScripts ()
(which will invariably be
the host application).
Because of this, the XVM
relies on the host’s game
loop to keep the scripts
going; unless RunScripts
() is called on a regular
interval, nothing will
happen.
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NOTE
Ideally, I’d recommend using the native threading system of
your operating system. Doing so allows RunScripts () to
once again run in a single, continuous loop, because it can
only dominate the execution of its particular thread, rather
than the game engine’s entire process.Writing your script-
ing system’s execution cycle this way is a much cleaner solu-
tion, and is less error-prone because the time slicing will be
handled automatically by the OS.And once again, if the
opportunity to run your game on a multiprocessor system
ever comes along, the entire overhead of script processing
can be offloaded to a separate processor, allowing your
game to run at full speed.
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Thinking in Multiple Dimensions
It’s extremely important that you not confuse the XVM’s time slice with the time slices assigned to
each script. Remember, regardless of how many scripts are in memory, or what their time slices
may be, the XVM itself will only run for the duration specified by RunScripts ()'s caller. Within
the XVM’s overall time slice of the game loop, context switches may be performed to halt one
script and invoke another, but this is entirely unrelated to the larger time slice’s duration and will
not affect it in any way. Figure 11.19 demonstrates XVM time slices and their relationship to indi-
vidual script time slice.

HOST APPLICATION INTEGRATION
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Introducing the Integration Interface
The integration interface between the host application and the scripts running inside the VM
comes down to two major aspects in most scripting systems—the capability to make inter-lan-
guage function calls, as well as the capability to “track” global variables.

Function calls are the most obvious way to communicate, because they allow you to directly set
values, read values, and perform actions. Global variable tracking is also useful, but in more sub-
tle ways; it’s best to track a variable when you plan on constantly referring one of the host applica-
tions internal values, but don’t want to bog everything down with overhead of repetitive function
calls. You won’t actually implement variable tracking in the XVM’s host interface, but general
implementation ideas will be discussed.

Calling Host API Functions from a Script
Calling the host API from within a script is facilitated by the CallHost instruction, which has gone
unimplemented until now. From the perspective of the script, the only difference in the way the
call is made is the fact that CallHost is used instead of Call. Aside from that, parameters are
pushed via the stack and return values are stored in the _RetVal register. On the script side of
things, it’s just another function call. Figure 11.20 illustrates this.
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Figure 11.20

Calling a host API func-

tion from the script.

On the host side, however, things are a bit more complicated. Host API functions can’t be written
exactly like typical C functions; rather, they must conform to a specific prototype and deal with
parameters in a very particular way.

Functions must follow a specific prototype because the XVM stores the host API internally as an
array of function pointers, and it’s much easier to call them when the prototype has been decid-
ed upon ahead of time. When a host API call is made, this pointer is used to invoke the function.

Host API functions need to read parameters just like any other function does, but they can’t use
C’s parameter passing syntax directly, because the parameters lie on the XVM’s runtime stack, not
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the host’s. Furthermore, because these parameters have no explicit type, special functions must
be used to read parameters from a specific stack index and with a specific data type in mind.

Return values are much easier; all that’s necessary is to set the value of the _RetVal register stored
within the script’s Script structure.

Calling Script Functions from the Host
Calling a host API function from the script is one thing; calling a script-defined function from the
host is a much more delicate matter. To understand why, it’s first important to understand that
such calls can be broken down into two categories: synchronous and asynchronous.

Asynchronous Calls
As you learned earlier, the final version of the XVM will be run in time slices alongside the game
engine’s main loop. Within this loop, if the host were to call another C-defined function, the
main loop would halt until the function returned, which is why calling a particularly slow or
processor-intensive function inside your main loop has such a noticeable effect on your frame
rate. Of course, it’s often necessary to make such calls, usually because the result of the func-
tion—either its return value or simply the action it performs—must be completed within the cur-
rent frame. This even applies to functions defined within scripts, which is where asynchronous
calls come in.

Simply put, an asynchronous call to a script-defined function will execute immediately and direct-
ly return to the caller. This means that if an asynchronous call is made to a script during the main
loop of the game, both the main loop and the script will halt until the function returns, at which
point execution will resume as normal. Asynchronous calls are made when something needs to
be done immediately or before anything else. Check out Figure 11.21 for a visual.

One important detail about making an asynchronous call is that the script’s runtime stack and
instruction pointer must be restored to the exact state they were in before the call is made. In
other words, the script shouldn’t have any idea that the host called one of its functions when it
begins executing again in its next time slice.

Synchronous Calls
Synchronous calls are more or less the opposite of asynchronous calls. A synchronous call will
“invoke” a script’s function in the same way that a Call instruction would, if it were made inside
the script itself. Rather than halting the game loop, a synchronous function call won’t even take
effect until the scripting system enters its next time slice. Furthermore, a synchronous call most
likely won’t return within a single time slice, but will rather execute over time, as shown in Figure
11.22.

HOST APPLICATION INTEGRATION
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Figure 11.21
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To put it another way, synchronous
calls are a way for the host applica-
tion to simulate the Call instruction.
If a script were to call one of its own
functions just before the XVM’s time
slice ended, the called function
wouldn’t begin executing until the
next time slice rolled around. Also,
unless it was extremely small, it prob-
ably wouldn’t return for at least a few
time slices, because the XVM is only
able to use a small portion of the
overall length of each game loop
iteration. This is exactly how syn-
chronous calls behave—they execute
gradually over the course of 1-N
XVM time slices, and mimic func-
tions called with the Call instruction
exactly. This also makes it extremely
difficult to retrieve the function’s 
return value (if any).

Synchronous calls are most useful for performing large-scale actions like changing a script’s over-
all state or altering the behavior of a scripted game entity. Remember, because the effects of the
called function will take place over time, rather than within a single frame, they can have a
longer, more gradual effect on game play overall.

Figure 11.23 provides a more geometric way to visualize this difference; synchronous calls run
parallel to the execution of the script, whereas asynchronous calls are perpendicular.

Tracking Global Variables
Lastly, there’s the issue of global variable tracking. I should
mention right off the bat the XVM won’t support this fea-
ture, because I personally don’t find it useful enough to jus-
tify the added complexity to the system overall. Of course,
you may feel differently, so let’s discuss the general theory
behind the implementation of this integration feature.

To track the value of a host application variable, the script
defines a variable of its own and “binds” it to the specified

HOST APPLICATION INTEGRATION

CAUTION
As you may have already guessed, synchronous
calls should be made with caution. Remember, a
synchronous will behave exactly like a function
called directly from the script with Call, and will
interrupt whatever the script was already doing.
This isn’t a problem, unless the function returns
a value or modifies global variables. In these
cases, if the code that was executing within the
script just before the call referred to either
_RetVal or the same globals used by the func-
tion, these values will seem to suddenly change
without warning. Because of this, it’s best to
know that a script function will be called syn-
chronously from the host as you write it, so you
can specifically design it to leave globals and
_RetVal alone.

NOTE
The technique described
here can actually be used to
track host variables from
the script, as well as script
variables from the host.
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host global, such that the script-defined variable always mirrors its value. This way, if the script
wants to constantly refer to a host application variable’s value, whether for the purpose of read-
ing, writing, or both, it can do so in a more natural way without making a ton of function calls.
Figure 11.24 illustrates this concept.
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The main problem with this approach is that the identifier of the host application variable isn’t
known to XASM at the time at which the script is assembled. For example, if the host application
defines a global integer value called g_iGlobalInt:

int g_iGlobalInt;
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you can’t just refer to it like this within the assembler (assume BindToHostVar is an XASM directive
for binding script variables to host variables):

Var MyVar
BindToHostVar MyVar, g_iGlobalInt

One solution to this problem is to give the host application the capability to assign a numeric
index to each of the globals it’d like to expose to the script, perhaps with a function called
BindVarToIndex ():

BindVarToIndex ( g_iGlobalInt, 0 );

Now, assuming the indexes to which each host application global is assigned is known when the
script is written, the BindToHostVar directive can instead allow scripts to bind their variables to
these same indexes as well:

BindToHostVar MyVar, 0

Now, g_iGlobalInt, defined in the host application, and MyVar, defined in the script, have the 0
index in common. The XVM can now establish a connection between the two. With this out of
the way, let’s talk about how to actually make the values of these two variables mirror each other.

Tracking the Bound Variables

The key to tracking variables properly is keeping the values updated and in sync. The first step in
doing this is creating an array of void pointers that correlate to the host’s globals. In this example,
you’ll create a static array large enough to hold a reasonable number of host-defined globals, like
so:

#define MAX_TRACKED_VAR_COUNT    1024
void * g_pGlobalVars [ MAX_TRACKED_VAR_COUNT ];

Whenever the host binds a variable to an index, its pointer should be stored in this array at the
index specified (see Figure 11.25). So, going back to the example from before, the following line
of code would store g_iGlobalVar’s pointer at index 0 of g_pGlobalVars []:

BindVarToIndex ( g_iGlobalInt, 0 );

After the host binds each of its globals to an index, you’ll have an array containing all the point-
ers you need to track them. The only issue remaining is how the values these globals contain can
be accessed from the script.

HOST APPLICATION INTEGRATION
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Binding Stack Indexes to the Pointer Array

Even variables that the script binds to the host application reside somewhere on the stack. This
stack index, therefore, is all you need to keep the script’s variable in sync with the global defined
by the host. Therefore, the BindToHostVar directive discussed earlier needs to save the specified
variable’s stack index in a table that can be written to the .XSE file for use by the XVM at run-
time. As long as the variables defined by both the script and host are assigned the same index,
you’ll be able to tell which pointers are assigned to which stack indices. To store these in 
memory at runtime, the XVM will need another new array, this one within the Script structure
(see Figure 11.26):

int iBoundStackIndices [ MAX_TRACKED_VAR_COUNT ];

Now, each script can keep track of which of its stack indices are bound to which host application
globals. In case you’re wondering why we don’t just merge the g_pGlobalVars [] array with this
one, to keep the global pointers and their associated stack indices in the same place, remember
that your new multithreaded version of the XVM should allow multiple scripts to track the same
globals. Because it’s highly unlikely that all of these scripts will just happen to bind the same stack
indices to the same global, you need to keep them separate.

Now that you have pointers to the host’s globals and the stack indices of the script variables
you’ve bound to them, you have all the information you need to keep their values in sync.
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Keeping the Values Synchronized

At each frame of the game loop, the game engine and scripting system will execute in almost
entirely separate phases. With the exception of inter-language function calls, which I won’t be
addressing in this section, the game engine will be entirely halted while RunScripts () is running.
For the rest of the frame, the scripting system is halted while the game engine runs. The point is
that at any given time, these two separate entities will never be running at the same time. So, in
order to keep bound variables in sync with one another, all you have to do is update them just
before and just after RunScripts ()’s time slice executes.

Just before the XVM’s time slice begins, it’s possible that the game engine’s globals will be set to
new values that the script’s bound variables won’t reflect. So, the system loops through each
pointer stored in the g_pGlobalVars [] array and writes their values to the corresponding stack
indices in scripts iBoundStackIndices [] array. Now, when the XVM begins its time slice, the
script’s runtime stack will contain the current value of the bound globals, which can be freely ref-
erenced by the script.

After the time slice, it’s possible that the script will have made changes to its bound variables,
which need to be written to the globals before the game engine proceeds. This time, the update
loop writes the values from the stack indices into the pointers of the g_pGlobalVars [] array, trans-
ferring the script’s modifications to the game engine. As you can see, by updating each set of vari-
ables before and after the XVM’s time slice, they’ll stay synchronized at all times.

You may have already noticed one flaw in this solution, however; because the XVM is typeless and
the game engine is not, how exactly will these values be transferred between them? To address
this issue, the BindVarToIndex () function needs to accept an additional parameter that specifies
the variable’s type:

HOST APPLICATION INTEGRATION

Figure 11.26

A new array, much like

the first, maintains the

stack indices at which

tracked script globals

reside.



694

#define HOST_VAR_TYPE_INT    0
#define HOST_VAR_TYPE_FLOAT  1
#define HOST_VAR_TYPE_STRING 2

BindVarToIndex ( g_iGlobalInt, 0, HOST_VAR_TYPE_INT );

Of course, this also means the g_pGlobalVars [] array needs
to become an array of structures, wherein each element
stores both the pointer and its type:

typedef struct TrackedVar
{

void * pVar;
int iType;

};

TrackedVar g_TrackedVars [ MAX_TRACKED_VAR_NUM ];

The system will now have enough information to transfer val-
ues from host variables to script variables, and vice versa.

The XVM’s Public Interface
In order for the XVM to be embedded in a host application, it needs to expose a public interface,
or collection of functions, that the host can call to control it. For example, the host application
will need functions for loading and unloading scripts, as well as functions for starting, stopping,
pausing and unpausing them. Also, as you explore the development of an inter-language func-
tion call interface, you’ll need to add public interface functions to handle that as well.

Currently, all of the XVM’s functionality has been stored in a single .cpp file for simplicity’s sake,
but you’ll of course need to create an adequate header file for inclusion in host applications.
This header file will be called xvm.h, and will be built incrementally in the following sections.
Figure 11.27 illustrates how these files will interact.

Which Functions Should Be Public?
The first order of business is determining which functions the host application needs to call in
order to control the XVM. Generally speaking, all the host application needs to do is initialize
and shut down the runtime environment, load and unload scripts, and call RunScript () to keep
everything moving. So, the first additions to xvm.h will be the following prototypes:
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void Init ();
void ShutDown ();

int LoadScript ( char * pstrFilename,
int & iScriptIndex,
int iThreadTimeslice );

void UnloadScript ( int iThreadIndex );
void ResetScript ( int iThreadIndex );

void RunScripts ( int iTimesliceDur );

With these functions, the host application can initialize and shut down the system, load and
unload scripts, reset them arbitrarily, and execute a multithreaded time slice (most likely at each
frame of the main loop).

Name Clashes
The initial public API is good, but it suffers from one major problem. Function names such as
Init () and ShutDown () could be applied to any number of programs or libraries, which means
it’s entirely possible that the host application has already defined such functions. In such cases, a
name clash will occur, which of course results in an immediate compile-time or linker error.

If you plan on using your scripting system only for personal projects, you can go ahead and use
any naming conventions you want. However, if your goal is to also create a scripting system that
you can share with friends and fellow developers, use in a professional environment, or distribute
over the Internet, name clashing can ruin an otherwise good product.

HOST APPLICATION INTEGRATION
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Because of this, it’s important to transform or mangle your function names in such a way that
they’re less likely to step on the host application’s toes. The easiest way to do it is to follow the
time-honored tradition of prefixing your function names with a brief abbreviation of your script-
ing system’s name (usually two letters) and an underscore. So, in the case of XtremeScript, XS_
would appear before all publicly defined entities, thereby transforming the function prototypes to
this:

void XS_Init ();
void XS_ShutDown ();

int XS_LoadScript ( char * pstrFilename,
int & iScriptIndex,
int iThreadTimeslice );

void XS_UnloadScript ( int iThreadIndex );
void XS_ResetScript ( int iThreadIndex );
void XS_RunScripts ( int iTimesliceDur );

Sure, it’s possible that the host has defined a function
called “XS_UnloadScript ()”, but it’s a lot less likely.

Public Constants
In addition to functions, the host application will need access to a few of the constants the VM
has been using internally thus far; namely, XS_LoadScript ()’s error codes:

#define XS_LOAD_OK                      0  // Load successful
#define XS_LOAD_ERROR_FILE_IO           1  // File I/O error (most likely

// a file not found error
#define XS_LOAD_ERROR_INVALID_XSE       2  // Invalid .XSE structure
#define XS_LOAD_ERROR_UNSUPPORTED_VERS  3  // The format version is

// unsupported
#define XS_LOAD_ERROR_OUT_OF_MEMORY     4  // Out of memory
#define XS_LOAD_ERROR_OUT_OF_THREADS    5  // Out of threads

Note that of course, constants need the XS_ prefix too; name clashing isn’t just for functions to
worry about.

Implementing the Integration Interface
It’d be nice if the preparation of a simple header file was all you needed to do to fully integrate
the VM with the host application. The real work, of course, lies ahead—the actual implementa-
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For all you C++ coders, this
is a great application of
namespaces. I personally find
namespaces to be cleaner
than physically renaming
functions with a prefix, so I
strongly suggest you go with
that particular solution to
the name clashing issue.
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tion of the integration interface. This will mostly boil down to the ability to make inter-language
function calls, but as you’ll see, this is hardly a trivial matter.

Basic Script Control Functions
Just before getting into the nitty-gritties of the host API and other such issues, however, let’s start
off with something simple and talk about the functions the host will need to leverage a basic con-
trol of its scripts.

Loading and Running
Right off the bat, you’ve already seen the functions for loading and unloading scripts. Once in
memory, scripts can be reset with ResetScript () (although LoadScipt () will do this automatical-
ly), and XS_RunScripts () is called periodically to keep everything in motion. These are the bare-
minimum functions; they allow the host to read in scripts and unload them, as well as run them
with a reasonable level of flexibility, but what about more subtle operations?

For example, a game engine will invariably want to start and stop scripts arbitrarily, usually in
reaction to various game events or entity behavior. In these cases, it could use the existing
XS_LoadScript () and XS_UnloadScript (), but this is definitely using a hatchet for a scalpel’s job—
there’s no need to physically load the script from the disk and clear it from memory every time it
needs to start and stop. Furthermore, it may also be necessary to frequently pause and unpause
scripts, which is entirely impossible with the current set of functions we have. To address these
issues, you need finer control.

Finer Script Execution Control
The two major features your current set of script control functions doesn’t support are the capa-
bility to start and stop scripts without physically loading and unloading them from memory, as
well as pausing and unpausing them forcibly; in other words, without relying on the script itself to
execute a Pause instruction.

Let’s start with the first issue:

void XS_StartScript ( int iThreadIndex );
void XS_StopScript ( int iThreadIndex );

These two new functions will enable you to start and stop scripts on a dime. It’s also important at
this point to rework XS_LoadScript () so that it doesn’t automatically start the script it loads—this
should instead be at the sole discretion of the host and XS_StartScript (). Let’s see the code
behind XS_StartScript ():
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void XS_StartScript ( int iThreadIndex )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// Set the thread's execution flag
g_Scripts [ iThreadIndex ].iIsRunning = TRUE;

// Set the current thread to the script
g_iCurrThread = iThreadIndex;

// Set the activation time for the current
// thread to get things rolling
g_iCurrThreadActiveTime = GetCurrTime ();

}

The function begins by calling a macro called IsThreadActive () (which I’ll discuss in a second),
and then sets the iIsRunning flag to TRUE. This lets the XVM know that the script is in a state of
execution, which is what this particular function is primarily responsible for invoking. In addi-
tion, the call automatically preempts the currently running script in favor of the newly executed
one, and resets the time slice to reflect this.

XS_StopScript () is even simpler, and pretty much self-explanatory; all it’s concerned with is clear-
ing the iIsRunning flag:

void XS_StopScript ( int iThreadIndex )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// Clear the thread's execution flag
g_Scripts [ iThreadIndex ].iIsRunning = FALSE;

}

As for the IsThreadActive () macro, all it does is ensure that the specified thread index refers to a
currently active thread (the term “active” means any thread structure that’s been populated with a
script; not to be confused with a “running” thread, which is actually executing). Here’s all it does:

#define IsThreadActive( iIndex )    \
( IsValidThreadIndex ( iIndex ) &&

g_Scripts [ iIndex ].iIsActive ? TRUE : FALSE )

11. ADVANCED VM CONCEPTS AND ISSUES
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Of course, this macro calls another macro, IsValidThreadIndex (). This one just makes sure that
the specified thread index is within the proper range:

#define IsValidThreadIndex( iIndex )    \
( iIndex < 0 || iIndex > MAX_THREAD_COUNT ? FALSE : TRUE )

Together, these two macros provide an easy and quick way to make the public script control func-
tions more robust. The last set of script control functions to discuss is used to pause and unpause
scripts. Let’s start with XS_PauseScript ():

void XS_PauseScript ( int iThreadIndex, int iDur )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// Set the pause flag
g_Scripts [ iThreadIndex ].iIsPaused = TRUE;

// Set the duration of the pause
g_Scripts [ iThreadIndex ].iPauseEndTime =

GetCurrTime () + iDur;
}

All that’s necessary (aside from validating the thread index as always) is to set the iIsPaused flag
to TRUE and set the pause end time to the current time (as
returned by GetCurrTime ()) plus the specified duration. To
unpause the script before the original duration elapses, call its
sister function; XS_UnpauseScript ():

void XS_UnpauseScript ( int iThreadIndex )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// Clear the pause flag
g_Scripts [ iThreadIndex ].iIsPaused = FALSE;

}

Even easier, eh? Once the iIsPaused flag is cleared, the script
resumes execution.
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NOTE
Remember, the pausing
and unpausing of a script
has no effect on any
other scripts that may
be running concurrently.
Whether or not a script
is paused, its time slice
will come and go just
like any other. Pausing
one script won’t free up
time for anyone else, or
change the round robin
scheduling cycle.
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Host API Calls
You can begin your descent into the maddening world of the integration layer with host API calls.
Host API calls are made from the script, and allow it to call functions written in C (or whatever
the host application is written with) just like it’d call a typical script-defined function. The only
difference is the use of the CallHost instruction instead of Call. Aside from that, the procedure is
the same—parameters are pushed onto the stack, and the return value (if applicable) is found in
_RetVal.

Representing the Host API Internally
Before anything can happen, the host application needs to define its API. The actual representa-
tion of this API is an internal structure within the XVM—an array, specifically—consisting prima-
rily of a name string and a function pointer. The name string allows scripts to refer to these func-
tions by name, rather than an arbitrary numeric index or other such method of identification.
The function pointer, of course, is how the XVM physically invokes the function to complete the
call.

Because the CallHost requires only the name of a function, as in the following example:

CallHost MyHostFunc

these two pieces of data are all you really need. In this case, the host API array would contain an
element in which the name string was "MyHostFunc". The CallHost would search this array until it
matched the specified operand with this string. The corresponding element’s function pointer
would then be used to call the function.
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NOTE
Remember, the host API
is global throughout the
system; in other words, all
scripts have access to it in
some form (you’ll see
what I mean by this later
on).This makes things
easier on you, because
you only have to manage
a single structure.

CAUTION
Remember, don’t confuse the host API call table
stored within each script with the host API.The
host API call table is simply an array of strings;
each string corresponds to one of the function
names specified as an operand to the script’s
CallHost instructions. In other words, this struc-
ture is a record of the script’s calls to the host
API, hence the name.The host API structure
actually stores the functions themselves.There’s
only one copy of the host API, but each script
has its own host API call table.
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The Structure

The first order of business is creating a structure to store the API within the XVM. As mentioned,
this is really just an array of structures, wherein each structure represents a single API function.
Let’s start with this structure’s definition:

typedef struct _HostAPIFunc      // Host API function
{

int iIsActive;               // Is this slot in use?
int iThreadIndex;            // The thread to which this function

// is visible
char * pstrName;             // The function name
HostAPIFuncPntr fnFunc;      // Pointer to the function definition

}
HostAPIFunc;

The first field, iIsActive, is just a simple flag to determine whether this particular structure has
been initialized with an actual API function. Sure, I could just check to see whether the pstrName
string pointer is NULL, but I wanted something a bit more explicit. The next field is iThreadIndex,
which tells the XVM which threads this function can be called from. Setting this value to -1 makes
a function available to all threads. The last two functions, pstrName and fnFunc, are the name
string and function pointer fields discussed earlier.

These structures are stored in a static array called g_HostAPI. Here’s the declaration:

HostAPIFunc g_HostAPI [ MAX_HOST_API_SIZE ];

MAX_HOST_API_SIZE can of course be anything; I have it set for 1024. Figure 11.28 presents a visual
of the host API array.
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Figure 11.28

The host API resides in

an array of structures

within the XVM.
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Adding Host API Functions

With the array decided upon, the host application needs an easy way to add functions to it. This
process is called registering a host API function, and is handled with the function
XS_RegisterHostAPIFunc ():

void XS_RegisterHostAPIFunc ( int iThreadIndex, char * pstrName,
HostAPIFuncPntr fnFunc )

{
// Loop through each function in the host API until a free index
// is found
for ( int iCurrHostAPIFunc = 0;

iCurrHostAPIFunc < MAX_HOST_API_SIZE;
++ iCurrHostAPIFunc )

{
// If the current index is free, use it
if ( ! g_HostAPI [ iCurrHostAPIFunc ].iIsActive )
{

// Set the function's parameters
g_HostAPI [ iCurrHostAPIFunc ].iThreadIndex =

iThreadIndex;
g_HostAPI [ iCurrHostAPIFunc ].pstrName = ( char * )

malloc ( strlen ( pstrName ) + 1 );
strcpy ( g_HostAPI [ iCurrHostAPIFunc ].pstrName,

pstrName );
strupr ( g_HostAPI [ iCurrHostAPIFunc ].pstrName );
g_HostAPI [ iCurrHostAPIFunc ].fnFunc = fnFunc;
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TIP
Once again, you’re faced with the opportunity to use dynamic structures for
flexibility or static arrays for speed and simplicity.As usual, I’m sticking to the
static stuff to keep things easy and straightforward for the purpose of the
book, but you’re always encouraged to make your own decisions in this area.
It’s probably not necessary to go as far as using a linked list or extendable
array to store the host API, for the simple fact that it’s unlikely to change at
runtime. However, a dynamically allocated array might be a nice touch if the
host application can choose the size at the time it initializes the XVM.
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// Set the function to active
g_HostAPI [ iCurrHostAPIFunc ].iIsActive = TRUE;

}
}

}

This function makes use of the usual technique of looping through an array until the first free
element is found. Once an inactive structure is located, it’s populated with the function’s data,
which pretty much comes directly from the XS_RegisterHostAPIFunc ()’s parameters, and the
structure’s iIsActive flag is set.

Of course, because this is a public function, it’s prefixed with XS_ and is declared in the XVM
header file:

void XS_RegisterHostAPIFunc ( int iThreadIndex,
char * pstrName,
HostAPIFuncPntr fnFunc );

In addition, a special constant is declared for use by the host to make the registration of global
functions (functions that aren’t intended for any specific thread) cleaner and more readable:

#define XS_GLOBAL_FUNC              -1

This can be passed as the iThreadIndex parameter instead of directly using -1. This also allows you
to change the flag later if necessary.

The XVM Host API Function Prototype

The last detail to mention when dealing with the host API is how a host API function is defined.
For the most part, when maintaining a list of similar functions like your host API, it’s either help-
ful or downright necessary that all of the functions are of the same prototype—meaning they
accept the same parameters and return the same value (if any). For reasons that will become
clear in the following sections, every function added to the host API must follow this form:

void HostAPIFunc ( int iThreadIndex );

Making the Call with CallHost (The Script Side)
It’s important to remember that calling a host API function is virtually identical to calling a script-
defined function. Like I mentioned, the only difference is using CallHost instead of Call. This
instruction has remained unimplemented until now, so let’s change that. The instruction’s imple-
mentation is pretty straightforward, so let’s start with the code:

HOST APPLICATION INTEGRATION
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case INSTR_CALLHOST:
{

// Use operand zero to index into the host API call table and
// get the host API function name
Value HostAPICall = ResolveOpValue ( 0 );
int iHostAPICallIndex = HostAPICall.iHostAPICallIndex;

// Get the name of the host API function
char * pstrFuncName = char * pstrFuncName = GetHostAPICall (

iHostAPICallIndex );

// Search through the host API until the
// matching function is found
int iMatchFound = FALSE;
for ( int iHostAPIFuncIndex = 0;

iHostAPIFuncIndex < MAX_HOST_API_SIZE;
++ iHostAPIFuncIndex )

{
// Get a pointer to the name of the current host API function
char * pstrCurrHostAPIFunc =

g_HostAPI [ iHostAPIFuncIndex ].pstrName;

// If it equals the requested name, it might be a match
if ( strcmp ( pstrFuncName, pstrCurrHostAPIFunc ) == 0 )
{

// Make sure the function is visible to the current thread
int iThreadIndex =

g_HostAPI [ iHostAPIFuncIndex ].iThreadIndex;
if ( iThreadIndex == g_iCurrThread || iThreadIndex ==

XS_GLOBAL_FUNC )
{

iMatchFound = TRUE;
break;

}
}

}

// If a match was found, call the host API function
// and pass the current
// thread index

11. ADVANCED VM CONCEPTS AND ISSUES
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if ( iMatchFound )
g_HostAPI [ iHostAPIFuncIndex ].fnFunc ( g_iCurrThread );

break;
}

The first task is reading the value of operand zero, which is an index into the script’s host API call
table where the function name string can be
found. This index is passed to
GetHostAPICall () to retrieve the name of
the function the instruction is trying to call.
This string is then used as a search key in
the host API array to find the function’s
pointer and other relevant information.
The actual search is simple; the specified
function name is compared to each in the
host API. If a match is found, the function’s
intended thread index is then compared to
the thread that’s making the call; if they
match, or if the function is global, the
iMatchFound flag is set. Outside the search
loop, this flag is used to determine whether
the call should be made.

Defining Host API Functions (The Host Side)
Of course, the real driving force behind the host API is the functions themselves. These are creat-
ed in almost the same way a typical C function would be created, except for two primary differ-
ences:

■ They must adhere to the prototype mentioned earlier.
■ The function’s input and output—in other words, its parameters and return value—must

be implemented using special helper functions and macros provided by the XVM,
because they must interface specifically with the script.

The actual code and logic of the function is written normally. Let’s start the discussion of host
API functions by looking at a complete example of how a function is created, registered, and
called from a script.

The first step, of course, is writing the function. This example function will accept two parame-
ters—a string value and an integer count that tells the function how many times to print the
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TIP
Notice that calling a host API function that
either isn’t defined or isn’t intended for the
script that’s calling it has no effect.You
may, however, decide that it’s better to flag
some sort of error at runtime for debug-
ging purposes.The only reason I haven’t
implemented that here is that a running
game engine will most likely have control
of the screen when such an invalid call is
made, so the presentation of the error
message can change significantly from
game to game and platform to platform.
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string to the console. For further illustrative purposes, the function will return a string value as
well. Here’s the function:

void HAPI_PrintString ( int iThreadIndex )
{
char * pstrString = XS_GetParamAsString ( iThreadIndex, 0 );
int iCount = XS_GetParamAsInt ( iThreadIndex, 1 );

for ( int iCurrString = 0; iCurrString < iCount; ++ iCurrString )
printf ( "%s\n", pstrString );

XS_ReturnString ( iThreadIndex, 2, "This is a return value." );
}

Notice first that I prefixed the function name with HAPI_; this, like the XS_ prefix used with the
XVM’s public functions and constants, is used to prevent name clashes with other functions
defined in the program. Of course, because you’re most likely going to be writing both the host
application’s internal functions, as well as the ones it’ll expose to scripts via the host API, you real-
ly won’t have to worry about clashing because you’ll be in charge of all of the identifiers. The
HAPI_ prefix adds a bit more readability, however, and helps you out in cases where you have two
versions of the same function—one for internal use by the host, and one for use by scripts.

You will notice a few oddities beyond the name, however. Primarily, parameters are retrieved
using a set of functions called XS_GetParamAs* (), and the return value is handled with a macro
called XS_Return* (). I use the asterisks to show that these functions and macros come in forms
for supporting all of the XVM’s primitive data types—integers, floats and strings. Figure 11.29
demonstrates the usage of separate functions for reading parameters and returning values.
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Because parameters and return values are kept inside the XVM’s Script structure, a host API function needs

special functions for dealing with them.
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Reading Parameters

Remember, even from the perspective of a C-defined function, the parameters passed from a
script always reside on the thread’s runtime stack and are thus inaccessible as formally defined C
parameters. For this reason, a number of functions exist to extract parameters and cast them to a
specific data type. Remember also that although the XVM is typeless, C is far from it. Because of
this, parameters ultimately have to be resolved in the form of a specific C data type. Let’s look at
the prototypes of the functions you’ll have to work with:

int XS_GetParamAsInt ( int iThreadIndex, int iParamIndex );
float XS_GetParamAsFloat( int iThreadIndex, int iParamIndex );
char * XS_GetParamAsString ( int iThreadIndex, int iParamIndex );

Pretty straightforward, right? Just pass it the index of the thread that called the function and the
index of the parameter you want (starting from zero, left to right), and it will cast the Value struc-
ture residing at the proper stack index to the specified data type, effectively returning the param-
eter. This also explains why the host API function prototype includes the thread index as its
parameter.

The implementation of these functions is also pretty easy. Let’s look at XS_GetParamAsInt ():

int XS_GetParamAsInt ( int iThreadIndex, int iParamIndex )
{

// Get the current top element
int iTopIndex = g_Scripts [ g_iCurrThread ].Stack.iTopIndex;
Value Param = g_Scripts [ iThreadIndex ].Stack.pElmnts

[ iTopIndex - ( iParamIndex + 1 ) ];

// Coerce the top element of the stack to an integer
int iInt = CoerceValueToInt ( Param );

// Return the value
return iInt;

}

The function first extracts the
parameter’s Value structure
from the stack by subtracting
the index of the parameter
from the top of the script. It
then coerces the value structure
to the desired type (an integer
in this case) with a call to

HOST APPLICATION INTEGRATION

CAUTION
XS_GetParamAsString () will return a pointer to the
string value residing on the stack. Because this value
may change frequently as the script executes, it’s best
to use strcpy () to make a copy of the string if you
plan on storing the value for later use by the host. Of
course, because the script won’t have a chance to
execute in any way during the host API function’s exe-
cution (unless you call a script function from it), you
can safely use the pointer alone in the short term.



708

CoerceValueToInt () and returns it. This pattern is followed by the other two functions, but you
can see for yourself by checking out the included XVM source code on the accompanying CD.

Returning Values

Returning values is almost criminally easy. Because the Value structure behind the _RetVal register
is freely available in the thread’s corresponding Script structure, all you need to do is assign this a
new value when the host API function exits. This is done with the XS_Return*FromHost () func-
tions:

void XS_ReturnIntFromHost ( int iThreadIndex,
int iParamCount, int iInt );

void XS_ReturnFloatFromHost ( int iThreadIndex, int iParamCount, float
iFloat );

void XS_ReturnStringFromHost ( int iThreadIndex,
int iParamCount, char *

pstrString );

The implementation of these functions is even simpler than the parameter retrieving functions
described in the last section, but here’s the definition of XS_ReturnIntFromHost () anyway:

void XS_ReturnIntFromHost ( int iThreadIndex,
int iParamCount, int iInt )

{
// Clear the parameters off the stack
g_Scripts [ iThreadIndex ].Stack.iTopIndex -= iParamCount;

// Put the return value and type in _RetVal
g_Scripts [ iThreadIndex ]._RetVal.iType = OP_TYPE_INT;
g_Scripts [ iThreadIndex ]._RetVal.iIntLiteral = iInt;

}

The function first clears the parameters the caller pushed onto the stack and then stores the
return value in _RetVal. So in actuality, this function does more than just return a value; it cleans
up the function as well (as it should). The other functions of course follow this pattern as well, as
you’d expect, but there is one detail in the process of returning a string that should be men-
tioned. First, let’s look at the code:

void XS_ReturnStringFromHost ( int iThreadIndex,
int iParamCount, char *
pstrString )
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{
// Clear the parameters off the stack
g_Scripts [ iThreadIndex ].Stack.iTopIndex -= iParamCount;

// Put the return value and type in _RetVal
Value ReturnValue;
ReturnValue.iType = OP_TYPE_STRING;
ReturnValue.pstrStringLiteral = pstrString;
CopyValue ( & g_Scripts [ iThreadIndex ]._RetVal,

ReturnValue );
}

Instead of simply assigning the string pointer to _RetVal, it’s first encapsulated by a Value structure
and then physically copied into _RetVal with the CopyValue () you saw in the last chapter when
implementing the Mov instruction. This is done to prevent any mix-ups from occurring if the host
application later makes changes to the string it returned. Because the script and the host would
be sharing the same string pointer, this would inadvertently result in unpredictable values and
even more unpredictable behavior, possibly even resulting in a crashing. So, CopyValue () is used
to make sure that a copy of the string is made for the script.

The only real shortcoming with these functions is that regardless of their intent, they won’t actu-
ally cause the host API function to return. This is somewhat inconvenient, because it’d be nice to
simply end the function with one of the XS_Return*FromHost () functions in the same way C’s
return statement would. To solve this problem, I’ve wrapped each of these functions in simple
macros that bundle the function call with a return statement. Here’s an example:

#define XS_ReturnInt( iThreadIndex, iParamCount, iInt )       \
{                                                             \

XS_ReturnIntFromHost ( iThreadIndex, iParamCount, iInt ); \
return;                                                   \

}

Now, in a single line, you can return from host API functions and automatically return values to
the calling script with ease. Because these macros need to be directly available to the host, they’re
defined in the XVM header file. You can find them there if you’d like to study them further.

Lastly, there’s the issue of returning from a host API function without a return value. This doesn’t
seem like anything worth mentioning at first, until you remember that the XS_Return*FromHost ()
functions clear the function’s parameters from the stack as well as return a value; therefore, whether
a return value is involved or not, all host API functions must do this somehow. To address this issue,
I added a new function and accompanying macro, XS_ReturnFromHost () and XS_Return ():
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void XS_ReturnFromHost ( int iThreadIndex, int iParamCount )
{

// Clear the parameters off the stack
g_Scripts [ iThreadIndex ].Stack.iTopIndex -= iParamCount;

}

#define XS_Return( iThreadIndex, iParamCount )          \
{                                                       \

XS_ReturnFromHost ( iThreadIndex, iParamCount );    \
return;                                             \

}

With these functions and the macros that wrap them, defining host API functions is easy and well
structured. Once you get used to their use, it becomes just as natural as writing any other C func-
tion.

Calling the Function from a Script

Let’s wrap up the host API with an example of calling one of its functions from a script. Before
the function can be called, however, it needs to be registered of course:

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC,
"PrintString", HAPI_PrintString );

This line of code defines a global function
called PrintString () that will invoke the
host’s own HAPI_PrintString () function
when called from a script. Remember,
because the host application provides the
name by which the function will be known
to the script, it’s free to use a different one
than it’s defined with in C. Here I’ve cho-
sen to omit the HAPI_ prefix, but this was
purely arbitrary. Here’s a script fragment
of the call:

Var          MyString
Push         4
Push         "This is a string!"
CallHost     PrintString
Mov          MyString, _RetVal
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particularly significant reason to use the
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Remember, parameters are always pushed in the reverse order in which they’re read, so you push
the count before the string in this case (because HAPI_PrintString () read the string first).
CallHost then calls the function, and the XVM takes over from there. After the function returns,
any return value it may have issued will be available in _RetVal. In this example, this value was
placed in the variable MyString.

Script Function Calls
Calling the host API is a reasonably straightforward procedure from beginning to end, but calling
script functions from the host is considerably more complicated. The applications of such a fea-
ture are far reaching, however, and important to keep in mind while attempting to implement it.
The most obvious of these is event handling; by calling a script’s function due to a specific condi-
tion detected by the game engine, scripts can be fitted to the game’s behavior even more close-
ly—on a function level as opposed to a script level.

Exporting Function Names for Late Binding
Before you can do anything, however, the XVM needs to know the name of each function the
script defines so the host can call them easily. Calling a function by name is much easier than
using an index, so it’s important that your system supports this capability. In order to do this,
however, XASM needs to be rewritten slightly so that it writes the name of each function in its
internal function table to the final .XSE file so the XVM can read them back out (this will require
you to update the .XSE format as well). The process of saving a function or variable’s identifier
beyond the compilation and assembly phases so that it can be referenced at runtime is known as
late binding.

Like I said, in order to achieve late binding, you need to update XASM’s BuildXSE () function
and update the .XSE format just slightly so that function names can persist beyond the assembler.
On the XVM side of things, the function table structure will need to be expanded to store a
name string, and XS_LoadScript () will need to be updated as well. Let’s start with the changes to
the assembler.

Updating the .XSE Format

The .XSE format currently doesn’t have room for a function’s name, so you need to make some
alterations to the function table section of its structure. Table 11.2 contains the new specification
for a member of the .XSE function table.

These changes are small, but any change to a file’s format is a significant move. Because of this,
it’d be a good idea to update the format version as well. All .XSE’s created with the new function
table specification will identify themselves as version 0.8 scripts.

HOST APPLICATION INTEGRATION
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Updating XASM

The changes that must be made to XASM are minimal to say the least—it’s just a matter of writ-
ing the name string along with each function record that’s written to the .XSE’s function table.
Here’s the code responsible for emitting the assembled function table in the assembler’s BuildXSE
() function, with the new code in bold:

// Write out the function count (four bytes)
fwrite ( & g_FuncTable.iNodeCount, 4, 1, pExecFile );

// Set the pointer to the head of the list
pNode = g_FuncTable.pHead;

// Loop through each node in the list and
// write out its function info
for ( iCurrNode = 0; iCurrNode < g_FuncTable.iNodeCount;

++ iCurrNode )
{

// Create a local copy of the function
FuncNode * pFunc = ( FuncNode * ) pNode->pData;

11. ADVANCED VM CONCEPTS AND ISSUES

Table 11.2  The Function Structure
Name Size (in Bytes) Description

Entry Point 4 The index of the first instruction of
the function

Parameter Count 1 The number of parameters the func-
tion accepts

Local Data Size 4 The total size of the function’s local
data (the sum of all local variables
and arrays)

Function Name Length 1 The length of the following function
name, in bytes

Function Name N The function name string
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// Write the entry point (4 bytes)
fwrite ( & pFunc->iEntryPoint, sizeof ( int ),

1, pExecFile );

// Write the parameter count (1 byte)
cParamCount = pFunc->iParamCount;
fwrite ( & cParamCount, 1, 1, pExecFile );

// Write the local data size (four bytes)
fwrite ( & pFunc->iLocalDataSize, sizeof ( int ),

1, pExecFile );

// Write the function name length (1 byte)
char cFuncNameLength = strlen ( pFunc->pstrName );
fwrite ( & cFuncNameLength, 1, 1, pExecFile );

// Write the function name (N bytes)
fwrite ( & pFunc->pstrName,

strlen ( pFunc->pstrName ), 1, pExecFile );

// Move to the next node
pNode = pNode->pNext;

}

The .XSE files generated by this updated version of XASM will now contain the name of each
function, much like the names referenced by each host API call are stored. To reflect this new
change, the XASM program’s version will also be updated to 0.8. This is done by changing the
VERSION_* constants:

#define VERSION_MAJOR        0    // Major version number
#define VERSION_MINOR        8    // Minor version number

Invoking a Script Function: Synchronous Calls
If you recall from an earlier section, I defined synchronous calls as calls that do not interrupt the
concurrent flow of execution within the script. Such calls do not immediately execute, as would
the call to a typical C function; rather, they begin with the next XVM time slice, and (usually)
execute over the course of multiple time slices thereafter. Because of this, the only difference
between a synchronous call from the host and one made directly by the script is where the call
came from; once the function is invoked, everything runs like a typical function called with the
Call instruction. Figure 11.30 demonstrates a synchronous call.

HOST APPLICATION INTEGRATION
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I also like to refer to synchronous calls as invoking a script function, and asynchronous calls as
calling a script function. For this reason, synchronous calls are made with the XS_InvokeScriptFunc
() function:

void XS_InvokeScriptFunc ( int iThreadIndex, char * pstrName );

Simple, huh? Pass it the thread index in which the function resides, as well as the function’s
name, and it’ll begin executing as soon as the next call to XS_RunScripts () is made. The imple-
mentation of this function is decidedly simple, because it directly leverages the code you wrote
for calling functions when implementing the Call instruction in the last chapter. However, in
order to do this, Call’s code will have to be taken out of its case block in XS_RunScripts ()’s, and
placed in a separate function called CallFunc (). Here’s the code for this new function:

void CallFunc ( int iThreadIndex, int iIndex )
{

Func DestFunc = GetFunc ( iThreadIndex, iIndex );

// Save the current stack frame index
int iFrameIndex = g_Scripts [ iThreadIndex ].Stack.iFrameIndex;

// Push the return address, which is the current instruction
Value ReturnAddr;
ReturnAddr.iInstrIndex = g_Scripts

[ iThreadIndex ].InstrStream.iCurrInstr;
Push ( iThreadIndex, ReturnAddr );

11. ADVANCED VM CONCEPTS AND ISSUES
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// Push the stack frame + 1 (the extra space is
// for the function index we'll put on the stack after it)
PushFrame ( iThreadIndex, DestFunc.iLocalDataSize + 1 );

// Write the function index and old stack frame
// to the top of the stack
Value FuncIndex;
FuncIndex.iFuncIndex = iIndex;
FuncIndex.iOffsetIndex = iFrameIndex;
SetStackValue ( iThreadIndex, g_Scripts

[ iThreadIndex ].Stack.iTopIndex
- 1, FuncIndex );

// Let the caller make the jump to the entry point
g_Scripts [ iThreadIndex ].InstrStream.iCurrInstr=

DestFunc.iEntryPoint;
}

Nothing’s changed, the function call logic is just embedded in a function now. Of course, this has
a serious effect on the Call instruction handler, so let’s look at its new incarnation:

case INSTR_CALL:
{

// Get a local copy of the function index
int iFuncIndex = ResolveOpAsFuncIndex ( 0 );

// Advance the instruction pointer so it points
// to the instruction immediately following the call
++ g_Scripts [ g_iCurrThread ].InstrStream.iCurrInstr;

// Call the function
CallFunc ( g_iCurrThread, iFuncIndex );

break;
}

Now it’s just a matter of passing some parameters to the CallFunc () function. The instruction
pointer is also incremented outside of the function, because, as you’ll see shortly, a synchronous
call from the script should not advance the instruction.

HOST APPLICATION INTEGRATION



716

With the function call logic of the XVM embodied in a more modular way, you can implement
XS_InvokeScriptFunc () easily. Here’s the code:

void XS_InvokeScriptFunc ( int iThreadIndex, char * pstrName )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// Get the function's index based on its name
int iFuncIndex = GetFuncIndexByName ( iThreadIndex, pstrName );

// Make sure the function name was valid
if ( iFuncIndex == -1 )

return;

// Call the function
CallFunc ( iThreadIndex, iFuncIndex );

}

The function begins with the IsThreadActive () macro used in some of the previous sections to
ensure that the specified thread is active and running. A call is then made to a new helper func-
tion, GetFuncIndexByName (), which accepts the name of a function, as well as the index of the
thread in which the function is thought to reside, and attempts to find its index in the script’s
function table. The function returns -1 if the index isn’t found. Lastly, CallFunc () is called with
the newly found function index, and the process is complete.

As I mentioned previously, this is why you don’t want to increment the instruction pointer within
CallFunc () itself—synchronous function calls have no effect on the current execution path of
the script, so IP should be left untouched.

By the way, here’s the source to GetFuncIndexByName (); it should speak for itself:

int GetFuncIndexByName ( int iThreadIndex, char * pstrName )
{

// Loop through each function and look for a matching name
for ( int iFuncIndex = 0; iFuncIndex < g_Scripts

[ iThreadIndex ].FuncTable.iSize; ++ iFuncIndex )
{

// If the names match, return the index
if ( stricmp ( pstrName, g_Scripts

[ iThreadIndex ].FuncTable.pFuncs
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[ iFuncIndex ].pstrName )
== 0 )
return iFuncIndex;

}
// A match wasn't found, so return -1
return -1;

}

Nothing to it—just scan through the array until the specified function name matches something,
and return the corresponding index. Return -1 if a match isn’t found.

Passing Parameters
Calling functions without parameters is a decent capability, and is more than useful for a number
of situations. It won’t be long, however, before you want more specific control and need to pass
parameters from the host application to the script’s function.

As you might expect, this is done in the same way it’s done in a script; by pushing them onto the
stack before making the call. Of course, the host application has no direct interface to a specific
thread’s stack within the XVM, so you’ll need to create yet another batch of helper functions to
provide one:

void XS_PassIntParam ( int iThreadIndex, int iInt );
void XS_PassFloatParam ( int iThreadIndex, float fFloat );
void XS_PassStringParam ( int iThreadIndex, char * pstrString );

These shouldn’t need much explanation—by passing them either an integer, floating point value,
or string, these functions will push them onto the stack of the specified thread. Because this is
exactly what the script does when it calls one of its own functions, this will solve your parameter
passing problem nicely. Here’s the code to XS_PassIntParam ():

void XS_PassIntParam ( int iThreadIndex, int iInt )
{

// Create a Value structure to encapsulate the parameter
Value Param;
Param.iType = OP_TYPE_INT;
Param.iIntLiteral = iInt;
// Push the parameter onto the stack
Push ( iThreadIndex, Param );

}

HOST APPLICATION INTEGRATION



718

Nothing tricky going on here. The parameter comes in, it’s stuffed into a Value structure called
Param, and is pushed onto the stack, as shown in Figure 11.31. Done deal. Of course, like always,
strings have to ruin the fun and require a bit of special attention:

void XS_PassStringParam ( int iThreadIndex, char * pstrString )
{

// Create a Value structure to encapsulate the parameter
Value Param;
Param.iType = OP_TYPE_STRING;
Param.pstrStringLiteral =

( char * ) malloc ( strlen ( pstrString ) + 1 );
strcpy ( Param.pstrStringLiteral, pstrString );
// Push the parameter onto the stack
Push ( iThreadIndex, Param );

}
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The difference here is that a copy of the supplied
string is made before the Value structure is
pushed onto the stack. Remember, just like
always, whenever a string is passed from the host to
the script or vice versa, it’s important to make a
physical copy of the string data to ensure that
changes made to the original pointer on either
side won’t affect the other.

Return Values
Return values aren’t really possible when making synchronous calls, because there’s no obvious
point at which the function ends from the perspective of the host. Because of this, it never receives
a concrete signal to extract the value of _RetVal, which is where the return value would be.

NOTE
Remember, parameters need to be
passed in the proper order from the
host as well—either right to left
order, or left to right, depending on
the function’s implementation.
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Fortunately, this really isn’t a problem.
Synchronous calls aren’t meant to be used to
calculate values or return information about
the script; rather, they’re meant for long-
term behavior and actions. For example, if
an enemy’s AI was implemented in functions
that corresponded to each of its major
behavioral states, each of which contained an
infinite loop that would run until it was pre-
empted by another function, synchronous
calls could be made by the game engine to
branch to another state in reaction to any
number of stimuli.

HOST APPLICATION INTEGRATION

TIP
If you really want to be able to receive
return values from synchronous calls,
there’s at least one way to go about
doing it.All that’s required is to flag the
function so that the XVM knows to pass
the value of _RetVal back to the host
when a Ret instruction is encountered.
This may be a decent amount of extra
work to get fully operational, but it’s a
perfectly good solution if you really need
such a capability for whatever reason.

CAUTION
It’s extremely important to remember that synchronous calls can have a
disastrous effect on the running script if they’re used without caution.
Remember, any global variables that the function modifies may be in
use when the call is made, which will wreak havoc when the function
returns and execution within the script resumes where it originally was.
Imagine writing a C program if you had to worry about the possibility of
random global variables suddenly changing their values without warn-
ing. So, any function you know will be called from the host should be
designed to play nice with whatever code may already be running when
it’s called—this means that at the very least, it should save the value of
any global variable it modifies and restore it before returning to ensure
that the originally executing code isn’t hosed by its sudden invocation.
Even better, you may want to alter the VM so that it automatically pre-
serves the value of a script’s globals, as well as _RetVal, before executing
a synchronous call.These values would then be restored when the func-
tion’s Ret instruction is executed, providing more reliable protection.

Calling a Scripting Function: Asynchronous Calls
Asynchronous calls are just the opposite of synchronous calls. Rather than executing over time,
within the script’s time slices like a function called internally with Call, asynchronous calls use
script code to simulate C functions defined within the host. They begin executing immediately,
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halt the program until it’s finished, and optionally return a value. Asynchronous calls are good
for making quick or immediate changes to the script, reading the value of a script variable
wrapped in a “getter” function, or any other task that must be executed within the script, but
immediately. Figure 11.32 demonstrates asynchronous calls.

11. ADVANCED VM CONCEPTS AND ISSUES

Figure 11.32

Asynchronous function

calls interrupt the flow

of execution for both

the game engine and

the script.

On the surface, this almost makes asynchronous calls seem the simpler of the two; after all, they
don’t seem to disrupt the flow of the script’s execution or even require XS_RunScripts () to be
directly called by the user. Ironically, this is exactly what makes them so tricky. Remember,
whether or not the script executes over time, script code is always executed in the same way—by
sequentially handling instructions, incrementing the instruction pointer, and so on.

Because of this, the XVM needs to execute in a dramatically different way when handling asyn-
chronous function calls. The following is a list of major changes that must take place when such
calls are executed:

■ The XVM must suppress the multithreading scheduler. When an asynchronous function
call is made, it takes place outside of the normal execution of the XVM. Even though the
XVM still physically handles the execution, time slicing and multithreading must be
ignored. After all, the host is calling a single function in a single script—if other threads
were allowed to execute concurrently with this call, it’d result in countless serious side
effects.

■ The function should not be limited by the length of its script’s time slice. Remember, an
asynchronous call is completed in full immediately. Because of this, in addition to sup-
pressing the context switches that usually take place on a regular basis, the script within
which the asynchronous call is executing must be given as much time to execute as it
needs.
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■ The function must return upon execution of the proper Ret instruction. When the asyn-
chronously called function returns, control must be returned to the host application, not
the script. On the surface the solution to this problem may seem as easy as halting execu-
tion of the script when the first Ret is encountered, but this won’t work if the function
ends up calling functions of its own, because the second function’s Ret would end up ter-
minating everything.

This should help you understand why asynchronous script calls are nontrivial to be sure. You can
attack the problem systematically, however, so let’s just knock out each of the issues raised by this
list one by one.

Threading Modes
The first and most obvious problem with using the XVM as-is to execute an asynchronous func-
tion call is that the other threads in the system will end up executing during the function’s lifes-
pan as well. Because this can easily result in undesirable side effects, the multithreading sched-
uler must be suppressed when an asynchronous call is in progress.

To do this, you need to introduce the concept of threading modes to the XVM. As the name
implies, a threading mode is simply a mode of operation for the scheduler; in this case, all you
need is the existing multithreading mode and a new single-threading mode. In single-threading
mode, the scheduler is bypassed entirely at each iteration of the execution cycle, effectively sup-
pressing context switches. You start by creating two constants to represent these modes:

#define THREAD_MODE_MULTI      0    // Multithreaded execution
#define THREAD_MODE_SINGLE     1    // Single-threaded execution

A new global variable is also introduced, to represent the current mode:

int g_iCurrThreadMode;                   // The current threading mode

This variable is checked at each iteration of the execution cycle just before the scheduler checks
for a context switch. The following changes are made to the main while loop of XS_RunScripts
(), and are displayed in bold:

// Check for a context switch if the threading
// mode is set for multithreading
if ( g_iCurrThreadMode == THREAD_MODE_MULTI )
{

// If the current thread's time slice has elapsed, or
// if it's terminated, switch to the next valid thread

HOST APPLICATION INTEGRATION
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if ( iCurrTime > g_iCurrThreadActiveTime + g_Scripts
[ g_iCurrThread ].iTimesliceDur ||
! g_Scripts [ g_iCurrThread ].iIsRunning )

{
// Loop until the next thread is found
while ( TRUE )
{

// Move to the next thread in the array
++ g_iCurrThread;
// If we're past the end of the array, loop back around
if ( g_iCurrThread >= MAX_THREAD_COUNT )

g_iCurrThread = 0;
// If the thread we've chosen is active and running,
// break the loop

if ( g_Scripts [ g_iCurrThread ].iIsActive && g_Scripts
[ g_iCurrThread ].iIsRunning )

break;
}
// Reset the time slice
g_iCurrThreadActiveTime = iCurrTime;

}
}

Now, by setting g_iCurrThreadMode to THREAD_MODE_SINGLE, the scheduler will be disabled and the
first piece of the puzzle falls into place. Figure 11.33 demonstrates the switch from multithread-
ing to single-threading and back again.
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The Stack Base
The next issue is a bit more subtle, but vitally important nonetheless. As I said, it’s important that
the asynchronous function return control to the host as soon as it finishes executing, rather than
returning control to the originally running part of the script. Like I also said, it’s tempting to sim-
ply solve this problem by creating a flag that tells XS_RunScripts () to return as soon as a Ret
instruction is executed. Asynchronous calls could then set this flag before entering the script
code and ensure that only the desired function would execute.

The problem with this solution is that it robs the function of the capability to call functions of its
own, which is obviously a common operation in any type of programming. There is one way to
determine when the proper function has ended, however, and that’s by monitoring its particular
area of the stack. When the stack frame of the asynchronously called function is cleared, you
know for certain that call is complete and control can be returned to the host.

In order to determine when the function’s frame is cleared, you can set what I like to call a stack
base marker. A stack base marker is a modification that can be made to any Value structure on the
stack in order to flag it as the base of the current asynchronous call. Specifically, however, it can
be set on the element you’re currently using to mark the top of a stack frame—the function
index. Whenever a Ret instruction is executed, the function index is the first thing it pops off the
top of the stack. In addition to using this to determine the size of the frame and other informa-
tion, it can also be used to determine whether the XVM should halt. Check out Figure 11.34.
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You can implement the stack base marker as a simple Value type constant. In addition to
OP_TYPE_INT and OP_TYPE_REG, you now have OP_TYPE_STACK_BASE_MARKER:

#define OP_TYPE_STACK_BASE_MARKER   9      // Marks a stack base

Creating the marker is a simple matter of setting the iType field of the function index’s Value
structure at the top of the stack to this constant. Lastly, a small addition is made to Ret in order 
to check for the marker’s presence:

case INSTR_RET:
{

// Get the current function index off the top of the stack
// and use it to get the corresponding function structure
Value FuncIndex = Pop ( g_iCurrThread );

// Check for the presence of a stack base marker
if ( FuncIndex.iType = OP_TYPE_STACK_BASE_MARKER )

iExitExecLoop = TRUE;

// Get the previous function index
Func CurrFunc = GetFunc ( g_iCurrThread, FuncIndex.iFuncIndex );
int iFrameIndex = FuncIndex.iOffsetIndex;

// Read the return address structure from the stack, which is
// stored one index below the local data
Value ReturnAddr = GetStackValue ( g_iCurrThread, g_Scripts

[ g_iCurrThread ].Stack.iTopIndex
- ( CurrFunc.iLocalDataSize + 1 ) );

// Pop the stack frame along with the return address
PopFrame ( CurrFunc.iStackFrameSize );

// Restore the previous frame index
g_Scripts [ g_iCurrThread ].Stack.iFrameIndex = iFrameIndex;

// Make the jump to the return address
g_Scripts [ g_iCurrThread ].InstrStream.iCurrInstr

= ReturnAddr.iInstrIndex;

break;
}

11. ADVANCED VM CONCEPTS AND ISSUES
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The instruction works just like it always did, except that any function index element whose iType
field has been modified to mark the base of the stack will cause the execution loop to terminate.
This, in combination with the capability to run in a single-threaded mode, is almost everything
you need to safely execute an asynchronous function call.

An Infinite Time Slice
At the bottom of the execution cycle loop in RunScripts (), the time slice allotted to the XVM by
the caller is checked to determine whether the scripts should stop executing. This is normally a
must for concurrent execution with a game loop, but asynchronous calls need to run for as long
as they need to finish what they’re doing. This problem can be solved by creating a new constant
that represents an infinite time slice. This value can then be passed to RunScripts () in place of a
normal time slice value, telling it to run forever. Here’s the constant:

#define XS_INFINITE_TIMESLICE  -1  // Allows a thread to run indefinitely

Once inside RunScripts (), the usual time slice test needs to be altered to take the constant into
account:

// If we aren't running indefinitely, check
// to see if the main time slice
// has ended
if ( iTimesliceDur != XS_INFINITE_TIMESLICE )

if ( iCurrTime > iMainTimesliceStartTime + iTimesliceDur )
break;

HOST APPLICATION INTEGRATION

NOTE
The XS_INFINITE_TIMESLICE constant is public because it’s sometimes
useful for the host to run the XVM entirely on its own. Fortunately, even
when an infinite time slice is requested, the XVM will still stop execut-
ing when all scripts in memory stop running due to an Exit instruction.
Of course, if a script with an infinite loop of its own is loaded and run
with an infinite time slice, the program will ultimately hang.

The Final XS_CallScriptFunc () Function
With the requirements met, you can combine everything into a single function for making asyn-
chronous function calls. Here’s the definition for XS_CallScriptFunc ():
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void XS_CallScriptFunc ( int iThreadIndex, char * pstrName )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return;

// ---- Calling the function

// Preserve the current state of the VM
int iPrevThreadMode = g_iCurrThreadMode;
int iPrevThread = g_iCurrThread;

// Set the threading mode for single-threaded execution
g_iCurrThreadMode = THREAD_MODE_SINGLE;

// Set the active thread to the one specified
g_iCurrThread = iThreadIndex;

// Get the function's index based on its name
int iFuncIndex = GetFuncIndexByName ( iThreadIndex, pstrName );

// Make sure the function name was valid
if ( iFuncIndex == -1 )

return;

// Call the function
CallFunc ( iThreadIndex, iFuncIndex );

// Set the stack base
Value StackBase = GetStackValue ( g_iCurrThread, g_Scripts

[ g_iCurrThread ].Stack.iTopIndex - 1 );
StackBase.iType = OP_TYPE_STACK_BASE_MARKER;
SetStackValue ( g_iCurrThread, g_Scripts

[ g_iCurrThread ].Stack.iTopIndex - 1, StackBase );

// Allow the script code to execute uninterrupted until the
// function returns
XS_RunScripts ( XS_INFINITE_TIMESLICE );

// ---- Handling the function return
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// Restore the VM state
g_iCurrThreadMode = iPrevThreadMode;
g_iCurrThread = iPrevThread;

}

The function begins with the usual check to determine whether the specified thread index is
valid and active. It then saves the current threading mode and thread index. This is done to
restore the XVM to the exact state it was in before the call was made. As for exactly why the
threading mode needs to be restored, remember that asynchronous calls can end up interrupt-
ing other asynchronous calls, in which case the threading mode can’t automatically be set back to
THREAD_MODE_MULTI.

But how can one asynchronous call interrupt another? It’s rare, but imagine the following sce-
nario: an asynchronous call is made to a function that calls a host API function. If, for whatever
reason, the host API function makes an asynchronous call to another script function, that function
will end up being pushed onto the stack above the previous one. Even though they’re two sepa-
rate function calls, they’re both asynchronous. Because of this, if the threading mode was always
blindly restored to multithreading whenever an asynchronous call returned, the first call wouldn’t
behave properly. This is a pretty visual concept, so check out Figure 11.35.

Getting back to the function, the threading mode is then set to THREAD_MODE_SINGLE. The current
thread is then changed to the index of the function. The index of the desired function is then
retrieved based on the specified name, and the function is called with CallFunc (). The stack base

HOST APPLICATION INTEGRATION

Figure 11.35

Asynchronous calls can

interrupt each other if

the script function calls

the host, which in turn

calls the script back.



728

marker is then set; the top stack element, containing the function index, is read from the stack
and changed to OP_TYPE_STACK_BASE_MARKER. The modified function index is then written back to
the stack in the same position, and XS_RunScripts () is called with an infinite time slice. This will
execute the function in isolation until it returns, at which point the state of the VM (the previous
threading mode and the executing thread) is restored. Presto!

Reading Return Values
Parameters are passed to asynchronous calls in the same way they’re passed to synchronous
ones—with the parameter passing helper functions defined earlier. Unlike synchronous calls,
however, asynchronous calls can return values due to their immediate nature. Once again, howev-
er, because this means accessing an XVM runtime stack, you need to create some helper func-
tions to assist the host application. Here are the prototypes:

int XS_GetReturnValueAsInt ( int iThreadIndex );
float XS_GetReturnValueAsFloat ( int iThreadIndex );
char * XS_GetReturnValueAsString ( int iThreadIndex );

The function definitions are almost obscenely simple; all they do is return the value of the speci-
fied thread’s _RetVal register. Check out this example:

int XS_GetReturnValueAsInt ( int iThreadIndex )
{

// Make sure the thread index is valid and active
if ( ! IsThreadActive ( iThreadIndex ) )

return 0;
// Return _RetVal's integer field
return g_Scripts [ iThreadIndex ]._RetVal.iIntLiteral;

}

The only other detail to mention is yet another string issue; when accepting a string return value,
make sure to save a physical copy on the host side if you plan on saving it for prolonged periods
or making changes to it. This just helps avoid stepping on anyone else’s toes unexpectedly.

Adding Thread Priorities
Your current multithreading scheduler gives each thread in the system an equal time slice.
There’s nothing horrendously wrong with this, but it’s important to recognize that certain scripts
are more intensive or vital than others, and should be given the maximum amount of time to do
their jobs smoothly.
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For example, consider a scenario in a game involving four computer-controlled enemy characters
and a floating power-up item. The enemies, power-up, and the level itself are all scripted sepa-
rately, meaning there are currently six threads executing within the XVM. It’s most likely that the
player is directly interacting with the enemies—he or she may be engaged in a particularly heated
battle that requires at least 90 percent of his or her focus. The remaining sliver of the player’s
attention is spent on the surrounding environment and the power-up (especially if he or she
needs it). Figure 11.36 illustrates this situation.

HOST APPLICATION INTEGRATION

Figure 11.36

A scene in which the

level, enemies, and

power-ups of a game

are scripted.

The level’s script is concerned with keeping the ambient entities in motion; it causes leaves in the
trees to rustle, tiny waves to move through the water, and rocks and tumbleweed to slide around
as if a gust of wind was carrying them. Although this is vital to the overall immersive quality of the
game, it doesn’t have any direct impact on the player’s battle with the enemies. The power-up’s
script is even simpler; all it does is keep the item bobbing up and down in the air and slowly
rotating to get the player’s attention.

The scripts that power the enemy’s logic, however, are much more intense. They’re controlled by
complex AI algorithms that allow them to intelligently attack the player and avoid the player’s
countermoves, upon which the entire game play and fun factor of the game rely. Not only are the
enemy scripts more computationally intensive than those of the level and power-up, but they’re 
a lot more important—if the rustling of the trees or the spinning of the power-up were to sud-
denly become choppy or slow, it really wouldn’t make much difference. If the reaction time of
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the enemies suddenly began to falter, however, the game play experience would be severely
jarred. The time graph of Figure 11.37 shows how priority-based threading helps distribute the
virtual CPU’s load more effectively.
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Figure 11.37

Priority-based multi-

threading over time.

Because of this, it’s important that the scheduler recognize the relative importance of the scripts
it distributes the XVM’s processing power to. So, as a final touch to your nearly completed XVM
module, it’d be nice to go ahead and add the thread priorities I discussed earlier and help the
scheduler make more intelligent time slice allocations.

Priority Ranks vs. Time Slice Durations
As mentioned earlier, I like to define priority in terms of a time slice’s duration, as opposed to
the frequency over time with which it’s executed. Higher priority threads are given longer time
slices than those with a lower priority, effectively giving them more time overall to do their job.
This helps ensure that particularly vital or processor-intensive threads will run smoothly at all
times, even if it’s at the expense of the lower-priority scripts. As you learned in the last section,
however, this is generally a fair compromise.
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There are two ways to define a script’s priority. On the simplest level, each thread would simply
request a specific time slice duration, expressed in milliseconds. For example, a medium-priority
might ask for 20 milliseconds, whereas a high priority thread would ask for 50. A lower-priority
thread might be content with just 10.

This approach can become tedious, however, if you plan on writing a large number of scripts.
Imagine if, after writing 74 scripts that you deemed medium priority and therefore allocated 20
milliseconds, you decided they’d run better with 30. Rooting through all 74 of these scripts and
changing their priority request would be a huge pain.

Because of this, I like to also give threads the capability to request a specific priority rank, which is
a symbolic term or constant that maps to a specific number of milliseconds. If those 74 scripts
instead all requested as medium-priority threads, and the exact duration of a medium-priority
thread’s time slice was defined by the runtime environment, this problem could be averted by
simply tweaking the XVM’s definition.

Your scripts will therefore be capable of requesting either a specific time slice duration in mil-
liseconds, or one of three priority ranks—low, medium, or high.

Updating the .XSE Format
None of this will be possible without mak-
ing a minor upgrade to the version 0.8
.XSE format, allowing it to describe a
script’s priority rank or time slice dura-
tion. All this requires is the addition of
two new fields to the header—one to
define the priority rank, and the other to
define the user-defined priority, in mil-
liseconds, if applicable. The priority rank
is expressed as a 1-byte code; each of the
four valid codes are defined in Table 11.3.

The updated .XSE header is displayed in
Table 11.4.

In cases where the user requests a prede-
fined priority rank, the 1-byte code in the
Priority Rank field will be a value between 1 and 3, and the user-defined time slice duration field
will be a garbage value that should be disregarded. If a specific time slice duration was requested,
however, the priority rank field will be zero.

HOST APPLICATION INTEGRATION

TIP
You may be wondering why user-defined
priorities are represented by 0, whereas the
ranks themselves are between 1 and 3. I did
this to allow the possibility of new priority
ranks to be added later on; if the existing
priorities were represented by 0 through 2,
and user-defined priorities were represent-
ed by 3, it’d force any future priorities to
begin at 4. I find this numeric discontinuity
a bit messy and think this approach ensures
a much cleaner way to expand later.
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Table 11.3  Updated 0.8 .XSE Main Header
Code Definition

0 User-defined time slice duration (no priority rank)

1 Low priority

2 Medium priority

3 High priority

Table 11.4  Updated 0.8 .XSE Main Header
Name Size (in Bytes) Description

ID String 4 Four-character string containing the
.XSE ID,“XSE0”

Version 2 Version number; (first byte is major,
second byte is minor)

Stack Size 4 Requested stack size (set by
SetStackSize directive; 0 means use
default)

Global Data Size 4 The total size of all global data

Is _Main () Present? 1 Set to 1 if the script implemented a
_Main () function, 0 otherwise

_Main () Index 4 Index into the function table at
which _Main () resides

Priority Rank 1 The requested priority rank, or
user-defined time slice flag

User-Defined Time slice 4 Requested time slice duration, in
milliseconds
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Updating XASM
Of course, in order to generate this updated version of the 0.8 .XSE format, XASM will need a bit
of an upgrade too. Specifically, it needs to produce executables using the new format, and inter-
pret a new directive—SetPriority. The SetPriority directive accepts a single parameter—either
an integer literal value corresponding to the desired time slice duration, or one of the following
three keywords: Low, Med, or High.

A number of new constants will be introduced into the assembler to support this directive and
the new executable format. The first four correspond to the 1-byte codes that are used in the
.XSE header to specify the priority type:

#define PRIORITY_USER          0      // User-defined priority
#define PRIORITY_LOW           1      // Low priority
#define PRIORITY_MED           2      // Medium priority
#define PRIORITY_HIGH          3      // High priority

Next up are string constants that correspond to the three priority-type keywords the SetPriority
directive accepts:

#define PRIORITY_LOW_KEYWORD    "Low"   // Low priority keyword
#define PRIORITY_MED_KEYWORD    "Med"   // Medium priority keyword
#define PRIORITY_HIGH_KEYWORD   "High"   // High priority keyword

The assembler will track a script’s priority by also adding two new fields to its internal header
structure, ScriptHeader:

typedef struct _ScriptHeader            // Script header data
{

int iStackSize;                     // Requested stack size
int iGlobalDataSize;                // The size of the script's

// global data

int iIsMainFuncPresent;             // Is _Main () present?
int iMainFuncIndex;                 // _Main ()'s function index

int iPriorityType;                  // The thread priority type
int iUserPriority;                  // The user-defined priority

// (if any)
}

ScriptHeader;

With the new constants and data structures ready to go, let’s look at the code responsible for pars-
ing the new directive.

HOST APPLICATION INTEGRATION
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Parsing the SetPriority Directive
The SetPriority directive is parsed in a manner similar to SetStackSize, so the code should look
rather familiar. Let’s take an initial look:

case TOKEN_TYPE_SETPRIORITY:

// SetPriority can only be found in the global scope, so make
// sure you aren't in a function.
if ( iIsFuncActive )

ExitOnCodeError ( ERROR_MSSG_LOCAL_SETPRIORITY );

// It can only be found once, so make sure you
// haven't already found it
if ( g_iIsSetPriorityFound )

ExitOnCodeError ( ERROR_MSSG_MULTIPLE_SETPRIORITIES );

// Determine the parameter type
GetNextToken ();
switch ( g_Lexer.CurrToken )
{

// An integer lexeme means the user is
// defining a specific priority
case TOKEN_TYPE_INT:

// Convert the lexeme to an integer value from its string
// representation and store it in the script header
g_ScriptHeader.iUserPriority = atoi ( GetCurrLexeme () );
// Set the user priority flag
g_ScriptHeader.iStackSize = PRIORITY_USER;
break;

// An identifier means it must be one
// of the predefined priority ranks
case TOKEN_TYPE_IDENT:

// Determine which rank was specified
if ( stricmp ( g_Lexer.pstrCurrLexeme,

PRIORITY_LOW_KEYWORD ) == 0 )
g_ScriptHeader.iPriorityType = PRIORITY_LOW;

else if ( stricmp ( g_Lexer.pstrCurrLexeme,
PRIORITY_MED_KEYWORD ) == 0 )
g_ScriptHeader.iPriorityType = PRIORITY_MED;
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else if ( stricmp ( g_Lexer.pstrCurrLexeme,
PRIORITY_HIGH_KEYWORD ) == 0 )
g_ScriptHeader.iPriorityType = PRIORITY_HIGH;

else
ExitOnCodeError ( ERROR_MSSG_INVALID_PRIORITY );

break;

// Anything else should cause an error
default:

ExitOnCodeError ( ERROR_MSSG_INVALID_PRIORITY );
}

// Mark the presence of SetStackSize for future encounters
g_iIsSetPriorityFound = TRUE;

break;

When SetPriority is the initial token, the parser knows it’s encountered the directive. It begins by
ensuring it’s not currently inside a function, because SetPriority can only appear in the global
scope. It then makes sure the priority hasn’t already been set, because multiple instances are ille-
gal. This is done by checking a global flag called g_iIsSetPriorityFound, which works just like the
flag used to ensure that SetStackSize only appears once.

The next token is then read, which is the priority value itself. This can appear in one of two
forms—an integer literal value specifying the desired time slice duration, or a string referring to
one of the three predefined priority ranks. In the case of an integer, atoi () is used to determine
the actual time slice duration, which is saved to the script header. The priority type is then set to
PRIORITY_USER to reflect this.

If the token is a string, it must be one of the three priority rank strings. strcmp () is used to deter-
mine this, and the corresponding rank value is written to the script header. A string parameter
that is not one of these three strings, as well as a parameter that isn’t either an integer or a string,
result in an error message reporting an invalid priority.

The parsing logic completes by setting the g_iIsSetPriorityFound flag.

Updating the XVM
Lastly, the XVM needs to be updated to support this new priority ranking functionality.
Fortunately, it’s a pretty simple upgrade.

HOST APPLICATION INTEGRATION
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The Script Structure
First up, the Script function needs to be augmented with a field specifying the script’s time slice
duration in milliseconds. Here’s the new structure with the added field in bold:

typedef struct _Script         // Encapsulates a full script
{

int iIsActive;             // Is this script structure in use?

// Header data
int iGlobalDataSize;       // The size of the script's global data
int iIsMainFuncPresent;    // Is _Main () present?
int iMainFuncIndex;        // _Main ()'s function index

// Runtime tracking
int iIsRunning;            // Is the script running?
int iIsPaused;             // Is the script currently paused?
int iPauseEndTime;         // If so, when should it resume?

// Threading
int iTimesliceDur;         // The thread's time slice duration

// Register file
Value _RetVal;             // The _RetVal register

// Script data
InstrStream InstrStream;   // The instruction stream
RuntimeStack Stack;        // The runtime stack
FuncTable FuncTable;       // The function table
HostAPICallTable HostAPICallTable;    // The host API call table

}
Script;

Notice that the Script structure doesn’t have a separate field for priority rank. Although you
could store this as well, it’s actually not necessary. When the script is loaded, its priority rank is
immediately checked to determine whether its requested priority was a predefined rank or a time
slice duration. If it was the latter, this value is written directly to the iTimesliceDur field.
Otherwise, the time slice duration associated with the specified rank is immediately substituted
and written to iTimesliceDur.

Here are the constants used to map priority ranks to time slice durations, in milliseconds:
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#define THREAD_PRIORITY_DUR_LOW  20  // Low-priority thread time slice
#define THREAD_PRIORITY_DUR_MED  40  // Medium-priority thread time slice
#define THREAD_PRIORITY_DUR_HIGH 80  // High-priority thread time slice

Loading Version 0.8 Scripts
XS_LoadScript () is then updated to recognize the .XSE format modification. There is one twist
though; as an added bonus, I thought it’d be cool to give the host application the capability to
force a thread into a certain priority or time slice duration by passing that as a new parameter in
XS_LoadScript (). Here’s the new prototype:

int XS_LoadScript ( char * pstrFilename,
int & iScriptIndex,
int iThreadTimeslice );

Here’s how it reads in the thread’s priority settings:

// Read the priority type (1 byte)
int iPriorityType = 0;
fread ( & iPriorityType, 1, 1, pScriptFile );

// Read the user-defined priority (4 bytes)
fread ( & g_Scripts [ iThreadIndex ].iTimesliceDur,

4, 1, pScriptFile );

// Override the script-specified priority if necessary
if ( iThreadTimeslice != XS_THREAD_PRIORITY_USER )

iPriorityType = iThreadTimeslice;

// If the priority type is not set to user-defined,
// fill in the appropriate time slice duration
switch ( iPriorityType )
{

case XS_THREAD_PRIORITY_LOW:
g_Scripts [ iThreadIndex ].iTimesliceDur =

THREAD_PRIORITY_DUR_LOW;
break;

case XS_THREAD_PRIORITY_MED:
g_Scripts [ iThreadIndex ].iTimesliceDur =

THREAD_PRIORITY_DUR_MED;
break;
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case XS_THREAD_PRIORITY_HIGH:
g_Scripts [ iThreadIndex ].iTimesliceDur =

THREAD_PRIORITY_DUR_HIGH;
break;

}

The priority-type code is read in first. If it specifies a user-defined thread, that value is immed-
iately stuffed into iTimesliceDur. Otherwise, a switch block is entered to assign the proper
THREAD_PRIORITY_* constant. Either way, by the time all scripts are loaded, their priority-type 
codes have been discarded and they all rely on a raw time slice duration.

The Multithreading Scheduler
The final piece of the puzzle is an upgrade to the multithreading scheduler to take each script’s
time slice duration into account. Fortunately, because you disregarded the scripts’ rank when
loading them, all you have to deal with is a single integer value. Here’s the code:

// Check for a context switch if the threading mode
// is set for multithreading
if ( g_iCurrThreadMode == THREAD_MODE_MULTI )
{

// If the current thread's time slice
// has elapsed, or if it's terminated
// switch to the next valid thread
if ( iCurrTime > g_iCurrThreadActiveTime + g_Scripts

[ g_iCurrThread ].iTimesliceDur ||
! g_Scripts [ g_iCurrThread ].iIsRunning )

{
// Loop until the next thread is found
while ( TRUE )
{

// Move to the next thread in the array
++ g_iCurrThread;

// If we're past the end of the array, loop back around
if ( g_iCurrThread >= MAX_THREAD_COUNT )

g_iCurrThread = 0;

// If the thread we've chosen is active and
// running, break the loop
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if ( g_Scripts [ g_iCurrThread ].iIsActive &&
g_Scripts [ g_iCurrThread ].iIsRunning )
break;

}

// Reset the time slice
g_iCurrThreadActiveTime = iCurrTime;

}
}

As you can see, the only major change is the fact that the former generic time slice duration con-
stant has been replaced with the script’s own iTimesliceDur field.

DEMONSTRATING THE FINAL XVM
To wrap things up, I’ve written a very simple program that integrates with the XVM and demon-
strates its host API functions. To keep things as neutral as possible, the “integration” of the XVM
with a host application really just means linking in xvm.cpp|h—I chose this over static or dynamic
libraries to help minimize the amount of drama that can arise from anything other than simply
including the right files with your project.

The Host Application
The host application in this demo is very simple. All it does is load a single script, define a single
host API function for printing string sequences, and then demonstrates some actual functionality
by calling and invoking the script’s functions. In order to print to the console, the script must call
the host’s string printing function, thereby demonstrating all of the major integration functions
the XVM provides.

The Demo Script
Before getting into the details of the host application’s implementation, here’s a little demo script
I whipped up to test it out. Assume that the function will provide a function called PrintString ()
that can be used to print a sequence of strings, given a string and an integer counter:

; Project.
;   XVM Final
; Abstract.
;   Simple test script.
; Date Created.

DEMONSTRATING THE FINAL XVM
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;   8.28.2002
; Author.
;   Alex Varanese

; ---- Directives --------

SetStackSize 512
SetPriority Low

; ---- Functions -----

; ---- Simple function for doing random stuff
Func DoStuff
{

; Print a string sequence on the host side
Push     1
Push     "The following string sequence

was printed by the host app:"
CallHost PrintString

Push     4
Push     " - Host app string"
CallHost PrintString

; Print a string sequence on  the script side (with added delay)
Push     1
Push     "These, on the other hand, were printed individually by the \

script:"
CallHost PrintString

Var      Counter
Mov      Counter, 8
LoopStart:

Push     1
Push     " - Script string"
CallHost PrintString
Pause    200
Dec      Counter

JGE      Counter, 0, LoopStart

11. ADVANCED VM CONCEPTS AND ISSUES
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; Return a value to the host
Push      1
Push     "Returning Pi to the host..."
CallHost PrintString

Mov      _RetVal, 3.14159
}

; ---- Function to be invoked and run alongside a host application loop

Func InvokeLoop
{

; Print a string infinitely
LoopStart:

Push     1
Push     "Looping..."
CallHost PrintString
Pause    200

Jmp       LoopStart
}

The script defines two functions, one to be called synchronously, the other to be called asynchro-
nously. This will all make a bit more sense in the next section, which dissects the host application
side of the demo.

Embedding the XVM
The first thing to do in the host application
is embed the XVM. As I said, this is a
painfully simple matter—just include the
xvm.h header file and make sure to link
xvm.cpp with your project. Here’s the inclu-
sion of the header along with the other
include files the demo uses:

#include <stdio.h>
#include <conio.h>

// Include the XVM's header
#include "xvm.h"

DEMONSTRATING THE FINAL XVM

NOTE
To be specific, you can link xvm.cpp with
your host application in Microsoft Visual
C++ simply by loading the file into your
project. xvm.cpp should then appear in the
Source/ folder along with the main source
files of the host app.The included project
file on the accompanying CD already does
this, so just check it out if you’re confused
by anything here.You can find it in
Programs/Chapter 11/XVM Final/Source/.
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Defining the Host API
The demo’s “host API” is really just one function, called HAPI_PrintString (), which will allow the
script to print output to the console. Here’s its definition:

void HAPI_PrintString ( int iThreadIndex )
{

// Read in the parameters
char * pstrString = XS_GetParamAsString ( iThreadIndex, 0 );
int iCount = XS_GetParamAsInt ( iThreadIndex, 1 );

// Print the specified string the specified number of
// times (print everything with a leading tab to separate it from
// the text printed by the host)

for ( int iCurrString = 0; iCurrString < iCount; ++ iCurrString )
printf ( "\t%s\n", pstrString );

// Return a value
XS_ReturnString ( iThreadIndex, 2, "This is a return value." );

}

Remember, parameters are read in with the XS_GetParamAs* () functions, and return values are
returned with XS_Return* (). Once it has read the pstrString and iCount parameters, it prints the
string out the specified number of times in a for loop. It prints a single leading tab before the
string too, just to help the script’s output separate itself from that of the host.

Notice also that the function is reading the string first as parameter 0, and then the integer as
parameter 1. This is why the demo script pushed the integer before the string, like this:

Push     4
Push     " - Host app string"
CallHost PrintString

Remember! You always pass parameters in the opposite order that the function will read them.

The Main Program
The main host application program begins with a call to XS_Init () to initialize the XVM:

// Initialize the runtime environment
XS_Init ();
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It then declares integer variables to hold an error code and thread index, and calls XS_LoadScript
() to load the assembled .XSE demo script:

// Declare the thread indexes
int iThreadIndex;

// An error code
int iErrorCode;

// Load the demo script
iErrorCode = XS_LoadScript ( "script.xse", iThreadIndex,

XS_THREAD_PRIORITY_USER );

Multithreading won’t play a role in this demo, but I load it with XS_THREAD_PRIORITY_USER to allow
the script to define its own priority anyway. Once the script has been loaded, it’s good to check
for an error and print out a description in the event that anything went wrong. Otherwise, a suc-
cess message is printed:

// Check for an error
if ( iErrorCode != XS_LOAD_OK )
{

// Print the error based on the code
printf ( "Error: " );

switch ( iErrorCode )
{

case XS_LOAD_ERROR_FILE_IO:
printf ( "File I/O error" );
break;

case XS_LOAD_ERROR_INVALID_XSE:
printf ( "Invalid .XSE file" );
break;

case XS_LOAD_ERROR_UNSUPPORTED_VERS:
printf ( "Unsupported .XSE version" );
break;

case XS_LOAD_ERROR_OUT_OF_MEMORY:
printf ( "Out of memory" );
break;

case XS_LOAD_ERROR_OUT_OF_THREADS:
printf ( "Out of threads" );
break;

}
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printf ( ".\n" );
return 0;

}
else
{

// Print a success message
printf ( "Script loaded successfully.\n" );

}
printf ( "\n" );

To get things going, the HAPI_PrintString () function is registered with the XVM under the sim-
pler name PrintString (), and the script is started to let the XVM know that its code is exe-
cutable:

// Start up the script
XS_StartScript ( iThreadIndex );

Next, the script’s DoStuff () function is called asynchronously. You do this to allow the function
to run entirely on its own, uninterrupted. You also want to let it return a value, which isn’t possi-
ble with synchronous calls. After running DoStuff (), the value it returns is printed to the screen
and the script’s other function, InvokeLoop (), is invoked and run within a loop. This demon-
strates an invoked function’s capability to run concurrently with the host:

// Call a script function
printf ( "Calling DoStuff () asynchronously:\n" );
printf ( "\n" );

XS_CallScriptFunc ( iThreadIndex, "DoStuff" );

// Get the return value and print it
float fPi = XS_GetReturnValueAsFloat ( iThreadIndex );
printf ( "\nReturn value received from script: %f\n", fPi );
printf ( "\n" );

// Invoke a function and run the host alongside it
printf ( "Invoking InvokeLoop () (Press any key to stop):\n" );
printf ( "\n" );

XS_InvokeScriptFunc ( iThreadIndex, "InvokeLoop" );

while ( ! kbhit () )
XS_RunScripts ( 50 );
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At this point, the script’s functionality has been demonstrated, so you can shut everything down
with a simple call to XS_ShutDown ().

// Free resources and perform general cleanup
XS_ShutDown ();

The Output
What fun would all this be if you couldn’t see the output, huh? Upon running the host applica-
tion demo, you’ll see this (of course, it’s more interesting to watch it run):

XVM Final
XtremeScript Virtual Machine
Written by Alex Varanese

Script loaded successfully.

Calling DoStuff () asynchronously:

The following string sequence was printed by the host app:
- Host app string
- Host app string
- Host app string
- Host app string
These, on the other hand, were printed individually by the script:
- Script string
- Script string
- Script string
- Script string
- Script string
- Script string
- Script string
- Script string
- Script string
Returning Pi to the host...

Return value received from script: 3.141590

Invoking InvokeLoop () (Press any key to stop):
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Looping...
Looping...
Looping...
Looping...
Looping...
Looping...
Looping...
Looping...

Cool, huh? It may be simple, but this output represents a totally finished and fully integrated vir-
tual machine. Game scripting ahoy!

SUMMARY
Whew! With priority-based multithreading and a feature-rich integration interface, your now-
embeddable XVM has become quite a slick little piece of software. You now have two of the three
major components of the XtremeScript system ready to go, giving you the ability to write assem-
bly-language scripts, assemble them to bytecode, run them concurrently, and allow them to easily
communicate with the game engine.

All that’s left now is to write a high-level compiler capable of translating the XtremeScript lan-
guage developed in Chapter 7 to its XVM assembly equivalent. This would give you everything
you need to achieve your original goal of scripting games with a high-level language, and nearly
complete your quest to attain scripting mastery. In short, if you made it this far, you’re doing
great! Don’t give up now!

ON THE CD
This chapter covered a lot of ground, and the CD reflects it. The Chapter 11 folder contains two
new versions of the XVM (the last of which is the final, embeddable version you’ll be using
throughout the rest of the book) and the new version 0.8 XASM assembler. Everything can be
found in Programs/Chapter 11/.

The multithreaded XVM demo and the final, embeddable XVM are in XVM Demo/ and XVM Final/,
respectively. Version 0.8 of XASM is in XASM 0.8/. As has been the case with most of the programs
lately, everything is a console application, which means you shouldn’t have much to worry about
with regards to compiling and running everything.

The basic multithreading XVM demo in XVM Demo/ will run as many scripts as you want it to; just
specify them all on the command line. The Final XVM demo in XVM Final/ is a bit different; it’s
designed to run a specific set of scripts to fully demonstrate its functionality.
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CHALLENGES
■ Intermediate: Implement a mutex and/or semaphore system to protect shared resources

within the game engine, and create a set of host API functions for locking and unlocking
them.

■ Intermediate: Implement a thread priority system in which all threads are given the same
time slice, but are invoked more or less frequently depending on their rank.

■ Difficult: Add the capability to track global variables exposed by the host from the script,
the capability to track globals exposed by the script from the host, or both.

CHALLENGES
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Compiler
Theory

Overview

“I didn’t say it would be easy, Neo. 
I just said it would be the truth.”

——Morpheus, The Matrix

CHAPTER 12
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At last. After working your way through page after page of prerequisite information and
concepts, after enduring an 11-chapter build-up, and after completing two thirds of the

XtremeScript system, you’re finally on the brink of what will undoubtedly be both the most com-
plex and most rewarding aspect of designing a custom scripting language.

Compiling high-level code is one of those things that, over time, has built up a reputation of
being insurmountably difficult to understand and even harder to implement. After all, as I’ve
mentioned on numerous occasions, any time the precisely calculated world of software meets the
fuzzy and ambiguous world of human expression, there almost invariably exists a barrier of com-
plexity and error-prone translation that few ever dare to attack head-on.

(Un)fortunately for you, your interest in scripting has lead you down a path that will inevitably
end in the belly of this particular beast, and unless you want to spend the rest of your life trying
to write scripts in XVM assembly language, you’re going to have to face it sooner or later.
Fortunately, however, the subject of compiler theory is almost as old as computing itself, which
means the algorithms and concepts upon which it’s based have been richly developed and docu-
mented. Besides, completing a compiler project is a badge of honor you’ll be able to proudly
wear throughout your coding career, and will help solidify a skill set that will prove useful, if not
invaluable, in countless other fields and applications.

This chapter covers

■ An overview of compiler theory.
■ How the XtremeScript compiler works with XASM.
■ Advanced compiler issues.

This chapter may be primarily introductory, but it’s required reading for the chapters that follow.
The majority of terms and concepts I’ll be using over the course of the next few chapters will be
introduced here, so don’t be surprised if you find yourself lost after skipping it.

AN OVERVIEW OF COMPILER THEORY
As has been stated a few times already, the subject of translating programming languages from
one form to another is encapsulated by a broad field of study known as compiler theory. Everything
from the assemblers to C compilers to SQL query interpreters draw on the teachings of this sub-
ject, and you should already have a pretty good idea of why and how it applies to you.

12. COMPILER THEORY OVERVIEW
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Just to make sure you’re up to speed on a few things,
let’s review some of the terms and concepts I’ve
attempted to drill into your head over the course of the
chapters that have led up to now:

■ High-Level Languages, or HLLs, are languages that
are designed to mimic human-readable languages
like English for the purpose of clearly describing
algorithms, expressions, and procedures.
Examples of HLLs include C, C++, Java, and
Pascal. High-level languages get their name from
the fact that they’re strongly abstracted and are
separated from the processor (the lowest level) by
numerous layers.

■ Low-Level Languages, or LLLs, are among the lowest layers separating HLLs from the
processor itself. LLLs include assembly languages and other specialty languages. Low-
level languages get their name from the fact that they’re separated from the processor by
little-to-no abstraction. When comparing equivalent programs written in high- and low-
level languages, the low-level versions are invariably faster and smaller (assuming both
are written to the fullest extent of their respective languages).

■ Machine Code is a purely binary language understood directly by processors, consisting
entirely of simple instructions that are represented by integer values called opcodes.
Machine code is more or less equivalent to assembly language, but is specifically
designed for fast and efficient execution. As a result, it’s virtually unreadable to humans
in a practical context.

■ Bytecode is another name for the machine code of a virtual machine like the XVM
(XtremeScript Virtual Machine) or JVM (Java Virtual Machine).

■ Compiling is the process of reducing a high-level language to a low-level one.
■ Assembling is the process of translating the human-readable version of a low-level pro-

gram to its machine-readable equivalent.

Okay! Good to get that out of the way (and yes, I promise that’s the last time I’ll go through all
that). Now that I’m reasonably sure we’re all on the same page, let’s take a deeper look at how
this translation of high-level languages to low-level languages really works.

Phases of Compilation
You know compilers are used to turn high-level code into assembly language and/or machine
code, but how exactly is this done? To answer this question, think back to Chapter 9 when you
implemented the XASM assembler. If you recall, the program worked in a number of phases (not
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NOTE
Yes, even SQL interpreters are
based on the same principals
that were used to build high-
end compilers like Microsoft
Visual C++ and GCC. Large or
small, almost any form of lan-
guage processing and interpre-
tation can benefit from the
teachings of compiler theory.
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to be confused with passes, which I’ll cover separately). The first phase involved a basic processing
of the incoming source code; whitespace was removed, comments were stripped away, and so on.
The next phase was known as lexical analysis, in which the source code stream was broken into
streams of tokens and lexemes. This stream was then fed into a parser, which was ultimately
responsible for the final assembly of the source code.

At first, writing software capable of intelligently translating human-readable code like the follow-
ing seems nearly impossible:

int X = 120;
float Y, Z;
Y = 3.14159;
Z = sin ( X ) * cos ( Y / X );
for ( X = 0; X < 359; ++ X )

Y *= Z / X * tan ( Y );
MyFunc ( X * Z, Y );

And indeed, it is difficult to translate such code. However, when the compiler is split into multi-
ple phases, each of which is responsible for a separate, specific task, the process becomes infinite-
ly easier, at least on a conceptual level. Understanding how source code is reduced to tokens isn’t
hard, understanding how tokens are parsed isn’t all that difficult, and if you put them together,
you’ve got a basic compiler laid out already. It’s like studying the human brain—the nearly end-
less versatility and flexibility of human intelligence seems impossible to describe or reproduce at
first, but once you learn that the brain is really just a massive collection of interconnected and
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NOTE
In reality, sin () and cos () from
the standard math library take radi-
an parameters and not degrees;
however, this is just an example to
show you some basic math code.

NOTE
Think about it—of all the things you do during the day, how many of
them are actually approached without first breaking them down into
their constituent parts? Walking across the street would be pretty diffi-
cult without the ability to take intermediate steps—you’d need pretty
long legs otherwise. So, instead of thinking about what sort of godlike
program could turn a C file into an executable, think instead about the
multitude of small, simple programs that perform each intermediate
step.When you get to the last one, you’ll be able to look back and see
that the initially huge challenge was really just a bunch of smaller ones.
And that, kids, is enough eastern philosophy for one day.
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simplistic components, the magic is demystified. If there’s one thing that all software engineers
should understand—incredible complexity can be attained simply by combining the right pieces
in the right way. This is exactly how the construction of a compiler is approached.

Chapter 5 saw your first real introduction to the phases of a compiler. In Chapter 9, you even
implemented a few of them, albeit in an admittedly watered-down way. You’ve learned that on a
basic level, virtually all compilers consist of the same fundamental phases:

■ Lexical analysis
■ Parsing
■ Semantic analysis
■ I-code generation
■ Target code emission

None of these phases is particularly hard to
understand if they’re explained properly, and
once you can implement them all, you’re capa-
ble of building a compiler. Figure 12.1 pres-
ents them in sequence.
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Figure 12.1

Phases of a compiler.

Lexical Analysis/Tokenization
Lexical analysis, or lexing for short, has made numerous appearances in the book so far. From the
simple command based language of Chapters 3 and 4 to the XASM assembler of Chapter 9, the
process of converting a raw stream of characters to distinct “words” or “chunks” makes your life
considerably easier when attempting to translate and understand various forms of scripting lan-
guages. Figure 12.2 illustrates the concept of lexical analysis.

To recap the process, a lexical analyzer takes as its input an incoming stream of source code, such
as the following:

X = MyVar * 2;

NOTE
You’ll notice a lot of references to files
with an .XSS extension throughout this
chapter. Just to give you a heads-up, this
stands for XtremeScript Source, and is
the extension you’ll be using for all of
your high-level XtremeScript scripts.
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and produces two forms of output; a stream of lexemes and a stream of tokens. The lexeme stream
is rather similar to the original source code, except that each unique “word” or “component” has
been isolated. The previous line would be returned from the lexer in this order:

X
=
MyVar
*
2
;

This is definitely an improvement, because it’s a lot easier to analyze each individual lexeme than
it is to deal with the entire line (or source file) as a whole. What’s really important, however, is
what each lexeme represents. In other words, what the compiler really wants to know is that X is a
variable, = is the assignment operator, MyVar is another variable, * is the multiplication operator,
and 2 is an integer literal value. The token stream provides exactly this:

TOKEN_TYPE_IDENT
TOKEN_TYPE_OP_ASSIGN
TOKEN_TYPE_IDENT
TOKEN_TYPE_OP_MUL
TOKEN_TYPE_INT
TOKEN_TYPE_SEMICOLON

12. COMPILER THEORY OVERVIEW

Figure 12.2

Lexical analysis breaks up the incoming character stream into lexeme and token streams.
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The lexer allows you to think of the source code in much higher-level, abstracted terms. No
longer is it necessary to hunt and peck your way through a raw chunk of character data; instead,
you now have a simple but significant glimpse of what the source code means.

It doesn’t take a PhD to understand that anything becomes simpler if you can isolate and group
common elements. For example, cleaning a house in which every floor is covered with dirty
clothes and garbage can be a long and tedious job, but it would be exponentially easier if every 5
or 10 pieces of clothing and garbage were wrapped up into a small bag together. Picking up even
a large number of bagged items is a lot easier, because the grouping cuts down the complexity
and depth considerably.

Lexer Implementation
The implementation of a lexer really just boils down to a decent amount of string processing;
because its only job is to determine which characters belong to the same lexeme, there’s naturally
going to be a lot of substring isolation and analysis. There are a number of ways to approach the
problem, however.

The Brute Force Approach

The first and perhaps most obvious approach is just to use brute force, which served you well 
in Chapter 9 during the development of the XASM assembler. What I mean by “brute force” 
isn’t that the solution is crude or unintelligent, but rather that the lexer is written with a rather
narrow focus, with a number of hard-coded elements. A brute force lexer operates in a number
of phases:

■ Leading whitespace before the lexeme is consumed.
■ The lexeme is slowly built up from the character stream until a delimiter character of

some form, such as a comma, bracket, or more whitespace is encountered.
■ The lexeme is isolated and analyzed by comparing it to a number of strings and string

classifications.

As you can see, this approach to lexing is quite logical and natural; in fact, it’s the first solution to
the problem I came up with when I was initially getting into this stuff. Let’s look at an example;
consider the following line of text (not including the surrounding quotes):

"     MyVar A , 32768 $  "

The lexer, in an attempt to extract the first lexeme and token from the string, would begin by
consuming the leading whitespace before MyVar. The string would now conceptually look like
this:

"MyVar A , 32768 $  "

AN OVERVIEW OF COMPILER THEORY
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Of course, the lexer doesn’t physically delete anything; but this is how it will perceive the string
from now on. With the whitespace out of the way, the first character of the lexeme itself will be
read and the lexeme extraction process will begin. It will start with the character M and work its
way through yVar until the first whitespace character is encountered. This lets the lexer know that
the end of the lexeme has been found. A substring is extracted between the lexeme’s start and
end points, which results in the following:

"MyVar"

You now have the lexeme, so half of the lexer’s job is over (although technically, the lexer’s entire
job is over because the rest of this phase belongs to the tokenizer). The next task is to determine
its token type, which is done by comparing it to a number of string classifications. To keep this
simple, let’s just say you have three token types to work with: integer literal values, floating-point
literal values, and identifiers. The lexer would first determine whether MyVar was an integer. It
would do this by determining whether each character was a digit between 0 and 9, and that the
first character was optionally a minus sign to represent a negative value. Because MyVar hardly
passes this test, one of three possible token
types has been eliminated. It would then
attempt to classify it as a floating-point value,
which would fail even more miserably,
because a float is just an integer with an
optional radix point. Lastly, it would com-
pare it to the definition of an identifier
token, which is a string or characters that can
either be letters, digits, or identifiers such
that the first character is not a digit. Because
MyVar consists solely of letters, it passes this
test and the token type is set to
TOKEN_TYPE_IDENT. Figure 12.3 provides a
graphical view of this lexing method.

As you can see, this method definitely works and is easy to understand. It’s not the most flexible
or compact method, however. As is hopefully clear, a number of loops are executed to fully
extract the lexeme, followed by a possibly huge number of comparisons to determine what the
lexeme’s token type is. A full-scale compiler will have to understand far too many token types to
hard-code them all directly into a brute force lexer.

The State Machine Approach

Fortunately, a far more elegant approach exists in the form of finite state machines, also known as
FSMs. A finite state machine can be described most simply as a basic loop, each iteration of which
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NOTE
Don’t forget, lexing (extracting the cur-
rent lexeme from the character stream)
and tokenization (determining the lex-
eme’s type) are two different processes.
However, due to their closely related
nature, they’re usually just lumped
together as “the lexer”. Unless otherwise
stated, I’ll always mean both lexical
analysis and tokenization when I refer to
the lexer’s role in the compiler.
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is in one of a finite number of states, and contains code that allows it to transition to other states
based on certain circumstances.

State machines are great because they’re written in such a generic manner that any number of
tokens can be processed by a single character-processing loop. At each iteration of the loop, a
new character is read from the input stream and used as criteria for a possible state transition. As
states transition from one to another, the loop slowly builds a stronger and stronger idea of what
the overall lexeme is. For example, the loop may start in the state STATE_INIT. If the first character
read from the stream is a letter, the loop may switch to STATE_IDENT, because it assumes it’s pro-
cessing an identifier. As long as letters, numbers, and underscores keep coming in, the state will
remain STATE_IDENT because each of these character types satisfies the rules of a valid definition. If
a dollar sign was suddenly read, however, the state machine would find that no rule exists that
allows that particular character to transition from STATE_IDENT to anything meaningful, so an
error would occur.

As you can imagine, state machines are very powerful and highly expandable. All you need to do
to introduce a whole new array of token types is just add more states and state transition rules.
This is a stark contrast to the brute force method, in which huge chunks of code must be added,
removed, or modified to achieve the same results. Figure 12.4 presents a state-diagram for a num-
ber lexing state machine.
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Parsing
The stream of tokens and lexemes generated by the lexer in the lexical analysis phase is fed
directly to the parser for the parsing phase. Parsing is the process of analyzing incoming tokens
and determining how they fit into the language. Parsing is quite possibly the most complex part
of a basic compiler, and there are numerous ways to go about doing it.

Regardless of how it’s done, however, the goal of the parser is to create what is known as a parse
tree, which is a hierarchical representation of the source code. For example, the parse tree for the
following line of code is displayed in Figure 12.5:

MyFunc ( X = Y, Z );

The actual creation of this tree, however, is usually the defining characteristic of a parsing method.
The most general way to categorize these methods is top-down parsing versus bottom-up parsing.

Top-Down Parsing
Top-down parsing can probably be considered the more intuitive of the two methods. It’s the
unofficial basis for the parsing strategy I chose during the development of the XASM assembler,
and is most often mentioned in reference to recursive descent parsing.

Recursive descent can best be explained with an example. Take the following line of code:

while ( X < Y * 2 )
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As humans, we know upon first glance that we’re dealing with a while loop. We know this because
the first word we saw on the line was the while keyword itself. If that keyword had been anything
else, we wouldn’t have come to the conclusion that we were looking at such a loop. Beyond this,
we know that the criteria of the loop is a Boolean expression. This could have been any number
of things—it could’ve been a simple constant reference, like while ( TRUE ) or it might’ve been a
single function call, like while ( MyFunc () ). But instead, we knew it was a Boolean expression
because we saw the variable X immediately followed by a binary operator. Based on this, we knew
it was an expression, and given the context of the while loop, we knew it was specifically a
Boolean expression.

Recursive descent parsing works in a similar manner, which right off the bat should help you
understand why it’s often considered one of the easier or more natural methods. A recursive
descent parser would first read the while token and come to the same conclusion we did, using
the neural parser in our brains—that a while loop is in the works. It would then unconditionally
expect an opening parenthesis, because they invariably follow the while token according to the
rules of the language. Once the token has been parsed, the parser knows an expression is coming.

Based on what I’ve explained so far, the “descent” part of the name should make some sense.
According to the parse tree diagram presented in Figure 12.6, you’ve moved progressively down-
ward from the top node of the tree. But where does the recursion come in?

Once the parser reaches the parenthesized expression, its while loop parsing logic will no longer
suffice. It will instead have to switch to another parsing mechanism, one geared towards parsing
expressions. The expression parser will then run until the expression is complete, at which point
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it will hit the closing parenthesis, which is back within the jurisdiction of the while loop parsing
logic. This is all very visual, so check out Figure 12.7.

As you may be starting to suspect, a recursive descent parser has a separate parsing mechanism
for every major language feature. For example, when a while token is read, the while loop parser
is activated. When the first token of what appears to be an expression is read, an expression pars-
er is activated. With all of these different mechanisms to deal with, it’d make sense to wrap them
all in functions, right? Then, when I read a while token, I make a call to ParseWhileLoop () and
forget about it. Once that function reaches the inside of the opening parenthesis, it’ll call
ParseExpression () and the process will continue.
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So, recursive descent parsing is heavily defined by its repetitious use of nested, and often times,
recursive function calls. For a specific example of recursion, consider the following expression:

X = 8 * ( 16 + Y ) / Z;

You have one overall expression, but there are definitely “sub-expressions” within it. 8 * ( 16 + Y
) / Z is a large expression, with smaller expressions like 16 + Y and 8 * ( 16 + Y ) within it.
Rather than attempting to write a single, convoluted expression parser to directly parse the previ-
ous statement, it’s easier and cleaner to write a very basic parser that calls itself repeatedly as each
sub-expression is encountered.

Recursive descent parsing suffers from the
main drawback of being inefficient. Parsing
even a simple expression or statement will
involve multiple nested function calls and pos-
sibly a considerable amount of recursion.
When this is applied to every line of code in a
large program, performance suffers and stack
space is threatened. Furthermore, because
each “parsing mechanism” resides in its own
function, recursive descent parsers are primari-
ly hard-coded and therefore more difficult to
modify than other, more flexible methods.

Regardless, it’s also quite easy to understand and much simpler to implement than some of the
alternatives. Because of this, the XtremeScript compiler will be built around a recursive descent
parser.

Bottom-Up Parsing
Bottom-up parsing is a significantly different approach, and one that requires a bit more thought
to grasp than its top-down counterpart. When working your way up from the bottom of the parse
tree to the top, you’re only seeing the tree’s terminal nodes. Because of this, you don’t get an
immediate big-picture view of things like you would with the recursive descent. So, instead of
using an initial token to predict what’s ahead and branching off to a specific parsing mechanism,
the parser must instead use inductive reasoning to piece together a progressively more refined
idea of what larger structure the tokens are attempting to describe. Figure 12.8 illustrates the
basic concept behind bottom-up parsing.

Despite the obvious increase in complexity, bottom-up parsing tends to be significantly more effi-
cient than top-down due to its reliance on a single compact loop that, rather than branching to
multiple functions to handle specific cases, refers to a large, procedurally-generated lookup table
that helps it detect patterns in the token stream. In this regard, the difference between top-down
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NOTE
Recursive descent parsers, unlike many
other types of parsers, can be written
by hand. In the case of parsers that are
too complex to be written manually,
special utilities are used that generate
the code for a parser based on a file
that specifies the rules of the lan-
guage.You’ll learn a little more about
these utilities later in the chapter.
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and bottom-up parsing is analogous to that of brute force and state machine based tokenization.
Both brute force tokenization and top-down parsing require the compiler to be written in a spe-
cific, nearly hard-coded fashion that gets a very specific job done with no fuss. State machine tok-
enizers and bottom-up parsers, on the other hand, are based around simplistic and generic loops
that can be easily altered to accept and produce completely different input and output. In fact,
bottom-up parsers are, more or less, simply state machines.

Semantic Analysis
At each phase in the compiler, you’ve seen the source code go from a raw stream of pure charac-
ter data to an almost fully understood script or program. The lexical analyzer made sure that the
character stream was in the form of valid lexemes, whereas the parser made sure that the lexeme
stream was in the form of valid syntax. Syntax checking is not enough, however, because beyond
the syntax of a language lies the more nebulous semantics of the language.

Semantics operate on code that has already proven its syntactical validity. For example, the follow-
ing line of code is perfectly correct according to the rules of C:

X = Y;

Or is it? What if X is a constant? In this case, the syntax of the expression is correct (because it’s
basically saying that this identifier is assigned that identifier), but the semantics of a constant
being assigned a value are nonsensical and invalid. This is an example of semantic analysis. Other
examples of semantic errors that would make it past the parsing phase unnoticed include identi-
fier re-declaration and using identifiers outside of their scope.
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I-Code
The result of the parsing and semantic
analysis phases is a version of the script’s
source code, represented entirely in I-code.
I-code stands for Intermediate Code, and is a
clean and structured way to store the script
internally without worrying about the
details of the source language. I-code is
very similar to assembly language or
machine code, because it’s based around a
set of fine-grained instructions that express
the logic of the original source code in a
much more compact and easily modifiable
form.

The key feature of I-code is that at least
theoretically, it is entirely unrelated to any spe-
cific source or target language. The I-code of Microsoft Visual Studio, for example, especially with
the emergence of the .NET runtime system, is entirely unrelated to C, C++, or a specific machine
code or assembly language. Intermediate code sits in between all of these languages, able to
freely translate to and from any of them. Figure 12.9 demonstrates this concept graphically.
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NOTE
The term “P-code” is often used instead of
I-code. P-code was the name for the byte-
code of an old virtual machine designed to
run Pascal programs, and in that regard,
was much like I-code in that it was a sim-
ple, instruction-based internal format for
representing Pascal programs. Despite the
fact that the term was initially only related
to Pascal, it eventually slipped into the gen-
eral compiler theory vernacular and is now
a common synonym for I-code.

Figure 12.9
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languages, and is

therefore independent

of them.

This will not entirely be the case with XtremeScript, however, because you really only need to
make room for one source language (XtremeScript) and one target language (XVM assembly).
Because of this, there will most likely end up being a strong similarity between the compiler’s I-
code instructions and the XVM’s instruction set. Regardless of how similar these particular lan-
guages are, however, it won’t change the fact that even XtremeScript I-code will be capable of
supporting a multitude of source and target languages.
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Single-Pass versus Multi-Pass Compilers
As initially explained in Chapter 9, compilers and assemblers can be categorized based on the
number of passes they make over the source code. A pass is defined as any complete scan of the
entire source code, regardless of what information it’s used to collect. Single-pass compilers are
capable of fully understanding and translating the entire source code script without backtracking,
whereas multi-pass compilers need to make at least two trips.

The difference between single- and multi-pass compilation isn’t entirely a matter of how the com-
piler is written, however. The deciding factors in how many passes are required to compile a pro-
gram are far more related to the design of the language itself. Take, for instance, C++ function
prototypes. Before using a function, it’s usually a good idea to precede all of your code with a
function prototype that defines it, like so:

void MyFunc ( int iX, int iY );

Now, regardless of where I am in the source, I can freely reference MyFunc () and be sure that the
compiler won’t be confused. This is because C++ is compiled in a single pass. In order to properly
parse function definitions and references without backtracking requires a list of prototypes that,
before any code is analyzed, make the compiler aware of all of the program’s functions.

C, on the other hand, doesn’t support function prototypes but is still compiled in a single pass.
This results in slight limitations on the coder in regards to what can and can’t be done when
making nested function calls. Take the following code, for example:

void Func0 ()
{

Func1 ();
}

void Func1 ()
{

Func0 ();
}

Here we have two function definitions, wherein each function calls the other. This will present a
problem for a single-pass compiler, because when parsing the definition of Func0 (), which calls
Func1 (), the compiler doesn’t yet know Func1 () exists. Because compilers are rarely designed to
give coders the benefit of the doubt, it will assume Func1 () is an invalid call and report a com-
pile-time error, as shown in Figure 12.10.

This problem could be resolved in the same way it was resolved in XASM; by simply making mul-
tiple passes over the script. If the first pass collects information about all of the script’s functions,
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future passes will have this information readily available in full no matter where they are, thereby
allowing Func0 () to call Func1 (). Once again, referring to an identifier before its declaration is
called a forward reference, and is very important in the context of functions.

Of course, especially in the case of particularly huge programs (which high-end compilers deal
with regularly), multiple passes over the source may be costly. For this reason, C++ compilers have
opted to go with function prototypes that precede all function references to save the compiler
from having to scan through the entire source file multiple times. In C++, the previous example
could be written like this:

void Func0 ();       // These prototypes let the compiler know
void Func1 ();       // that Func0 () and Func1 () exist no matter

// where it is in the source code.

void Func0 ()
{

Func1 ();
}

void Func1 ()
{

Func0 ();
}
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NOTE
I personally prefer multi-pass compiling, because
I’ve never liked the idea of function prototypes (or
other such cues and hints that are forced on the
coder). I would much rather my compiler take the
time to familiarize itself with my source code
automatically, rather than relying on me to enter
redundant information just so it can have more
information at arbitrary places in the source file
without backtracking.
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Target Code Emission
Implementing the last phase of a compiler requires a solid understanding of the target platform,
because it revolves around the translation of I-code to executable machine code or assembly lan-
guage. In either case, because the I-code is often such a simplified representation of the program,
considerable work is involved with this conversion. The 80x86, for example, has literally thousands
of opcodes, compared to the 33 of the XVM. Within this huge set of data, large groups of
opcodes are often dedicated to the machine-code equivalent of all of the different forms of a sin-
gle assembly-language instruction. The code emitter must fully understand all of these details in
order to generate a valid and efficient executable.

Fortunately for you, code emission will be among the easiest phases of the compiler. Because the
I-code will have an almost one-to-one mapping with XVM assembly language, this will be a trivial
matter of translating each I-code instruction to an XVM assembly instruction mnemonic.

The Front and Back Ends
Each of the phases of the compiler discussed so far is part of a larger whole, but you can further
classify them by introducing the concept of the front end and the back end. A compiler’s front
end consists of the lexical analyzer, parser, semantic analyzer, and I-code generator. The back end
consists of the target code emitter and other optional phases like optimization. The difference
between the two ends is simple; the front end’s goal
is to generate I-code based on the source file,
whereas the back end’s goal is to translate that I-
code to the compiler’s target language (either
executable machine code or assembly language).
Figure 12.11 illustrates this concept.

As you’ll see later in this chapter, grouping the
phases of the compiler into front and back ends
helps open the door to a number of possibilities,
such as optimization and retargeting. For 
now, however, you can merely think of them 
conceptually.
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Figure 12.11

The front and back

ends of a compiler.

NOTE
Because the front end is primarily
concerned with interpreting and val-
idating the source code, and the
back end is primarily concerned with
translating I-code into the target
language, the front and back ends
are often called the analysis phase
and synthesis phase, respectively.
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Compiler Compilers
Compilers are all over the place; they exist in huge numbers and have limitless applications in all
sorts of language and data translation fields. Because of this, it was inevitable that someone would
finally sit down and create a set of tools to help automate the process of creating a new compiler.
These tools usually consist of programs that can generate entire chunks of a compiler’s code
base, based on a specification or definition file of some sort that helps it understand how the
compiler should work and what sort of language it operates on. These types of utilities are known
as compiler compilers.

The two most popular examples of compiler compilers by far are the UNIX/Linux programs lex
and yacc. The first of these, lex, is used for generating FSM lexical analyzers based on an input
file that defines each of the lexemes and token types the lexer should understand. yacc stands for
Yet Another Compiler Compiler, and is similar to lex except that it generates entire shift/reduce
parsers based on a file that describes the syntax of the language. Check out Figure 12.12.

AN OVERVIEW OF COMPILER THEORY

Figure 12.12

Compiler compilers

generate large portions

of finished compilers

based simply on lan-

guage specification

files.

lex and yacc have been in heavy use for years, and have been ported to the Win32 platform under
the names Flex and Bison (yacc, Bison, get it?). These programs are infamous among compiler
writers and, when used properly, can fractionalize the development time of a compiler project.

How XtremeScript Works with XASM
Most compilers accept a source code file as their input and directly produce an executable as
their output. Although the XtremeScript compiler could certainly work that way (and, from the
perspective of the end user, will work that way), it’s actually only the first of a two-step process that
takes high-level code and turns it into an .XSE.
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Because XASM is such a high-level assembler, with built-in support for variables, arrays, and even
functions, it’d be silly not to leverage all that power. So, rather than directly produce a finished
.XSE, the XtremeScript compiler instead generates an ASCII-based .XASM file containing XVM
assembly code that will be automatically fed to XASM to get the final executable file. This allows
you to take advantage of the preexisting capabilities of the assembler, which means the compiler
will be much easier and faster to write. In essence, a large portion of the compiler’s general func-
tionality is already done. Figure 12.13 presents a graphical view of how XtremeScript and XASM
fit together.
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Figure 12.13

XtremeScript and XASM working together.

For example, XASM has its work cut out
for it when assembling variables. In addi-
tion to the obvious stuff like keeping
track of a variable’s scope, size, and so on,
it’s also in charge of building its func-
tion’s stack frame and assigning it a rela-
tive stack index. The XtremeScript com-
piler, however, will simply be able to gen-
erate the proper Var variable declaration
and be done with it.

The same goes for functions. Because
XASM already has direct support for
functions with its Func directive,
XtremeScript can literally translate its
own functions directly to XASM functions
using Func and Param.

In a nutshell, XASM will do anywhere from 30-50 percent of the job when compiling high-level
scripts. XtremeScript will undoubtedly be a complex piece of software, but taking advantage of
the preexisting XASM code base will make things a lot easier.

NOTE
Don’t get the wrong idea—the
XtremeScript compiler will still be a true
compiler, of course. Many already existing
compilers have opted to generat ASCII-
based assembly language files rather than
straight machine code, so you aren’t alone in
this decision. Furthermore, everything
you’ve learned through the development of
XASM will be directly applicable to a higher-
level compiler, so if you’d like to rewrite
XtremeScript to directly produce .XSEs, you
should be more than capable of doing so.
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Advanced Compiler Theory Topics
You should understand how the basics work, at least conceptually, and what specific topics will
apply most significantly to the XtremeScript compiler and how. But compiler theory is a huge
subject—one that I couldn’t hope to do justice in the context of a book like this, so don’t forget
that even at their most complex, the things you’ve learned so far and the things you’ll learn in
the following pages are only scratching the surface.

If you’re anything like me, though, you’d still at least like to learn a thing or two about these
alleged “advanced subjects”. After all, you’ll need to know where to go if you choose to continue
your studies in the field after this book, right? So, before I get back to the matters at hand, let’s
take a brief detour and learn about some of the more advanced topics and issues that compiler
writers deal with. I always encourage further study, and you may very well find that some of these
issues can be productively applied to your own scripting system.

Optimization
Game programmers rarely agree, but perhaps the strongest thread that binds and unites them is
the never-ending quest for more speed. Games are among the most performance-critical forms of
software in existence, which means too much speed is never enough. Scripting, unfortunately,
introduces a number of bottlenecks due to its high-level, virtual nature. Because of this, the script
code should be as tight as possible to help minimize its overall impact on frame rates.

However, as deeply as programmers
may be wrapped up in the idea of
being able to write scripts in a C-style
language, they can’t forget that high-
level code brings with it an inherent
overhead because compilers tend to
produce more code than is technical-
ly necessary when producing a high-
level script’s low-level equivalent.
Because of this, a script that may have
been slow in pure XVM assembly will
be even slower when written in
XtremeScript and compiled down.
After all, a compiler has a very hard
time looking at the “big picture” of a
script, which is something humans
tend to take for granted. With such a
narrow focus, it’s hard for a compiler

AN OVERVIEW OF COMPILER THEORY

TIP
Even though XtremeScript will not be an opti-
mizing compiler, there is still one way to enjoy
the benefits of high-level coding while retaining
the ability to tighten up certain portions of the
code. Because XtremeScript directly outputs
XVM assembly, you’re always free to stop the
compiler from automatically passing it to
XASM, and tighten up any blatantly un-opti-
mized code yourself. Once it’s been assembled,
the script engine won’t know the difference and
you won’t have to bother with it again. Of
course, because any future changes to the high-
level source would overwrite your low-level opti-
mizations, be sure to make such changes only
when you’re sure the high-level code is done.
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to notice the large-scale patterns and relationships that ultimately lead to the optimizations that
you might notice at first glance alone.

Of course, real compilers like Microsoft Visual C++ have been in a constant state of evolution, the
brunt of which has been focused specifically on optimizing the code they generate. Scores of
math-heavy algorithms and techniques have spilled out of colleges and R&D labs over the last few
decades, all aimed at helping compilers understand when and how the code they generate can
be reworked and tightened to achieve higher performance and lower overhead. These days, the
state of the art has reached a point where cutting edge compilers often produce code that nearly
rivals hand-written assembly. Unfortunately, significant optimizations tend to be extremely com-
plex to implement, often to the point of dwarfing the rest of the compiler.

Optimization is usually implemented in the back end, after the I-code has been generated but
before the final target code is emitted. Back-end optimizations can be one of two classifications:
what I call “logic optimizations”, and target machine optimizations. Logic optimizations are inde-
pendent of the final platform for which the code will be generated, whether it’s the XVM or an
80x86. These optimizations focus primarily on rewriting portions of the I-code to perform the
same task faster or in a smaller space. Target machine optimizations are highly platform-inde-
pendent, however, and take advantage of the specific characteristics of the target environment to
determine where optimizations can be applied. For example, if a script written for the XVM was
recompiled for the 80x86, an optimizing back end
might realize that many of the memory references
that are acceptable on the XVM could be replaced by
the 80x86’s high-speed registers.

As an example of a logic optimization, consider the
following code:

X = 20;
Y = ( X - 2 ) * 4 + ( X - 2 ) * 8;

If this code were translated to assembly as-is, the X -
2 sub-expression would be evaluated twice, even
though its value doesn’t change from one instance to
the next. An optimizing compiler would notice this
and possibly save the value of X - 2 once in a tempo-
rary variable or register before evaluating the larger
expression.

12. COMPILER THEORY OVERVIEW

TIP
It’s also worth noting that even
when XtremeScript is done, it’s
not like you’ll have to write every
script you ever use with it.You’ll
always be free to bounce
between XtremeScript and
XASM, writing high- and low-
level scripts when appropriate.
Many small, constantly executing
background scripts might work
out better when written directly
in assembly, whereas larger, sin-
gle-use scripts can stay in
XtremeScript.
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Preprocessing
Anyone who’s used a C compiler before will be familiar with the concept of preprocessing. A pre-
processor is a special layer of software that sits between the source code and the lexical analyzer,
adding an additional early phase to the compilation process. The preprocessor filters and trans-
forms the incoming source code according to special directives written directly into the code itself
by the users. These directives tell the preprocessor to perform specific tasks and help create an
enhanced, clarified version of the source code just before the compiler itself sees it.

Preprocessing, whose name literally means “processing that occurs before compilation,” is gener-
ally most useful for allowing the user and the compiler to see the source code in two different
ways. As an example of this, let’s look at two of the most useful functions of a preprocessor—file
inclusion and macro expansion. Figure 12.14 demonstrates the role of the preprocessor in the
compilation process.
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Figure 12.14

The preprocessor’s role

in the compilation

process.

File Inclusion
File inclusion directives allow the user to write code in multiple files for the purpose of physically
separating various components of the source, which are collapsed to a single file just before
being fed to the compiler. For example, let’s look at three different files, each of which contain 
C code:

file0.c

void Func0 ()
{

printf ( "This is function zero." );
}
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file1.c

void Func1 ()
{

printf ( "This is function one." );
}

file2.c

#include "file0.c"
#include "file1.c"

void Func2 ()
{

printf ( "This is function two." );
}

main ()
{

Func0 ();
Func1 ();
Func2 ();

return 0;
}

Without the help of the preprocessor and its #include directive, file2.c would not compile. Even
if the functions Func0 () and Func1 () were defined in their respective files, the compiler would-
n’t have any idea they existed and would consider the calls to them invalid. In addition, the
#include lines themselves would cause an error simply because the compiler wouldn’t understand
what #include is. With file inclusion, however, the contents of file0.c and file1.c are merged
into file2.c in the preprocessing phase, replacing the directives that referenced them. The com-
piler ultimately ends up seeing the following, without ever knowing more than one file was
involved:

void Func0 ()
{

printf ( "This is function zero." );
}

12. COMPILER THEORY OVERVIEW
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void Func1 ()
{

printf ( "This is function one." );
}

void Func2 ()
{

printf ( "This is function two." );
}

main ()
{

Func0 ();
Func1 ();
Func2 ();

return 0;
}

Check out Figure 12.15 to see a more visual take on this process. Because the #include lines were
physically replaced with the contents of the files they specified, the compiler never knew they
were there. This is a good thing, because the compiler doesn’t even necessarily know the pre-
processor exists and certainly wouldn’t understand its directives.

Using file inclusion directives allows you to logically group your functions and variables in sepa-
rate files, and even build libraries of reusable code. Ultimately, even game scripting projects will
benefit greatly from the ability of one source file to reference another when the project’s com-
plexity reaches a certain point.

AN OVERVIEW OF COMPILER THEORY

Figure 12.15

File inclusion enables

the user and compiler

to see two different

versions of the source.
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Macro Expansion
Macros are another popular feature of the C preprocessor, and are a great way to define symbolic
constants or encapsulate logic without using a function.

Macros in C are defined with the #define statement, which simply replaces all instances of the
macro’s name with its value. For instance, consider the following constants, each of which are
defined with macros:

#define X 32
#define Y 8192
#define Z 32768

In this example, the macro names are X, Y, and Z, whereas the values are 32, 8192, and 32768.
Consider these constants in a simple expression:

int MyVal = X + ( Y * Z );

If the compiler were to attempt to process this, it’d recognize MyVal as a valid identifier but con-
sider X, Y, and Z to be undeclared and report an error. Fortunately, the preprocessor expands each
macro by replacing the name with its value, which means the compiler will end up seeing this:

int MyVal = 32 + ( 8192 * 32768 );

which the compiler will of course consider perfectly acceptable. The beauty of macros, however,
is that there’s no space or performance issue associated with their use whatsoever. There’s no
need to allocate space for macros on the stack, because they’re used directly in the source as liter-
al values. For this same reason, they’re even faster than using variables or traditional constants,
because the runtime environment doesn’t have to look up their values at runtime. Despite this,
however, the programmer still gets the advantages of dealing with a symbolic constant instead of
a raw value.

The important point to realize about macros is that they aren’t restricted by the same limitations
as a constant defined with the compiler. For example, using the C++ keyword const, you can cre-
ate the same constants created in the previous example, with the added benefit of strong type
checking:

const int X = 32;
const int Y = 8129;
const int Z = 32768;

#define, however, can be used for quite a bit more than just single values. For example, imagine
the following:

#define string char *

12. COMPILER THEORY OVERVIEW
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The previous line of code associates char * with the name String, so you could declare a string-
returning function like this:

string MyFunc ();

The preprocessor will automatically expand this out to the following before the compiler gets its
hands on it:

char * MyFunc ();

Notice that here, the macro name was replaced with an entire string of text, containing spaces
and everything. #define is not simply limited to numeric values.

Once again, the common thread is that macros let the user see the source in one form, which is
often more convenient or easier to work with, whereas the compiler sees it in a different form.

Parameterized Macros

In addition to simply defining symbolic constants and arbitrary strings, another form of macros,
known as parameterized macros, can accept parameters and actually “behave” differently based on
their values. For example, imagine the following macro:

#define Square( X ) X * X

What this macro is saying is that Square is replaced with X * X, such that X is replaced with whatev-
er the user provides. For example, the following line of code:

int Expr = Square ( 4 ) + Square ( 8 );

would be expanded by the preprocessor to:

int Expr = 4 * 4 + 8 * 8;

Square is an example of using a macro to
encapsulate an entire expression, making
the code easier to read and more flexible.
And with the capability to pass parameters to
take the place of variables within the expres-
sion, parameterized macros are almost as ver-
satile as actual functions. Unlike functions,
however, a call is never made, a stack frame
is never produced, and the flow of execution
never changes at runtime. It’s all resolved at
compile-time, meaning there’s literally zero
speed overhead when using a macro instead
of a hard-coded expression. From the com-
piler’s perspective, it is hard-coded.

AN OVERVIEW OF COMPILER THEORY

NOTE
Remember, hard coding is only bad
when it’s performed manually by a
human. If a preprocessor translates a
source file containing directives into
another version that appears as if it
were hard-coded to the compiler, it has
no negative effect on the coder and is
therefore acceptable. In other words,
hard-coding is fine as long as it’s trans-
parent from the coder’s perspective.
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Retargeting
You learned earlier that a compiler can be split into two distinct halves: the front end and the back
end. The front end is in charge of turning the source language into I-code, whereas the back end
is in charge of translating that I-code to a specific assembly language like XVM assembly. What
you may notice here, however, is that the front and back ends work almost entirely independently
of each other, as shown in Figure 12.16. Think back to the discussion of integration and abstrac-
tion layers in Chapter 6. It’s the same idea.
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Figure 12.16

The front and back

ends are entirely oblivi-

ous to each other’s

actions, thanks to the

intermediate I-code

layer.

The back end, for example, doesn’t care or even know where the I-code it’s working with came
from. The original source language may have been XtremeScript, C, Pascal, Sanskrit, or whatever,
but as long as it’s reduced to valid I-code, the back end won’t know the difference or have any
reason to care. This means that the source language of the compiler can change without affect-
ing the back end. If you suddenly decide that you’d rather implement Pascal in your scripting sys-
tem instead of XtremeScript, the back end would never have to know the difference. Or, you may
just want to open up the possibility of using both languages. You could leverage the common
back end to make the construction of the second compiler much easier.

The same goes for the front end. Once the source code
has been compiled down to I-code, the front end does-
n’t care what the back end does with it. It may translate
it to XVM assembly, or even directly covert it to XVM
bytecode. It’d even be possible to go as far as writing a
back end that takes XtremeScript I-code and translates it
to 80x86 machine code, allowing your scripts to run
directly on the hardware. No matter what it does, the
front end never has to change to accommodate it. This
means that one front end can be used with multiple
back ends, a process known as retargeting (because the
target platform of the compiler can be changed or
swapped).

NOTE
Many compilers are designed
specifically for the purpose of
retargeting.Writers of such
compilers can then focus all
their attention on the front
end and logic optimization,
leaving the details of the back
end and target code genera-
tion up to specific users.
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Retargeting has become a ubiquitous practice with the emergence of so many new platforms.
Specifically in the case of console gaming, C and C++ compilers are needed for multitudes of
hardware, ranging from the Gameboy Advance to the Playstation II, to the Xbox. Many of the
compilers used to write code for these systems are simply retargeted versions of typical 80x86
compilers. Check out Figure 12.17.
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Figure 12.17

Source and target code
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like to call it.

Linking, Loading, and Relocatable Code
The XVM makes it pretty easy to load and execute scripts because each thread is given a separate
address space. This means that no matter how many scripts are loaded at once, they all start from
instruction zero. The same goes for stack indexes; globals always start at the bottom of the stack
and work upward, with the stack frames of the script’s functions being piled directly on top.

In the real world, things aren’t often so pretty. Even though a Windows application is fully capa-
ble of multithreading, for example, each thread is loaded into the same overall address space,
which means that only the first thread will have the luxury of beginning at index zero. If that
thread’s code consists of 1297 instructions, it’ll occupy indexes 0 through 1296 of the code seg-
ment, which means that the second thread will start at index 1297 and move outward from there,
as Figure 12.18 demonstrates.

This may not seem like a huge deal, but think about how jump instructions operate; at assemble-
time, their labels are replaced with raw numeric indexes into the instruction stream, like Jmp
3482, for example. Because these indexes are calculated relative to zero, this means that in a
shared address space, only the first thread would function properly. All other threads would inad-
vertently reference different blocks of code and end up making misguided jumps that would lead
to an inevitable crash very quickly.

This problem is solved with what is known as relocatable machine code. When code is loaded into
memory, the loader makes changes to the machine code on the fly to allow it to run properly rel-
ative to its base address. The base address is wherever the code is loaded from; in the case of the
example mentioned previously, the first thread’s base address was 0, whereas the second thread’s
was 1297.
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Imagine that the second thread contained three jumps, to addresses 22, 481, and 1906. Because
these addresses are relative to a base address of zero, which the second thread doesn’t have, the
real base address will need to be added to each jump target address so that the jumps will once
again point to the proper instructions. The new jump targets will therefore be 22 + 1297 = 1319,
481 + 1297 = 1778, and 1906 + 1297 = 3203.

Issues like relocation are handled by two pieces of software—the linker and the loader. The linker
operates just after the compiler, and is used to translate the compiler’s output (usually a machine
code format called object code) to a ready-to-run executable. The loader is usually part of the oper-
ating system or runtime environment and is in charge of reading the executable’s contents from
the disk and properly placing it in memory, taking relocatable addresses into account.
Fortunately for you, object code, linking, and relocation aren’t among your concerns. They are
helpful concepts to understand, however, and play a major role in other applications of compiler
theory. Figure 12.19 illustrates this.

Targeting Hardware Architectures
Once the virtual compiler is done, you can really up the ante by attempting to retarget it for a
hardware platform like the 80x86. Advantages of this might be to directly output .DLLs instead of
.XSEs, allowing compiled scripts to run at hardware-level speeds while still being written in a sim-
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Figure 12.18
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plistic and custom-designed language like XtremeScript. The script editor for Quake 3, for exam-
ple, is capable of producing both hardware machine code DLLs and virtual machine-compatible
executable scripts.

Targeting a hardware platform is hardly a trivial matter, however. The virtual machine in this
book is designed with the utmost of simplicity and ease of use in mind; chief among examples of
this design strategy is its typeless nature. Platforms like the 80x86, however, are strongly typed;
many members of this particular family only deal directly with integer data. Strings must be man-
ually managed by the programmer, and floating-point numbers can only be manipulated by
accessing special external hardware like the 80X87 family of FPUs. To make matters worse, the
issue of relocation will rear its ugly head, as well as the countless other complications of running
code on real hardware. Memory protection, I/O permissions, precompiled runtime libraries—
the list goes on and on.

Regardless of the complexity, however, there’s a definite advantage to be had if you can pull it off.
Dynamically loading compiled script code at runtime allows the programmer to maintain the
same flexibility and ease of use scripting systems like XtremeScript are known for, but without the
huge speed overhead associated with code running in a virtual machine.

AN OVERVIEW OF COMPILER THEORY

Figure 12.19
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memory.
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SUMMARY
If anything, this chapter has served as a much-deserved break after pressing through the work-
load of Chapters 9 through 11. Unfortunately, it’s more like the calm before the storm, however,
because there won’t be a moment’s rest in the upcoming chapters. Now that you can talk the talk
of compiler writers, it’s time to see whether you can handle the reality of translating high-level
code to assembly language. Remember, this is what it’s all been leading up to—you’re finally in
the home stretch.

Starting in the next chapter, you’re actually going to start writing the XtremeScript compiler.
When it’s complete, the XtremeScript system will be finished, and you’ll have everything you
need for custom game scripting. This chapter has introduced you to almost everything you’ll
learn in order to do it, so you should have a good idea of what lies ahead. You’ve made it this far,
so hold that chin up and keep moving!

12. COMPILER THEORY OVERVIEW
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“I’m a geneticist—I write code. 
A, G, T, P, in different combinations.”

——Burchenal, Red Planet

CHAPTER 13
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After all the build-up and preparation, it’s time to really get your hands dirty by building
the first major component of the XtremeScript compiler—the lexical analyzer. As you

learned in Chapter 9, the lexer is one of the most pivotal phases of a compiler’s pipeline; despite
it’s semi-trivial implementation, it provides one of the most straightforward and effective ways to
break down and analyze human-readable source, by converting a raw stream of characters into
two, far more structured streams of lexemes and tokens, as shown in Figure 13.1.

13. LEXICAL ANALYSIS

Figure 13.1

A raw character

stream being convert-

ed to a stream of 

lexemes.

As I said, lexical analyzers are definitely among the easier components of a compiler to build.
They only require a basic knowledge of string processing, and once your lexer can identify only a
handful of major token types, you’re capable of understanding a huge portion of the code out
there. Lexing also provides the very foundation for parsing (the subject of the next chapter), the
phase in which a basic compiler does most of its work to ascertain the meaning of the incoming
source code.

So without further ado, let’s get started. This chapter will be a reasonably simple and straightfor-
ward one, but will be highly productive in your quest to compile high-level code. It will cover:

■ The basics of lexical analysis and the many ways in which it can be approached.
■ The construction of a basic, state machine-based lexer capable of lexing integer and

floating-point values.
■ A second lexer that builds on the first by adding support for identifiers and reserved words.
■ A third, complete lexer that understands the full XtremeScript language syntax by

adding support for operators, delimiter characters and string literals.

By the end of this chapter, you’ll have a finished lexical analyzer, and the XtremeScript compiler
will already be partially complete. So let’s get started!
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THE BASICS
You’ve already learned about the theory and concepts behind lexical analysis fairly thoroughly (in
Chapters 9 and 12). The construction of the XASM assembler in Chapter 9 required a structured
and robust lexical analyzer, so you should already have a reasonable grasp of what’s going on
here. For the sake of completeness, however, and to make these chapters a bit more self-con-
tained, I’m going to gloss over it all, very quickly, one last time.

From Characters to Lexemes
Lexical analysis is all about the conversion of a stream of raw character data, which a script’s
source code is initially presented as, into a more structured format. The first step in this process is
isolating patterns in this character data that represent larger, more coarsely-grained structures
known as lexemes. Lexemes are to characters like words are to letters, and by isolating them, the
lexical analyzer has created a more coarse-grained, easy-to-use data set. For example, consider the
following stream of characters:

if ( GetPlayerLocation ( X, Y ) == CASTLE_DRAWBRIDGE )

As humans, we can easily read it and identify its language and format (a C-style script fragment),
as well as its meaning (a test to see whether the player is standing in front of a castle). To a com-
piler, however, it’s just a meaningless string of characters. The reason we can read it, however,
stems from our ability to break it up into logical groups and patterns. We know that the spaces,
commas, and parentheses are there to help separate entities, and that certain character
sequences can be combined to form reserved words, identifiers, and operators. Armed with this
information, it’s considerably easier to determine what’s going on. Fortunately, this is exactly what
a lexer’s job is. After making a pass over the source code, it’ll output this:

IF
(
GETPLAYERLOCATION
(
X
,
Y
)
==
CASTLE_DRAWBRIDGE
)

THE BASICS
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In one fell swoop, it’s isolated the statement’s major components and separated them so they can
be parsed sequentially. It’s also done a bit of clean-up by discarding whitespace and converting
everything to uppercase. If you can imagine reading a book one character at a time, perhaps by
having a friend look at the pages and verbally tell you each character individually, you can imag-
ine how hard it’d be to detect words, sentences, and inflection on the fly. Without the help of the
lexer, this is what a compiler would have to do. With the lexer, however, the compiler can look at
the source code in (almost) the same way you could if you had the book right in front of you and
could read it like you normally would. Check out Figure 13.2.
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Figure 13.2
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NOTE
I’ve been using the terms fine-grained and course-grained fairly often
throughout this book. In case you aren’t familiar with what I mean,
think of it like this—a fine-grained stream of data is like sand; it’s com-
posed of hundreds, thousands, or millions of very tiny pieces that
have no direct relationship to one another. Like a handful of sand, a
stream of characters is hard to sift through because it doesn’t con-
tain any big, easily usable chunks. Now imagine that sand being
densely packed together to form pebbles; the material has now gone
from being fine to slightly coarser, which is why I call it coarse-
grained.The pebbles are analogous to lexemes; small groups of the
sand particles are lumped together, resulting in a smaller overall set
of larger individual parts. If these pebbles were further mashed
together to form larger rocks, the overall size of the set would
decrease even more, whereas the size of its constituents would
increase proportionally.At this point, the set is becoming even more
coarsely grained, like lexemes being grouped into statements, blocks,
and functions.As you can imagine, coarse data sets are usually easier
to work with than fine-grained ones because they’re simpler and
more self-evident.
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Tokenization
Of course, even with the character stream grouped into lexemes, there’s still a lot the compiler
has to do in order to determine what each word means. At the very least, it’ll have to constantly
perform string comparisons with strcpy () to determine the difference between 3.14159, IF, and
+=. It’d be nice if the lexer would not only produce the lexemes, but also perform its own inter-
nal analysis to determine what exactly the lexemes are. This is handled in an additional phase
called tokenization.

The tokenizer aspect of a lexical analyzer is responsible for determining exactly what type of char-
acter sequence was extracted from the source code. The result of this analysis is a piece of infor-
mation known as a token, which is basically a simple code that refers to a specific type of lexeme.
This way, the rest of the compiler not only has a well-defined stream of lexemes, it also has a
stream of tokens that can be used to more clearly identify those lexemes’ types.

As I mentioned in Chapter 9, lexical analysis and tokenization are lumped together into a single
phase. In the XASM implementation, however, they still occurred serially; the lexer would first
find the next lexeme by reading all characters until a proper delimiter was reached (like a
comma or whitespace). The tokenizer would then perform a number of comparisons and other
forms of analysis to determine exactly what the lexer found. Of course, this is all how it was done
using the “brute force” method; as I mentioned, there are more sophisticated ways to lexically
analyze input, and as you’ll see later in this chapter, this solution generally performs tokenization
and lexical analysis in parallel. In fact, the XtremeScript lexer will actually have to perform these
two tasks simultaneously to complete its job.

Lexing Methods
Generally speaking, there are two ways to classify lex-
ical analyzers—those that are written by hand and
those that are generated using a utility of some sort.
In the former case, the compiler writer manually
codes the functionality of the lexer and tokenizer
and uses any method. In the latter case, the compil-
er writer prepares a file describing the different lex-
emes and tokens that the source language uses
(most commonly through a series of regular expres-
sions to literally define the character sequences in
which they’ll appear), which the utility uses to out-
put actual C or C++ code implementing the lexer
that users can copy and paste into the compiler’s

THE BASICS

NOTE
In case you aren’t familiar, regular
expressions are a way to describe
intricate character sequences
and patterns for use in heavy
string processing.They’re com-
monly used to describe the exact
forms in which lexemes will
appear in the source file, and are
commonly used by lexical analyz-
er generators.
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framework (see Figure 13.3). Examples of such utilities are lex, a common UNIX and Linux utili-
ty, and Flex, lex’s Win32 port.

Lexer Generation Utilities
I won’t be covering the use of programs like lex and Flex to generate lexers; they’re invaluable
when creating real-world compilers, but they obviously don’t shed much light on a lexer’s inner
workings. From the perspective of a book, it makes more sense to do things by hand and learn
what’s actually going on than to have something do it for you. You’ll still probably opt to go with
a lexer generating utility in your future projects, but you’ll do so with far more insight and under-
standing as to what’s going on under the hood.

Hand-Written Lexers
Hand-written lexers are still commonly used in small projects where minimal language translation
must be performed. Of course, there’s no law telling you that you can’t manually write the lexer
for a full-scale compiler, and because you’ll learn so much more that way, that’s what you’re going
to do in this book.

Overall, compiler theory is a strongly refined, highly structured field with countless time honored
practices. Ironically, however, with the immense proliferation of lexer-generating utilities, hand-
written lexical analyzers have been more or less left behind, giving you free reign to approach
them in any way you see fit. Of course, this doesn’t mean you can’t take a few cues from lexer
generators, and in fact, you’ll use their approach as the basis for your own. You’ll still have the
luxury, however, of simplifying things here and there and taking a somewhat unorthodox
approach to certain aspects for the sake of keeping things simple.

Let’s start by discussing some of the ways in which a hand-written lexer can be written.

13. LEXICAL ANALYSIS
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Brute Force
The lexer you built for the XASM assembler in Chapter 9 was what I like to call a brute-force
lexer. It got the job done in a simple and straightforward manner by grouping every character in
the stream up to the next delimiter or instance of whitespace into a lexeme, and then performed
some basic string analysis to determine exactly what it was. The advantage to this approach is that
once you understand what’s going on, the code is very readable and completely serial, as shown
in Figure 13.4. Major events happen in a strongly defined sequence, making it easy to follow.
Here are the specific steps that were followed:

■ The next lexeme was extracted by reading all characters up until the next delimiter (like
a comma or brace) or instance of whitespace. This substring of the character stream was
considered the lexeme.

■ The lexeme was physically copied, character-by-character, into a separate string buffer for
further analysis.

■ The isolated lexeme string was processed in a number of ways to determine exactly what
it contained: an integer, a floating-point value, an instruction, or whatever.

■ The token was returned to the caller, whereas the lexeme string itself was available via a
separate function that could be called afterwards.

THE BASICS

Figure 13.4

The major steps of the

XASM lexer occurred

serially.

This approach served you well by being simple, accessible, and clean enough to get the job done
without resulting in spaghetti code or instability. Of course, there are other ways to go about it,
most of which offer more structure and/or flexibility.

Semi-State Machines
I’ve seen this next class of hand-written state machines in a number of books involving compiler
theory or related subjects. In these cases, the approach is closer to a state machine than the all-
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out brute force approach, but still not completely there. For this reason, I call them “semi-state
machine” lexical analyzers.

The basic idea is to start by reading the first character from the next lexeme. Based on this initial
character, a number of paths can be taken; if a digit or radix point is detected, a numeric token is
probably being read. If a letter or underscore is detected, it’s probably an identifier. If it’s a delim-
iter or operator character, it’s probably a delimiter or operator. In short, these lexers work by writ-
ing specialized functions or local blocks of code (usually organized in a switch block) for han-
dling each token type.

Once the initial character is identified, a specific block of code can be invoked for reading the
rest of the lexeme, because the lexer already has a good idea of what to expect. This is roughly
the opposite of the XASM lexer’s approach, which reads the lexeme first and tries to identify it
afterwards. Because of a semi-state machine lexer’s initial comparison, it has to perform minimal
analysis only after extracting the lexeme, if then, because it usually knows what it’s getting before-
hand. Figure 13.5 demonstrates how this works.
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Figure 13.5

The “semi-state

machine” approach to

lexing.

Overall, this is certainly a clean and simple way to approach lexical analysis. It works in a straight-
forward manner, and gets the job done in a more compact manner by coupling lexeme extrac-
tion with token identification. It shares some of the behavior of a state machine by using an ini-
tial condition (the value of the first character) to alter its behavior later. This is similar to how a
pure state machine lexer gets started. However, once inside a specific lexeme-extraction function,
there generally isn’t a whole lot of leeway to switch from one token type to another. This is where
true state machines come in.
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State Machines
State machines work on a simple principal—perform a task only once at each iteration of a loop,
but do it differently depending on the situation. State machines can be applied effectively to
string processing, because strings have to be iteratively analyzed—in other words, they must be
dealt with on a sequential character-by-character basis. During this iteration, however, the capabil-
ity to suddenly switch gears depending on the value of each newly read character allows the string
processor to flexibly handle a wide range of input.

The layout of a state machine-based lexer is pretty simple; the entire thing takes place in one
large loop, rather than a number of sequential loops like a brute force lexer. By the time this sin-
gle loop is done iterating, the lexer has been completely isolated and the token has been identi-
fied. Programs like lex and Flex generate state machine-based lexers.

So how does a single loop do so much without being a huge, bulky mess? By alternating between
a set of strongly defined states. Each iteration of the loop does three major things—reads in the
next character, transitions to the next state if necessary, and performs whatever action the active
state demands. This simple three-step process is enough to handle the entire set of lexemes and
tokens of a high-level language. See Figure 13.6.

For example, when the lexer begins, it’s in the “start state”. The first character is read, and the
loop determines whether the character’s value is a sign to switch to another state. In the case of
the start state, it almost always is. Let’s say the initial character is 8. The lexer immediately switch-
es to the integer state, assuming that the character is the first digit in an integer numeric value.

THE BASICS

Figure 13.6

The basics of a state

machine.
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As the loop progresses, more and more characters are read in. Each time, their values are used to
make a possible state transition. However, as long as digits are read in, the integer state is main-
tained. Furthermore, each newly read character is added to the end of an accumulating lexeme
buffer. Finally, a character is read. This invokes another state transition—the loop now considers
the lexeme a floating-point value. The remaining characters are digits, and as each is read in, it’s
added to the growing lexeme string. Furthermore, because all of them are valid digits, they don’t
disrupt the state—it remains a floating-point value in the eyes of the lexer. Figure 13.7 depicts a
basic numeric lexer’s state machine.
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Figure 13.7

A numeric lexer’s state

machine.

When this loop completes, the lexeme buffer will contain the completed floating-point value, and
the lexer’s floating-point state will be equivalent to the token type. The beauty of this approach is
that everything is done implicitly and in parallel. The tokenization aspect of the lexer’s job is
implemented via states and their transitions among one another. The lexeme extraction is done
by adding each character as it’s read to a growing string buffer. By the time the loop is done,
everything is finished.

This chapter focuses on the construction of a state machine-based lexical analyzer for the
XtremeScript compiler. You’ll see how states and state transitions can be used to manage the for-
midable complexity of high-level code, and you’ll finish with a complete lexer module that’s
almost totally ready to be dropped into the compiler framework you’ll complete in the following
chapters.



793

THE LEXER’S FRAMEWORK
You’re going to begin by setting up a basic framework within which you can build the lexer.
Specifically, you need a way to:

■ Read a text file from the hard drive, line by line.
■ Store the contents of the text file in a single, contiguous region of memory for easy 

processing.
■ Display the output of the lexer’s processing—both the current lexeme and token.

By getting this out of the way first, you can focus solely on the lexer’s core logic for the rest of the
chapter.

Specifically, the following lexical analyzers will be implemented as console application demos that
load a text file and attempt to lex it. Each lexeme and token found in the file will be printed in a
vertical list. The finished lexer will be capable of listing the lexemes and tokens for an entire
XtremeScript source file.

Reading and Storing the Text File
Unlike XASM, a free-form, high-level language like XtremeScript is almost entirely unconcerned
with line breaks, and considers them just another form of whitespace. Because of this, the lexer
will accept its input as a single, null-terminated string. This way, from the first line of code to the
last, the lexer can steadily read characters until it hits the null terminator that marks the end of
the file.

The demo’s main () function will start by reading a single command-line argument that specifies
which file should be loaded. If a file isn’t specified, usage info is printed and the program exits.
Otherwise, the file is opened for binary input (you’ll see why in a moment):

main ( int argc, char * argv [] )
{

// Print the logo
printf ( "Lexical Analyzer Demo\n" );
printf ( "\n" );

// Validate the command line argument count
if ( argc < 2 )
{

// If at least one filename isn't present, print
// the usage info and exit

THE LEXER’S FRAMEWORK
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printf ( "Usage:\tLEXER Source.TXT\n" );
return 0;

}

// Create a file pointer for the script
FILE * pSourceFile;

// Open the script and print an error if it's not found
if ( ! ( pSourceFile = fopen ( argv [ 1 ], "rb" ) ) )
{

printf ( "File I/O error.\n" );
return 0;

}

With the file open in binary mode, you can use the fseek () command to determine its exact size
and allocate a buffer accordingly. Remember, you’re no longer concerned with individual source
lines. In most free-form, C-style languages, the entire program can be thought of as one big char-
acter stream, and ultimately one contiguous stream of lexemes and tokens.

fseek ( pSourceFile, 0, SEEK_END );
int iSourceSize = ftell ( pSourceFile );
fseek ( pSourceFile, 0, SEEK_SET );
g_pstrSource = ( char * ) malloc ( iSourceSize + 1 );

g_pstrSource is a global string buffer containing the source file. Here’s its declaration:

char * g_pstrSource;

You now have a character buffer large enough to hold the entire source file, so you’re ready to
read it in. There is one issue to note, however, and that’s the highly system-dependent nature of
line break codes within a text file. On a Windows or MS-DOS system, a newline is represented
with a two-character sequence—the character values 13 and 10. On a UNIX system, on the other
hand, it’s simply represented by a single byte of the value 10. Other systems have even more exot-
ic methods of marking the end of a line.

The upshot is that the compiler should store the source file in a platform-neutral format, so any
unorthodox newline issues can be taken care of as the file is loaded. By converting the native
platform’s format to a consistent, neutral format, you can eliminate this issue early on. I’ve cho-
sen to represent line breaks internally simply as typical C \n newlines, and because I developed
XtremeScript on the Win32 platform, this means I have to detect and convert its native two-char-
acter line break codes. Here’s the source file loader, with the line break issue taken into account:

13. LEXICAL ANALYSIS
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char cCurrChar;
for ( int iCurrCharIndex = 0;

iCurrCharIndex < iSourceSize; ++ iCurrCharIndex )
{

// Analyze the current character
cCurrChar = fgetc ( pSourceFile );
if ( cCurrChar == 13 )
{

// If a two-character line break is found, replace
// it with a single newline
fgetc ( pSourceFile );
-- iSourceSize;
g_pstrSource [ iCurrCharIndex ] = '\n';

}
else
{

// Otheriwse use it as-is
g_pstrSource [ iCurrCharIndex ] = cCurrChar;

}
}
g_pstrSource [ iSourceSize ] = '\0';

// Close the script
fclose ( pSourceFile );

In the final compiler, the lexer itself won’t be responsible for loading the source file, but this
chapter’s demos will, so it’s good to iron this issue out now. You now have the entire source file
represented internally as a contiguous, null-terminated string.

Displaying the Results
As the lexer runs, the program will print out its results line-by-line. Afterwards, a small summary
will be printed, consisting of the number of lexemes detected. Here’s a slightly gutted version of
the loop that will generate this output:

// The current token
Token CurrToken;

// The token count
int iTokenCount = 0;

// String to hold the token type
char pstrToken [ 128 ];

THE LEXER’S FRAMEWORK
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// Tokenize the entire source file
while ( TRUE )
{

// Get the next token
CurrToken = GetNextToken ();

// Make sure the token stream hasn't ended
if ( CurrToken == TOKEN_TYPE_END_OF_STREAM )

break;

// Convert the token code to a descriptive string
switch ( CurrToken )
{

// Create a string to represent the token
}

// Print the token and the lexeme
printf ( "%d: Token: %s, Lexeme: \"%s\"\n",

iTokenCount, pstrToken, GetCurrLexeme () );

// Increment the token count
++ iTokenCount;

}

// Print the token count
printf ( "\n" );
printf ( "\tToken count: %d\n", iTokenCount );

Some of this won’t make much sense at this point, because you haven’t actually covered the lexer
itself yet, but most of it should be self-explanatory based on what you learned in Chapter 9. Like
before, you’re going to create a simple Token data type that represents a token (it’s really just an
integer wrapped with a typedef). A Token is then declared to hold the current token retrieved by
the lexer. A token counter is declared and set to zero, and a string that will contain the token’s
description is statically allocated.

The loop itself runs until the GetNextToken () function returns a flag indicating the end of the
token stream. Based on the current token, a switch block is used to fill the token description
string with some small piece of information that can be printed along with the lexeme to
describe what’s going on. This information is printed, and the token count is incremented.
Finally, outside of the loop, the total token count is printed and the program exits.

13. LEXICAL ANALYSIS
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Error Handling
Error handling won’t be a particularly huge concern of these small demos, but just to keep things
clean, unexpected character input will be flagged with the following function:

void ExitOnInvalidInputError ( char cInput )
{

printf ( "Error: '%c' unexpected.\n", cInput );
exit ( 0 );

}

Whenever the lexer reads something it doesn’t understand, it’ll use this function to alert the
users and exit the program. Simple and to the point.

A NUMERIC LEXER
With the framework in place, you’re ready to get started with the first version of your culminating
XtremeScript lexer. To start off with a simple but effective example, you’re going to lex a text file
containing randomly spaced, nonnegative numeric values in either integer or floating-point for-
mat. As an example, here’s the text file I created to test it:

293048 24 895523
3.14159
235

253
52435 345

459245

22 .5 .35 2.0

1
0.0
1.0
0

02345

63246 0.2346
34.0
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As you can see, it has an intentionally extreme amount of whitespace irregularity to make sure
the lexer’s robustness is really put through its paces. There are few things in the world more irri-
tating than a compiler whose acceptance of whitespace can’t be trusted; we should go to great
lengths to ensure that using XtremeScript is just as easy and natural as using a C/C++ compiler
from Microsoft or Borland.

A Lexing Strategy
It’s time to code the lexer itself, so let’s review the strategy. Of course, it’s all about the state
machine. To lex integers and floats, your lexer needs to support a small number of states that can
transition from one to another easily. As I mentioned, here’s the basic process of a state machine-
based lexer at work:

1. Just as in the case of the lexer developed in Chapter 9, two indexes into the character stream
are initialized. They both point to the start of the current lexeme. The second of these two
indexes will move forward as the lexeme is read, so that it points to the end when the loop
finishes.

2. A variable used to track the loop’s current state is declared and initialized to the start state.
3. The next character is read in from the stream. If this character is a null terminator, the end

of the source file has been reached, and the loop breaks.
4. The current character is analyzed depending on the certain state. Each state has a set of char-

acters that it accepts as valid input, a set of characters that indicate it should transition to
another state, and a set of characters that are entirely invalid and thus erroneous (which is
usually any character not in the first two sets). If a state transition is not warranted, the state
remains the same. Otherwise, the loop’s state tracking variable is set to another value to facili-
tate the transition.

5. With the current state handled, as well as any possible state transitions, the current character
is added to a string buffer containing the culminating lexeme. The index to the end of the
lexeme is incremented as well.

6. If the character warranted a state transition to what is known as a terminal state, the lexeme is
complete and the loop is terminated.

7. Outside the loop, a null terminator is applied to the lexeme buffer to make it a complete
string.

8. The index pointing to the end of the lexeme is decremented by one, because whichever
character transitioned to the loop to a terminal state is not part of the lexeme itself, but
rather the first character of the next lexeme (or the whitespace that precedes it).

9. The final lexer state is used to determine the token type, which is often a one-to-one map-
ping.

10. The token type is returned to the caller.

13. LEXICAL ANALYSIS
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Seems like a pretty straightforward process, huh? Now that you have a conceptual overview of
what the lexer will do, let’s jump into the code. The lexer is primarily implemented with the
GetNextToken () function, which performs the previous steps and returns a Token value to the user,
indicating the type of the lexeme it read. Just like in XASM, the lexeme is not returned by this
function, but rather available through another function, GetCurrLexeme (). This function just
returns a pointer to a global string buffer containing the lexeme extracted by GetNextToken ()
(again, like in XASM).

State Diagrams
You’ve already seen a few, but I’d like to take a quick moment to introduce state diagrams. State
diagrams are used to express state machines in a visual manner, and consist of two major ele-
ments—states and edges. States are usually represented within the diagram as circles with a caption
inside that describes what the state does. Edges connect states, and therefore represent state tran-
sitions. Each edge has a label that defines which criteria are required to invoke the transition.
Figure 13.8 demonstrates an example of a state diagram.

Notice that sometimes, an edge will transition into the state from which it originated. This is a
commonly seen notation, as it’s often helpful to explicitly define which criteria cause the active
state to remain where it is.

A NUMERIC LEXER
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States and Token Types
As the lexer executes, it will frequently transition from one state to the other to follow the format
of the input. Rather than just refer to these states as arbitrary numbers, it helps to use symbolic
constants to make everything easier to read. The same goes for token types—as you already saw
in Chapter 9, tokens can be represented well using constants.

Let’s start with the lexer states:

#define LEX_STATE_START          0       // Start state
#define LEX_STATE_INT            1       // Integer
#define LEX_STATE_FLOAT          2       // Float

The lexer begins in a start state, and can transition to an integer and floating-point state. These
three constants give you everything you need to track such transitions. Now let’s look at the token
types:

#define TOKEN_TYPE_END_OF_STREAM    0       // End of the token stream
#define TOKEN_TYPE_INT              1       // Integer
#define TOKEN_TYPE_FLOAT            2       // Float

When the lexing process is finished, the caller will be left with an integer token, a floating-point
token, or a flag representing the end of the token stream.

Lastly, even though tokens are just numeric values, I like to wrap them in the Token type to make
things more readable:

typedef int Token;

Initializing the Lexer
Before anything can happen, the lexer needs some basic initialization. Currently, in the case of
the simple numeric lexer, all this means is setting the lexer’s indexes to zero, so that it knows to
start from the beginning of the file. Even though this is all you need for now, it’s a good idea to
wrap this process in a small function so you can add to it as the lexer grows more complicated if
necessary. Here’s the code:

void InitLexer ()
{

// Reset the start and end of the current lexeme to the
// beginning of the source
g_iCurrLexemeStart = 0;
g_iCurrLexemeEnd = 0;

}

13. LEXICAL ANALYSIS
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These indexes are global so that functions like this and others, as well as GetNextToken (), can
access them easily. Here’s their declaration:

int g_iCurrLexemeStart;
int g_iCurrLexemeEnd;

With the initialization out of the way, let’s get back to the lexer itself. First, however, let’s quickly
cover the string buffer that will be filled with the lexeme by GetNextToken (). Here’s its declara-
tion:

char g_pstrCurrLexeme [ MAX_LEXEME_SIZE ];

The MAX_LEXEME_SIZE constant dictates the maximum size a given lexeme can be. I like to set it to
1024, but any reasonably large number should do. I wouldn’t set it any lower than 512 or 256,
however, because string literals are treated like typical lexemes. Because game scripting often
involves heavy use of dialogue, you want to have all the legroom you need for strings:

#define MAX_LEXEME_SIZE             1024

Beginning the Lexing Process
Whenever the lexer is called, its first task is to initialize its own internals. The first step is to set the
index pointing to the beginning of the current lexeme to the one pointing to the end. The rea-
son for this is simple—after the last call to GetNextToken (), the second index points to the char-
acter just after the end of the last lexeme, which is where the current one begins. By setting the
first index to this value, the two indexes will both point to the start, where they should. This
index is then compared to the length of the string—if it’s beyond the last character,
TOKEN_TYPE_END_OF_STREAM is returned. Let’s take a look at the code for starting up the lexing
process. I’ll discuss the rest of what it does afterwards:

Token GetNextToken ()
{

// ---- Start the new lexeme at the end of the last one
g_iCurrLexemeStart = g_iCurrLexemeEnd;

// If we're past the end of the file, return an end of stream token
if ( g_iCurrLexemeStart >= ( int ) strlen ( g_pstrSource ) )

return TOKEN_TYPE_END_OF_STREAM;

// ---- Set the initial state to the start state
int iCurrLexState = LEX_STATE_START;

A NUMERIC LEXER
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// ---- Flag to determine when the lexeme is done
int iLexemeDone = FALSE;

// ---- Loop until a token is completed
// Current character

char cCurrChar;

// Current position in the lexeme string buffer
int iNextLexemeCharIndex = 0;

// Should the current character be included in the lexeme?
int iAddCurrChar;

Once the lexeme indexes have been synchronized, iCurrLexState is set to LEX_STATE_START. As
you’d imagine, this is the variable you’ll be using to track the current state as the loop executes.
You then create a flag called iLexemeDone, which is set to FALSE. As the loop executes, this flag is
continually checked to determine whether the lexeme is done and the loop can terminate. A
character called cCurrChar is then declared—it will hold the current character as the loop exe-
cutes. As each character is read, you’ll also be adding them to a string buffer that will ultimately
contain the entire lexeme. To track the current index in this buffer, you declare
iNextLexemeCharIndex and set it to zero.

Lastly, a flag is declared called iAddCurrChar. Although it’s true that characters read from the char-
acter stream are appended to the current lexeme, not all of these characters should be included.
For example, you intentionally want to omit whitespace characters, as well as the delimiter or
whitespace that will directly follow the lexeme. Because of this, each state in the loop that doesn’t
want its current character added to the lexeme can set this flag to FALSE to suppress it.

The lexer is primed at this point, so it’s time for the state machine loop to begin.

The Lexing Loop
The lexing loop revolves around the currently read character, so the first order of business is
reading it from the stream. You must also set the iAddCurrChar to TRUE by default, because most
characters are added to the lexeme:

while ( TRUE )
{

// Read the next character and exit if the end of the source
// has been reached
cCurrChar = GetNextChar ();
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if ( cCurrChar == '\0' )
break;

// Assume the character will be added to the lexeme
iAddCurrChar = TRUE;

Next, the current state is used to determine what should be done with the character. Naturally, to
determine what the current state is, you use a switch block. The first state to consider is the start
state, represented by the LEX_STATE_START constant. From this state, anything other than white-
space will transition to another state, or to an error. The actual process of reading the next char-
acter is handled by a function called GetNextChar ():

char GetNextChar ()
{

// Return the current character and increment the lexeme end pointer
return g_pstrSource [ g_iCurrLexemeEnd ++ ];

}

You’ll notice that the lexeme end index is incremented automatically as the character is read.
This is why I made it global. Now, simply by calling the function to read the next character, one
of our two lexeme indexes is updated transparently.

Currently, you just need to worry about transitions to the integer and float states:

switch ( iCurrLexState )
{

// The start state
case LEX_STATE_START:

// Just loop past whitespace, and don't add it to the lexeme
if ( IsCharWhitespace ( cCurrChar ) )
{

++ g_iCurrLexemeStart;
iAddCurrChar = FALSE;

}

// An integer is starting
else if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

A NUMERIC LEXER
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// A float is starting
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// It's invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

The first thing the LEX_STATE_START state handler does is look for whitespace. Remember, the
beginning of the lexeme is the only place whitespace is valid (because what you call “trailing
whitespace” is actually the leading whitespace of the next lexeme). If the character is whitespace,
the index to the start of the lexeme is incremented and the state doesn’t change. Furthermore,
you set iAddCurChar to FALSE because the lexeme itself should not contain its surrounding white-
space. The IsCharWhitespace () function is virtually identical to the one used in XASM, but of
course, line breaks are now valid:

int IsCharWhitespace ( char cChar )
{

// Return true if the character is a space or tab.
if ( cChar == ' ' || cChar == '\t' || cChar == '\n' )

return TRUE;
else

return FALSE;
}

Here’s the IsCharNumeric () function as well, just for reference:

int IsCharNumeric ( char cChar )
{

// Return true if the character is between 0 and 9 inclusive.
if ( cChar >= '0' && cChar <= '9' )

return TRUE;
else

return FALSE;
}
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After the check for whitespace, the state handler looks for a numeric digit. No matter what the
lexeme turns out to ultimately be (integer or float), the occurrence of a digit in the start state is
always interpreted as an integer lexeme, so the LEX_STATE_INT state is transitioned to. Of course,
certain floating-point values can still be detected here, if they begin with a leading radix point,
like .8 and .0123. If a radix point is found, the state transitions to LEX_STATE_FLOAT. Because the
lexer currently only accepts integers and floats (as well as the whitespace between them), any-
thing else is invalid and causes an error. The offending character is passed to
ExitOnInvalidInputError (), and the program exits.

If the start state is not active, the machine then checks the integer state:

case LEX_STATE_INT:

// If a numeric is read, keep the state as-is
if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

// If a radix point is read, the numeric is really a float
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// If whitespace is read, the lexeme is done
else if ( IsCharWhitespace ( cCurrChar ) )
{

iAddCurrChar = FALSE;
iLexemeDone = TRUE;

}

// Anything else is invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

The first thing the state handler does is look for a valid numeric digit. If it finds one, the state can
remain LEX_STATE_INT. For illustrative purposes, I’ve actually added code that explicitly assigns the
state tracker the integer state, even though it’s already set. This is obviously a bit redundant, but it

A NUMERIC LEXER



806

helps readability. If the character isn’t a digit, the handler determines whether it’s a radix point.
This isn’t a valid integer character, but it indicates a state transition should be made to
LEX_STATE_FLOAT. This should be a good indication of the elegance of the state machine
approach—with only a few lines of code, you’ve got a lexer capable of seamlessly transitioning
from the interpretation of an integer to that of a floating-point value. The next character com-
parison is against whitespace, because the occurrence of such characters marks the end of the
lexeme. If this is the case, iLexemeDone is set to TRUE to break the loop. iAddCurrChar is also set to
FALSE, because you don’t want this extra whitespace character appended to the otherwise purely
numeric lexeme. Any other character is invalid and is flagged as erroneous. This process is illus-
trated in the state diagram in Figure 13.9. Note that I use the * (asterisk) symbol to represent any
character that isn’t included in the other edges.
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state machine.

The only state left to check is LEX_STATE_FLOAT:

case LEX_STATE_FLOAT:

// If a numeric is read, keep the state as-is
if ( IsCharNumeric ( cCurrChar ) )
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{
iCurrLexState = LEX_STATE_FLOAT;

}

// If whitespace is read, the lexeme is done
else if ( IsCharWhitespace ( cCurrChar ) )
{

iLexemeDone = TRUE;
iAddCurrChar = FALSE;

}

// Anything else is invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

This state is even simpler than the integer state. Any valid integer digit is added to the lexeme
buffer, whitespace terminates the lexeme, and anything else is invalid. Once again, this demon-
strates how a state machine’s simplicity goes hand in hand with its power—although the last lexer
had to perform convoluted string analysis on the lexeme to determine whether it was a float, it’s
all done implicitly with the new lexer. For example, there’s no need to manually make sure the
users inputted only one radix point per float value. The first instance of the point will simply
transition the integer state to a float (or directly from the start state to the float), whereas any fur-
ther encounters will be automatically sent to the error-handling function by the LEX_STATE_FLOAT
state handler.

This finishes up the states, so the last order of business is rounding out the loop:

// Add the next character to the lexeme and increment the index
if ( iAddCurrChar )
{

g_pstrCurrLexeme [ iNextLexemeCharIndex ] = cCurrChar;
++ iNextLexemeCharIndex;

}

// If the lexeme is complete, exit the loop
if ( iLexemeDone )

break;
}
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All you’re doing here is appending the current character to the lexeme buffer, assuming the cur-
rent state didn’t suppress it, and ending the loop if the lexeme has been flagged as complete.
Once the loop ends, there’s a tiny bit of extra housekeeping to do as well:

// Complete the lexeme string
g_pstrCurrLexeme [ iNextLexemeCharIndex ] = '\0';

// Retract the lexeme end index by one
-- g_iCurrLexemeEnd;

Of course, it’s all quite simple. A null terminator is slapped onto the end of the lexeme so it can
be treated like a valid string, and the index that points to the end of the lexeme is retracted by
one. Remember, whichever character ultimately ends the lexing process is actually part of the
next lexeme. Because you don’t want to skip over this character when the next lexeme is being
processed, you need to back the index up by one.

All that’s left to do in GetNextToken () is map the terminating lexing state to a specific token type:

Token TokenType;
switch ( iCurrLexState )
{

// Integer
case LEX_STATE_INT:

TokenType = TOKEN_TYPE_INT;
break;

// Float
case LEX_STATE_FLOAT:

TokenType = TOKEN_TYPE_FLOAT;
break;

// All that's left is whitespace, which means the end of the stream
default:

TokenType = TOKEN_TYPE_END_OF_STREAM;
}

// Return the token type
return TokenType;
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A Token variable is declared, and a switch is used to determine which state the lexer was in when
it finished. It’s pretty self-explanatory. If it ended in LEX_STATE_INT, the token type is
TOKEN_TYPE_INT. If it ended in LEX_STATE_FLOAT, the token type is TOKEN_TYPE_FLOAT. If anything else
was returned, it must be a pure whitespace string (because if it wasn’t pure whitespace, it’d either
already have been identified as a numeric or be invalid). The only time whitespace can exist on
its own without being stripped is when it trails the last lexeme in the file. You can therefore use
this as a flag that the stream has ended, and return TOKEN_TYPE_END_OF_STREAM.

That wraps up GetNextToken (). Remember, once this function has been called, the lexeme is
available in the global g_pstrCurrLexeme string buffer, a pointer to which can be received from
GetCurrLexeme ():

char * GetCurrLexeme ()
{

return g_pstrCurrLexeme;
}

Completing the Demo
To wrap things up, let’s flesh out the code for displaying the results of the lexer’s work. This will
be done in a simple loop that calls GetNextToken () to get the next token and lexeme, checks for
the end of the token stream, and prints out a reasonably verbose description of what was read. It
finishes by printing the total number of tokens found. Here’s the code:

while ( TRUE )
{

// Get the next token
CurrToken = GetNextToken ();

// Make sure the token stream hasn't ended
if ( CurrToken == TOKEN_TYPE_END_OF_STREAM )

break;

// Convert the token code to a descriptive string
switch ( CurrToken )
{

// Integer
case TOKEN_TYPE_INT:

strcpy ( pstrToken, "Integer" );
break;
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// Float
case TOKEN_TYPE_FLOAT:

strcpy ( pstrToken, "Float" );
break;

}

// Print the token and the lexeme
printf ( "%d: Token: %s, Lexeme: \"%s\"\n",

iTokenCount, pstrToken,
GetCurrLexeme () );

// Increment the token count
++ iTokenCount;

}

// Print the token count
printf ( "\n" );
printf ( "\tToken count: %d\n", iTokenCount );

The token is used to fill the pstrToken string with a small description of the lexeme. In the case of
the simple numeric lexer, it’ll either say "Integer" or "Float". The token string and lexeme are
then written out, and the token count is incremented. Here’s the demo’s output when fed the
source file I listed earlier:

Lexical Analyzer Demo

0: Token: Integer, Lexeme: "293048"
1: Token: Integer, Lexeme: "24"
2: Token: Integer, Lexeme: "895523"
3: Token: Float, Lexeme: "3.14159"
4: Token: Integer, Lexeme: "235"
5: Token: Integer, Lexeme: "253"
6: Token: Integer, Lexeme: "52435"
7: Token: Integer, Lexeme: "345"
8: Token: Integer, Lexeme: "459245"
9: Token: Integer, Lexeme: "22"
10: Token: Float, Lexeme: ".5"
11: Token: Float, Lexeme: ".35"
12: Token: Float, Lexeme: "2.0"
13: Token: Integer, Lexeme: "1"
14: Token: Float, Lexeme: "0.0"
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15: Token: Float, Lexeme: "1.0"
16: Token: Integer, Lexeme: "0"
17: Token: Integer, Lexeme: "02345"
18: Token: Integer, Lexeme: "63246"
19: Token: Float, Lexeme: "0.2346"
20: Token: Float, Lexeme: "34.0"

Token count: 21

Cool, huh? Using state machines, you’ve lexed a highly free-form source file containing a num-
ber of different numeric values. The whitespace was gracefully handled, and state transitions
allowed the two different numeric formats to be interpreted easily and robustly. More important-
ly, you’ve taken a large step towards completing the actual lexer you’ll use when building the
XtremeScript compiler.

Let’s move on by adding new lexeme and token types.

LEXING IDENTIFIERS AND
RESERVED WORDS
The next step is adding identifiers, such as function and variable names, and the XtremeScript
reserved word set. With these two additions, you’ll have taken your next major step towards
implementing the entire XtremeScript lexer.

One interesting point worth noting is that reserved words and identifiers are implemented the
same way from the perspective of the lexer. After all, what’s an identifier composed of?
Alphanumeric digits and underscores. What’s a reserved word composed of? The same thing. So,
the strategy here is a bit unorthodox when compared to the pure state machine lexing of the last
demo. You’ll use the machine to lex identifiers only, and then compare the string it produced to
a list of reserved words to find out what it really is.

This is where the difference between state machine-based lexers written by hand and those gener-
ated by utilities becomes more visible. In order to recognize the reserved words specified in the
description of the language, the lexer machine would literally need hundreds of new states,
because each letter in each word is technically a unique state. Furthermore, because each
reserved word in the language stems from the same alphabet, it’s entirely possible that the first
few letters of one reserved word can actually transition to an entirely different word if the right
letter is read, introducing countless additional state transitions from one word to another.
Managing that many permutations is not something the human mind was cut out for, so you can
take the easier way out here. As an example, however, consider this subset of the reserved words
of the Pascal language:
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AND
ARRAY
DO
DOWNTO
RECORD
REPEAT

Because each letter of each of these words is a different state, you can imagine how many transi-
tions are represented here. Right off the bat, AND and ARRAY both start with A. So, when A is read,
its state has to recognize transitions initiated by both N and R. DO and DOWNTO are even worse,
because they share two initial letters; the O state in DO needs to know that it can either represent
the last letter of one reserved word, or the second of another. Lastly, RECORD and REPEAT are the
most complex, because both of their E states must be ready both for C and P, possibly allowing
them to either stay in their current word or switch to the other.

In short, it’s extremely tedious and difficult to hand-write such a state machine-based lexer, and the
resulting code would be a nightmare to read and maintain even if it worked beautifully. Lexer gen-
erators don’t have to worry about this, because any modification you want to make can be done in
the much more readable description file and used to generate a new version. Humans are much
better off performing a small number of comparisons after the loop terminates.

Figure 13.10 presents a state diagram for lexing identifiers and reserved words.

New States and Tokens
The first addition that must be made to the existing lexer is more states and tokens to represent
the new forms of input it will accept. First up is the new lexer state:

#define LEX_STATE_IDENT                 5
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That’s right, just one state needed. From start to finish, every character of an identifier is classi-
fied the same way (an alphanumeric digit or underscore), so state transitions aren’t necessary.
Furthermore, because reserved words are treated as identifiers until after the lexing phase, they
don’t need separate states. Next are the new tokens:

#define TOKEN_TYPE_IDENT                3
#define TOKEN_TYPE_RSRVD_VAR            4
#define TOKEN_TYPE_RSRVD_TRUE           5
#define TOKEN_TYPE_RSRVD_FALSE          6
#define TOKEN_TYPE_RSRVD_IF             7
#define TOKEN_TYPE_RSRVD_ELSE           8
#define TOKEN_TYPE_RSRVD_BREAK          9
#define TOKEN_TYPE_RSRVD_CONTINUE       10
#define TOKEN_TYPE_RSRVD_FOR            11
#define TOKEN_TYPE_RSRVD_WHILE          12
#define TOKEN_TYPE_RSRVD_FUNC           13
#define TOKEN_TYPE_RSRVD_RETURN         14

Notice I’ve defined a separate token for each reserved word in the language. You could create a
single token called TOKEN_TYPE_RSRVD, for example, that represents all words in the language. A
separate function could then be called, much like GetCurrLexeme () that provides the rest of the
information—in this case, it might be called GetCurrRsrvdWord () and return a constant that maps
to a specific word.

Assigning a separate token to each word, however, makes things easier on the parser; it’s a lot eas-
ier to determine whether TOKEN_TYPE_RSRVD_FOR was found when parsing a loop, than it is to call
two functions to do the same thing.

The Test File
To test the new lexer, I’ve added identifiers and reserved words to the previous source file. Here
it is:

293048 24 895523
3.14159
235

253
52435 345

MyVar0 MyVar1 MyVar2
459245
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rEtUrN

TRUE false

22 .5 .35 2.0

while

1
0.0 var
1.0 var
0

This_is_an_identifier

02345

_so_is_this___

63246 0.2346
34.0

Upgrading the Lexer
Adding identifier and reserved word support to the lexer is actually quite simple. All that you
really need to do is look for valid identifier characters in the start state, use them to transition to
an identifier state, and keep reading them in until the lexeme is terminated by whitespace. The
resulting lexeme is either an identifier or a reserved word, a determination that’s made outside of
the state machine loop.

To determine whether a character can be part of a valid identifier, a new function has been 
created called IsCharIdent (), and is identical to the one used in XASM. Here it is anyway, just 
for reference:

int IsCharIdent ( char cChar )
{

// Return true if the character is between 0 or 9 inclusive
// or is an uppercase or lowercase letter or underscore
if ( ( cChar >= '0' && cChar <= '9' ) ||

( cChar >= 'A' && cChar <= 'Z' ) ||
( cChar >= 'a' && cChar <= 'z' ) ||
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cChar == '_' )
return TRUE;

else
return FALSE;

}

Armed with this function, adding identifier support to the lexer will be a snap. The first thing to
do is add a check for identifier characters to the start state:

case LEX_STATE_START:

// Just loop past whitespace, and don't add it to the lexeme
if ( IsCharWhitespace ( cCurrChar ) )
{

++ g_iCurrLexemeStart;
iAddCurrChar = FALSE;

}

// An integer is starting
else if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

// A float is starting
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// An identifier is starting
else if ( IsCharIdent ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_IDENT;
}

// It's invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;
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Observant readers may have noticed, however, that making a call to IsCharIdent () in the start
state isn’t technically correct, because it accepts characters 0-9, even though identifiers can’t start
with numbers. Fortunately, if you notice the order in which the start state evaluates the input
character, it checks for digits first. This effectively weeds out any possibilities of identifiers starting
with numbers; rather, the lexer will simply flag the nonnumeric as an invalid integer character.

Now that you can initiate the LEX_STATE_IDENT state, you need to handle it so the next iteration
through the loop has somewhere to go. Here’s the identifier state handler:

case LEX_STATE_IDENT:

// If an identifier character is read, keep the state as-is
if ( IsCharIdent ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_IDENT;
}

// If whitespace is read, the lexeme is done
else if ( IsCharWhitespace ( cCurrChar ) )
{

iAddCurrChar = FALSE;
iLexemeDone = TRUE;

}

// Anything else is invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

This state handler follows the pattern that originated in the last lexer—it accepts any character
that’s within its own domain, (if it’s an identifier character, the state remains LEX_STATE_IDENT) ter-
minates when it encounters whitespace, and reports an error when it reads anything else. The
real changes to GetNextToken () come after the state machine loop completes. At this point, you
think you have an identifier, but you may actually have a reserved word. To resolve this situation,
you need to compare the lexeme produced by the machine to every reserved word in the
XtremeScript language. Although there are a number of ways to go about doing this, I decided
to keep things simple and just make a number of comparisons with strcpy ():
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Token TokenType;
switch ( iCurrLexState )
{

// Integer
case LEX_STATE_INT:

TokenType = TOKEN_TYPE_INT;
break;

// Float
case LEX_STATE_FLOAT:

TokenType = TOKEN_TYPE_FLOAT;
break;

// Identifier/Reserved Word
case LEX_STATE_IDENT:

// Set the token type to identifier in case none
// of the reserved words match
TokenType = TOKEN_TYPE_IDENT;

// ---- Determine if the "identifier" is actually a reserved word

// var/var []
if ( stricmp ( g_pstrCurrLexeme, "var" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_VAR;

// true
if ( stricmp ( g_pstrCurrLexeme, "true" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_TRUE;

// false
if ( stricmp ( g_pstrCurrLexeme, "false" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_FALSE;

// if
if ( stricmp ( g_pstrCurrLexeme, "if" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_IF;

// else
if ( stricmp ( g_pstrCurrLexeme, "else" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_ELSE;
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// break
if ( stricmp ( g_pstrCurrLexeme, "break" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_BREAK;

// continue
if ( stricmp ( g_pstrCurrLexeme, "continue" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_CONTINUE;

// for
if ( stricmp ( g_pstrCurrLexeme, "for" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_FOR;

// while
if ( stricmp ( g_pstrCurrLexeme, "while" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_WHILE;

// func
if ( stricmp ( g_pstrCurrLexeme, "func" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_FUNC;

// return
if ( stricmp ( g_pstrCurrLexeme, "return" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_RETURN;

break;

// All that's left is whitespace, which means the end of the stream
default:

TokenType = TOKEN_TYPE_END_OF_STREAM;
}

The first thing it does is set the token type to TOKEN_TYPE_IDENT, which will only change if one of
the reserved word comparisons below it matches. If not, the token type remains an identifier as it
should. Otherwise, it’s replaced with a specific token representing whichever reserved word was
detected.

And that’s it—the lexer is now capable of identifiers and reserved words. The only thing left to
do is build a new demo around it.
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Completing the Demo
To test the new lexer, let’s add some code to the main () function that prints out the lexer’s
results. As you can see, the additions are similar to those made to the end of GetNextToken ()—
mostly just comparisons to determine which reserved word was found:

while ( TRUE )
{

// Get the next token
CurrToken = GetNextToken ();

// Make sure the token stream hasn't ended
if ( CurrToken == TOKEN_TYPE_END_OF_STREAM )

break;

// Convert the token code to a descriptive string
switch ( CurrToken )
{

// Integer
case TOKEN_TYPE_INT:

strcpy ( pstrToken, "Integer" );
break;

// Float
case TOKEN_TYPE_FLOAT:

strcpy ( pstrToken, "Float" );
break;

// Identifier
case TOKEN_TYPE_IDENT:

strcpy ( pstrToken, "Identifier" );
break;

// Reserved words
case TOKEN_TYPE_RSRVD_VAR:

strcpy ( pstrToken, "var" );
break;

case TOKEN_TYPE_RSRVD_TRUE:
strcpy ( pstrToken, "true" );
break;
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case TOKEN_TYPE_RSRVD_FALSE:
strcpy ( pstrToken, "false" );
break;

case TOKEN_TYPE_RSRVD_IF:
strcpy ( pstrToken, "if" );
break;

case TOKEN_TYPE_RSRVD_ELSE:
strcpy ( pstrToken, "else" );
break;

case TOKEN_TYPE_RSRVD_BREAK:
strcpy ( pstrToken, "break" );
break;

case TOKEN_TYPE_RSRVD_CONTINUE:
strcpy ( pstrToken, "continue" );
break;

case TOKEN_TYPE_RSRVD_FOR:
strcpy ( pstrToken, "for" );
break;

case TOKEN_TYPE_RSRVD_WHILE:
strcpy ( pstrToken, "while" );
break;

case TOKEN_TYPE_RSRVD_FUNC:
strcpy ( pstrToken, "func" );
break;

case TOKEN_TYPE_RSRVD_RETURN:
strcpy ( pstrToken, "return" );
break;

}

// Print the token and the lexeme
printf ( "%d: Token: %s, Lexeme: \"%s\"\n", iTokenCount, pstrToken,

GetCurrLexeme () );
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// Increment the token count
++ iTokenCount;

}

// Print the token count
printf ( "\n" );
printf ( "\tToken count: %d\n", iTokenCount );

With this code in place, the source file listed previously will produce the following results:

Lexical Analyzer Demo

0: Token: Integer, Lexeme: "293048"
1: Token: Integer, Lexeme: "24"
2: Token: Integer, Lexeme: "895523"
3: Token: Float, Lexeme: "3.14159"
4: Token: Integer, Lexeme: "235"
5: Token: Integer, Lexeme: "253"
6: Token: Integer, Lexeme: "52435"
7: Token: Integer, Lexeme: "345"
8: Token: Identifier, Lexeme: "MyVar0"
9: Token: Identifier, Lexeme: "MyVar1"
10: Token: Identifier, Lexeme: "MyVar2"
11: Token: Integer, Lexeme: "459245"
12: Token: return, Lexeme: "rEtUrN"
13: Token: true, Lexeme: "TRUE"
14: Token: false, Lexeme: "false"
15: Token: Integer, Lexeme: "22"
16: Token: Float, Lexeme: ".5"
17: Token: Float, Lexeme: ".35"
18: Token: Float, Lexeme: "2.0"
19: Token: while, Lexeme: "while"
20: Token: Integer, Lexeme: "1"
21: Token: Float, Lexeme: "0.0"
22: Token: var, Lexeme: "var"
23: Token: Float, Lexeme: "1.0"
24: Token: var, Lexeme: "var"
25: Token: Integer, Lexeme: "0"
26: Token: Identifier, Lexeme: "This_is_an_identifier"
27: Token: Integer, Lexeme: "02345"
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28: Token: Identifier, Lexeme: "_so_is_this___"
29: Token: Integer, Lexeme: "63246"
30: Token: Float, Lexeme: "0.2346"
31: Token: Float, Lexeme: "34.0"

Token count: 32

How cool is that? It not only lexes the file, but also detects and prints the reserved word associat-
ed with each lexeme (if applicable). You’re closely approaching a complete lexer that will be
ready to form the basis of the XtremeScript compiler. So now, to finish things off, let’s add what’s
missing—delimiter characters, like commas, parentheses and braces, operators, and string liter-
als. Although many lexers also handle comments, you’re going to stick to the technique used
with XASM and actually take comments out of the source before passing it to the lexer.

THE FINAL LEXER: DELIMITERS,
OPERATORS, AND STRINGS
With two thirds of the lexer finished, all that remains are delimiters, operators, and strings. Of
course, the phrase “all that remains” implies that what you have left is easy—in reality, operators
specifically will present a great deal of complexity. Fortunately, delimiters and strings are pretty
easy, so let’s start with those.

What’s so great about this lexer is that it really will be finished. With the exception of comments,
which will be handled by another part of the compiler, this thing can accept entire scripts and
convert them to lexeme and token streams. At the end of this chapter, I demonstrate this with a
source file containing valid XtremeScript code.

I like to get the easy stuff out of the way, however, so let’s start with delimiters. As you’ll see, these
are the easiest of the three additions.

Lexing Delimiters
The easy thing about delimiters is that every delimiter in the XtremeScript language is a single
character. You can take advantage of this fact to minimize the amount of additional code the
lexer will need to handle them. Figure 13.11 contains a state diagram for lexing delimiters.

New States and Tokens
Like identifiers, delimiters can be represented with a single lex state:

#define LEX_STATE_DELIM                 7

13. LEXICAL ANALYSIS
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Like reserved words, however, each delimiter gets its own token type.

#define TOKEN_TYPE_DELIM_COMMA              16
#define TOKEN_TYPE_DELIM_OPEN_PAREN         17
#define TOKEN_TYPE_DELIM_CLOSE_PAREN        18
#define TOKEN_TYPE_DELIM_OPEN_BRACE         19
#define TOKEN_TYPE_DELIM_CLOSE_BRACE        20
#define TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE   21
#define TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE  22
#define TOKEN_TYPE_DELIM_SEMICOLON          23

Which, again, makes things easier on the parser. This saves you from having to consult some
other global variable or function to find out which specific delimiter was found if a
TOKEN_TYPE_DELIM token is reported.

Upgrading the Lexer
To lex delimiters, the additions made to the lexer are rather simplistic. By adding an IsCharDelim
() function, you can easily add code to the start state that looks for delimiters. If it finds one, it
transitions to LEX_STATE_DELIM. The state handler for delimiters is perhaps the simplest of all—it
just terminates the lexeme. Because delimiters are always one character, the moment you enter
the lexeme state you know you’re at the first character of the next lexeme and can stop scanning.

The only minor complication is adding an IsCharDelim () function. There’s nothing complex about
it, it’s just that there are barely more than a handful of delimiters, which makes it a bit difficult to
rig up a single if statement to do it all. So, you can dump them into a static array, like so:

THE FINAL LEXER: DELIMITERS, OPERATORS, AND STRINGS

Figure 13.11

A delimiter-lexing state

diagram.
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#define MAX_DELIM_COUNT                 24
char cDelims [ MAX_DELIM_COUNT ] =

{ ',', '(', ')', '[', ']', '{', '}', ';' };

IsCharDelim () can now scan through this array to determine whether the specified character is a
delimiter:

int IsCharDelim ( char cChar )
{

// Loop through each delimiter in the array and compare
// it to the specified character
for ( int iCurrDelimIndex = 0; iCurrDelimIndex < MAX_DELIM_COUNT;

++ iCurrDelimIndex )
{

// Return TRUE if a match was found
if ( cChar == cDelims [ iCurrDelimIndex ] )

return TRUE;
}

// The character is not a delimiter, so return FALSE
return FALSE;

}

Within GetNextToken (), the first change to make is adding the check for a delimiter in the start
state:

case LEX_STATE_START:

// Just loop past whitespace, and don't add it to the lexeme
if ( IsCharWhitespace ( cCurrChar ) )
{

++ g_iCurrLexemeStart;
iAddCurrChar = FALSE;

}

// An integer is starting
else if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

13. LEXICAL ANALYSIS
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// A float is starting
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// An identifier is starting
else if ( IsCharIdent ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_IDENT;
}

// A delimiter has been read
else if ( IsCharDelim ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_DELIM;
}

// It's invalid
else

ExitOnInvalidInputError ( cCurrChar );

This is easy enough, but like I said, all the LEX_STATE_DELIM handler does is terminate the lexeme.
Let’s take look:

case LEX_STATE_DELIM:

// Don't add whatever comes after the delimiter
// to the lexeme, because it's done
iAddCurrChar = FALSE;
iLexemeDone = TRUE;
break;

This wraps up the state machine, but once you’re outside the loop you need to check the delim-
iter that was found and set the proper token type. You can do this automatically within the state
machine, but that’d require a separate state for each delimiter, which would be pretty messy and
redundant for a hand-written lexer. The following code is an addition to the switch block used to
convert the final lex state into a token type:

THE FINAL LEXER: DELIMITERS, OPERATORS, AND STRINGS
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case LEX_STATE_DELIM:

// Determine which delimiter was found

switch ( g_pstrCurrLexeme [ 0 ] )
{

case ',':
TokenType = TOKEN_TYPE_DELIM_COMMA;
break;

case '(':
TokenType = TOKEN_TYPE_DELIM_OPEN_PAREN;
break;

case ')':
TokenType = TOKEN_TYPE_DELIM_CLOSE_PAREN;
break;

case '[':
TokenType = TOKEN_TYPE_DELIM_OPEN_BRACE;
break;

case ']':
TokenType = TOKEN_TYPE_DELIM_CLOSE_BRACE;
break;

case '{':
TokenType = TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE;
break;

case '}':
TokenType = TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE;
break;

case ';':
TokenType = TOKEN_TYPE_DELIM_SEMICOLON;
break;

}

break;

That’s all it takes to add delimiters. As I said, it’s a very easy addition. Strings are up next, which
are incrementally more complex, but still nothing to worry about.

13. LEXICAL ANALYSIS
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Lexing Strings
Strings represent a subtle departure from the types of lexemes you’ve been handling in the lexer
so far. Integers, floating-point values, identifiers, reserved words, and delimiters are all imple-
mented with a single state—the state is entered in the start state, and continues onwards until the
lexeme is done. The only exceptions to this rule are integers and floats, because an integer can
transition to a float during the lexing process.

Strings, however, are single entities that are composed of multiple states. The first state represents
the opening quote, and only exists implicitly when it’s detected by the start state. It then shifts
over to a state that reads in the string body as a whole. Along the way, when an escape sequence is
read, it switches again to a state that reads in escape sequence characters, and then immediately
switches back. Finally, it ends with the closing quote state. If you think back to your development
of the XASM lexer in Chapter 9, you’ll remember the considerable complexity entailed by string
support. You’ll be pleasantly surprised to see that a state machine lexer can handle strings in a
much more graceful, simplistic manner.

Figure 13.12 presents a state machine for lexing strings.
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Figure 13.12

Lexing strings.

New States and Tokens
As I said, strings are the first entities that transition through multiple states before completing.
Because of this, this will be the first time a lexeme has more lexer states than it does token types.
Here are its states:
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#define LEX_STATE_STRING                8
#define LEX_STATE_STRING_ESCAPE         9
#define LEX_STATE_STRING_CLOSE_QUOTE    10

Remember, the opening quote isn’t represented by an explicit state. This is because once the
quote is detected by the start state, it immediately transitions to LEX_STATE_STRING. Here’s the new
token type strings will be represented by:

#define TOKEN_TYPE_STRING               24

Upgrading the Lexer
The additions to the lexer’s start state are almost as trivial as those made for delimiters. If a quote
is read from the character stream, it’s treated as a sign to transition to the LEX_STATE_STRING state.
From here, the body of the string is read into the current lexeme. For this reason, there’s no
need for a LEX_STATE_STRING_OPEN_QUOTE state. Here’s the code:

case LEX_STATE_START:

// Just loop past whitespace, and don't add it to the lexeme
if ( IsCharWhitespace ( cCurrChar ) )
{

++ g_iCurrLexemeStart;
iAddCurrChar = FALSE;

}

// An integer is starting
else if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

// A float is starting
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// An identifier is starting
else if ( IsCharIdent ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_IDENT;
}

13. LEXICAL ANALYSIS
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// A delimiter has been read
else if ( IsCharDelim ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_DELIM;
}

// A string is starting, but don't add the
// opening quote to the lexeme
else if ( cCurrChar == '"' )
{

iAddCurrChar = FALSE;
iCurrLexState = LEX_STATE_STRING;

}

// It's invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

Remember, you have to set iAddCurrChar to false to make sure the opening quote isn’t part of the
final lexeme. Remember the hoops you had to jump through just to get the XASM lexer to avoid
the opening quote? Now, you just clear a flag and its history.

The next state to worry about is LEX_STATE_STRING, which is directly transitioned to by the start
state. This state just consumes each character it reads and dumps it into the lexeme. Whitespace,
delimiters, you name it—it’s all valid when a string is being lexed. The only characters that get
this state’s attention are the double quote, which of course terminates the string, and the escape
sequence backslash. I’ll talk more about escape sequences in a moment, so let’s look at the code:

case LEX_STATE_STRING:

// If the current character is a closing quote, finish the lexeme
if ( cCurrChar == '"' )
{

iAddCurrChar = FALSE;
iCurrLexState = LEX_STATE_STRING_CLOSE_QUOTE;

}

// If it's an escape sequence, switch to the escape
// state and don't add the backslash to the lexeme
else if ( cCurrChar == '\\' )

THE FINAL LEXER: DELIMITERS, OPERATORS, AND STRINGS
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{
iAddCurrChar = FALSE;
iCurrLexState = LEX_STATE_STRING_ESCAPE;

}

// Anything else gets added to the string

break;

The cool thing about lexing a string is that you literally don’t need to do anything—the way the
state machine is set up, characters are added to the lexeme automatically, so by literally doing
nothing, the string lexeme is populated.

One character of interest, however, is the double quote. When this character is read, you know
the string is ending, and the program transitions to the LEX_STATE_STRING_CLOSE_QUOTE state:

case LEX_STATE_STRING_CLOSE_QUOTE:

// Finish the string lexeme
iAddCurrChar = FALSE;
iLexemeDone = TRUE;

break;

The primary job of this state is to terminate the lexeme, but it also has to make sure not to let the
current character be printed, because it’s the closing quote.

The only other detail about string lexing is the escape sequence. Escape sequences were another
tricky part of the XASM lexer; you had to jump ahead two characters whenever a double-quote
sign was read, the lexeme substring had to be copied in a special way, and overall it was a big
mess. As you may have already assumed, however, the iAddCurrChar flag will make escape
sequences almost criminally easy to support in the new lexer.

As you have seen, the LEX_STATE_STRING state transitions to the LEX_STATE_STRING_ESCAPE state when-
ever a backslash character is read (by the way, the \\ notation is used because even single charac-
ters recognize the backslash as an escape in C/C++). It also keeps the backslash from being print-
ed, by setting iAddCurChar to FALSE as I mentioned. Let’s look at the escape sequence state handler:

case LEX_STATE_STRING_ESCAPE:

// Immediately switch back to the string state,
// now that the character's been added
iCurrLexState = LEX_STATE_STRING;

break;

13. LEXICAL ANALYSIS
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You know something’s easy when the comment lines out-number the code. That’s right, all the
escape sequence state does is transition back to the normal string state. Remember, all states auto-
matically append the current character to the lexeme unless they explicitly request otherwise, so
all you have to do is let the current character be written (which is the character you want to
include, like the " double quote), and switch back to the string.

With escape sequences nailed down, string support in the XtremeScript lexer is finished. That
leaves you with the final, and most complex, hurdle—operators.

Operators
Operators are the last addition needed before you can call the XtremeScript lexer complete.
Unfortunately, they’re also the most difficult. The reason for their relative complexity is that they
consist of multiple characters, and each character must be implemented as a separate and unique
state. For example, consider the following operators:

<    <<    <<=

The first operator is the relational less-than operator. The second is a bitwise left shift, and the
third is a bitwise left shift assignment shorthand. Each of these operators is built on the one
before it, meaning they all share a number of states. Figure 13.13 contains a state machine capa-
ble of lexing these three operators.
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Figure 13.13

Lexing the <, <<, and <<= operators.

You could take the easy way out and simply create an array consisting of the union of all 
characters found in all operators, and create a single operator state that reads out strings of 
these characters in the state machine and compares them to predefined operator strings like
"++", "*" and "!=" outside of the loop. This would work, but there’d be a lot of strings to com-
pare, as XtremeScript has 34 operators. Besides, it wouldn’t be nearly as much of a learning 
experience. :)
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You could also apply brute force to the whole situation and spend a good six hours hard-coding
each of the states a set of 34 operators would require. The amount of permutations and transi-
tions between them would boil down to an astronomical number of separate states, but it’d work.

But you can do better than this. It sounds a bit strange to think of it this way, but the actual solu-
tion to the problem lies in a realization of how big it is. By understanding the sheer volume of
the separate states involved in lexing operators, you can mentally switch gears and learn to apply
a more iterative, generic solution.

To put this in other words, think back to when you first started programming. Like a lot of peo-
ple, there was probably a point in your earlier days when you wanted to represent a large quantity
of related data—perhaps for an address book program or something—but didn’t know anything
about arrays yet. You may have then proceeded to hard-code the declarations for each of the 20,
or 30, or 200 items you wanted to represent, and found it extremely difficult to deal with.

Fortunately, you wouldn’t have gotten very far with such an approach, and most likely would’ve
given up quickly. It isn’t long before a person in this position discovers arrays and other forms of
aggregate data structures. Upon making such a discovery, you would’ve immediately realized how
to solve the problem the right way. This is exactly the sort of revelation you need to make when
approaching this problem.

Sure, the potentially hundreds of states and transitions can be hard-coded directly into the
lexer—and an automatic lexer generation utility would probably do just this—but the key to
these operators and the states they’re composed of is that they’re all strongly related and very
similar. Like the names and numbers in an address book, aside from the actual operator charac-
ter itself, every state in the set of XtremeScript operators would more or less do the same thing—
it’d either add itself to the current lexeme or find a reason to switch to the state of another oper-
ator (like in the case of the three operators mentioned earlier).

The solution discussed in the following sections is somewhat tricky your first time through.
Because of this, I ask that you read everything through before deciding you don’t understand it.
Furthermore, if you don’t get it the first time, try reading it one or two more times—it should be
no problem after a few passes.

Breaking Operators Down
So, what you need to do is break down the characters of the operators you’re trying to lex and
derive a better way to represent their states. The first important observation to make is that the
transitions that can be made between states always happen from one character index to the next.
By “character index,” I mean the index of the character within the string that composes the oper-
ator. For example, the following operator has three character indexes:

>>=

13. LEXICAL ANALYSIS
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These indexes are numbered 0-2: > is 0, > is 1, and = is 2. When lexing the following operators:

>    >>    >>=

The state transitions are sequential—the first character, >, transitions into the second, >. This then
transitions into the third, =, and the process is complete. It’s not possible for the first > to transition
to =; in other words, there’s no chance that when lexing the > operator, you may suddenly realize
you’re lexing >>=; you’d have to lex >> first. Check out Figure 13.14 to see this visually.
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Operators that share

subsets of each other

transition gradually.

The point to all this is that you can first break down the problem based on these character index-
es. Because no operator in XtremeScript has more than three characters, you can initially break
the new states down to three groups. For example, consider the following subset of operators:

+    -   +=    ++    -=    --    <    >    <<    >>    <<=    >>=

These twelve operators range from one to three characters in length. Furthermore, there are a
number of transitions between these operators, as the current character can either be an opera-
tor unto itself, part of a larger operator, or part of a different operator than is currently being
lexed. If the + is read, however, there are a number of possibilities to consider:

■ It’s the binary add operator, and + is the first and last character.
■ It’s the binary add/assignment operator, and + is the first character of the += string.
■ It’s the unary increment operator, and + is the first character of the ++ string.

From this list, you can draw a number of conclusions. Before mentioning them, however, let’s
look at these 12 operators in a slightly different way:

+    -    =    +    =    -    <    >    <    >    =    =

To understand what I’ve done here, compare these 12 characters to the 12 operators I’ve listed
previously. Simply put, I’ve reduced each operator to the extra character it provides among all of
the operators that can transition to it. For example, out of the +, ++, and += operators, the + oper-
ator is represented simply by the + character. ++, however, is based on the original +; it just adds
another + to create ++. Therefore, the extra character it adds is +. += also builds on the additional
+, so its extra character is =. Figure 13.15 demonstrates this graphically.
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Now back to the conclusions. First of all, each of the 12 single characters has a number of proper-
ties. These properties can be used to determine how many states they’re capable of transitioning
to, as well as what those states are. For example, the + character, if it’s the first character of the
lexeme, is associated with three states. First, it can be its own state—the addition operator. It can
also branch to two substates from here as well: ++ and +=. In the case of the ++ operator, the second
+ character can’t branch to any other states and represents a terminal state that always marks the
completion of the ++ operator. This is because there is no operator based on ++, like “++=“ or
something. In the case of the += operator, the = character has the same properties—because no
operators are based on +=, it can’t transition to any further substates. Lastly, each of these charac-
ters ultimately represents a unique operator. The first + represents +, the second + represents ++,
and = represents +=. Check out Figure 13.16.

To help drive this point home, there are three separate characters to consider among these 
three operators: +, +, and = (even though the two +’s are both the same character, they have 
different properties and are therefore separate). Table 13.1 lists these characters and their 
relevant properties.
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Note that the Substates column doesn’t list full operators; rather, it lists the characters that can
immediately follow to invoke the transition to the substate. The first + row says that its substates
are + and =, meaning that if either of these characters are read after the +, they’ll invoke a transi-
tion to the ++ or += substates. Armed with this table, here’s a simple breakdown of how these
three operators could be lexed accurately:

■ The first character of the new lexeme is read. It’s a +.
■ The second character is read. If it’s any character other than the two substate transitions

listed by the + character’s properties, meaning any characters other than another + or =,
you know that can’t combine with the current + to form a valid operator and thus, the +
operator is finished.

■ If the character is another +, you find it in the first + character’s properties, listed as a
possible substate. You therefore transition from the + state to the ++ substate. The next
character is then read, but you don’t care what it is. Because the second + character’s
properties state that it has no substates, you therefore know the ++ operator can’t be the
basis for any further operators and must be complete.

■ If the character is =, you follow the same process outlined in the last bullet point—it’s a
valid substate of +, which transitions to a += substate. Again, you don’t care what the next
character read is after this point, because the = character of the += operator has no sub-
states, and must represent a completed lexeme.

You should now have a pretty good handle on the situation—there are initially three groups you
can make, based on the characters at each of the three indexes an operator can occupy. Within
these groups, you have a number of single characters, all of which correspond to the character of
a specific operator at their index. Lastly, each of these characters has a number of properties that
tell the lexer where to go, with regards to the current state, as it’s read.

Characters in the first group—the index 0 group—represent both single character operators
(such as ~ or bitwise not), as well as the first character of double- and triple-character operators,

THE FINAL LEXER: DELIMITERS, OPERATORS, AND STRINGS
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Character Substate Count Substates Operator Represented

+ 2 +, = +

+ 0 None ++

= 0 None +=
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such as < and +. Characters in the second group—index 1—represent both the final characters of
double-character operators, like the = in +=, but also represent the second character in triple-char-
acter operators, like the second < in <<=. Characters in the final group, index 2, only represent
the final character of triple-character operators. Because there are no operators in XtremeScript
with four or more characters, every member of this group must be a terminal character. Figure
13.17 provides a visual example of operands being assembled from these tables.
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Assembling operands

using three operand

state tables.

Building Operator State Transition Tables
If you followed everything in that last section (which you may want to reread once or twice,
because I know it’s a bit tricky the first time through), you should be able to understand now how
you’ll represent the massive amounts of states required to properly lex 34 multi-character opera-
tors. Rather than hardcode anything, you’ll build a number of tables to represent the states and
transitions that each operator character is associated with. There will be three tables in total—
one for each of the character index groups mentioned previously. Each member of each table
will either represent the terminal character in an operator, or a character capable of transitioning
to another operator (although most will be both).

To represent these characters, you need a structure capable of holding everything listed in Table
13.1. Fortunately, this is an easy conversion:



837

typedef struct _OpState          // Operator state
{

char cChar;                  // State character
int iSubStateIndex;          // Index into substate array where

// sub states begin
int iSubStateCount;           // Number of substates
int iIndex;                   // Operator index

}
OpState;

First and foremost, this structure holds the character to which the remaining properties apply in
cChar. The next two members of the structure represent the character’s substates. iSubStateCount
is of course the number of states it can transition to. iSubStateIndex, simply put, is an index into
the next state table (remember, there are three—one for each character index), where the sub-
states begin. I’ll cover this more in a second, so don’t worry if you don’t quite get what I mean.
Lastly, iIndex is a special code that represents the operator this character would represent if it
either has no substates, or if none of its substates are transitioned to. You’ll see more of how this
field works shortly.

The OpState structure represents a complete state by associating itself with a specific character, as
well as a number of state transition properties. I’m now going to show you the code for declaring
and initializing the operator state tables. Again, there will be three of these—one for each charac-
ter index. Here they are:

// ---- First operator characters
OpState g_OpChars0 [ MAX_OP_STATE_COUNT ] = { { '+', 0, 2, 0 },

{ '-', 2, 2, 1 },
{ '*', 4, 1, 2 },
{ '/', 5, 1, 3 },
{ '%', 6, 1, 4 },
{ '^', 7, 1, 5 },
{ '&', 8, 2, 6 },
{ '|', 10, 2, 7 },
{ '#', 12, 1, 8 },
{ '~', 0, 0, 9 },
{ '!', 13, 1, 10 },
{ '=', 14, 1, 11 },
{ '<', 15, 2, 12 },
{ '>', 17, 2, 13 } };
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// ---- Second operator characters
OpState g_OpChars1 [ MAX_OP_STATE_COUNT ] = { { '=', 0, 0, 14 },

{ '+', 0, 0, 15 },    // ++
{ '=', 0, 0, 16 },    // -=
{ '-', 0, 0, 17 },    // --
{ '=', 0, 0, 18 },    // *=
{ '=', 0, 0, 19 },    // /=
{ '=', 0, 0, 20 },    // %=
{ '=', 0, 0, 21 },    // ^=
{ '=', 0, 0, 22 },    // &=
{ '&', 0, 0, 23 },    // &&
{ '=', 0, 0, 24 },    // |=
{ '|', 0, 0, 25 },    // ||
{ '=', 0, 0, 26 },    // #=
{ '=', 0, 0, 27 },    // !=
{ '=', 0, 0, 28 },    // ==
{ '=', 0, 0, 29 },    // <=
{ '<', 0, 1, 30 },    // <<
{ '=', 0, 0, 31 },    // >=
{ '>', 1, 1, 32 } };  // >>

// ---- Third operator characters
OpState g_OpChars2 [ MAX_OP_STATE_COUNT ] = { { '=', 0, 0, 33 },

{ '=', 0, 0, 34 } };  // >>=

These arrays are dimensioned with a constant called MAX_OP_STATE_COUNT. This constant deter-
mines how many operator states each group can hold, which I have set for 32. I’ve used a nested
{} notation to initialize both each element of the array, as well as each member of the array’s
structures. For example, in the case of the + element of the g_OpChars0 [] array, you find this:

{ '+', 0, 2, 0 }

The first value, '+', is of course the character itself. The second value, 0, is the index into the sec-
ond array at which its substates begin. The third value, 2, is the number of substates it can transi-
tion to. In this case, because + can transition to both ++ and +=, there are two substates. The final
value, 0, is the index of the operator that this character would represent if it either had no sub-
states, or none of its substates were transitioned to. Because the addition operator is the first one
in the list, it’s been assigned index 0. Of course, this is totally arbitrary—as long as it’s unique, this
index could be anything.

To help you understand this more clearly, let’s revisit the previous example, but with direct assis-
tance from these three arrays this time.
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■ The first character of the new lexeme is read in by the lexer, and it’s a <. Because you
haven’t started lexing an operator yet, you’re still at character zero. You therefore look
for < in the cChar element of each OpState structure in the g_OpChars0 [] array. It’s
found, so you know an operator is beginning. You set the current character index of the
operator lexeme to 1, because you’ve already read the index zero character.

■ This character could be the entire lexeme; if the next character read is not one of its
substates, you know the lexeme is the < relational less-than operator. If this were the case,
you’d look at the operator index within this character’s OpState structure, which is 12
(go check it out in the array listing for yourself). Therefore, the relational less-than oper-
ator is represented by index 12. The lexeme would be complete, and you could return
this information to the parser (or whoever called GetNextToken ()).

■ The next character is read, and it’s another <. In order to find out what this means, you
need to consult the substate transition information stored in the first < character’s
OpState structure. It says that it has two substates, starting at index 15 in the g_OpChars1
[] array. Therefore, the OpState structures at indexes 15 and 16 of this array contain the
two possible substates of the < character. The first of these structures, the one at index
15, is for the = character, which would represent the <= operator. This doesn’t match,
however, so you check the next one, at index 16. This structure’s cChar element is <,
which matches the character you read. You now know to transition to this state, so you
save the OpState structure and set the current character index to 2 (because we’ve now
read in both 0 and 1). At this point, the lexeme is <<, which could be either the bitwise
left shift operator, or the <<= bitwise left shift assignment operator. Its operator index is
30, though, so you know that << is represented by this value. If the next character is not a
valid substate, you can return this information to the caller.

■ The next character is read, and it’s =. You now consult the < OpState structure, and find
that it can transition to one substate, starting at index 0 of the g_OpChars2 [] array. You
read out the OpState structure found there, and sure enough, its cChar element is =. You
know the newly read character represents a transition to the <<= substate. You once again
increment the character index to 3.

■ The next character is read, and it’s M. This could mean any number of things, but it does-
n’t matter because the iSubStateCount field of the = character’s OpState structure is 0.
This alerts you that the character has no substates, and is therefore the terminal charac-
ter of the <<= operator. The operator index is 33, which corresponds to <<=. You’re fin-
ished, so you can return this information to the caller.

Phew! There were quite a lot of details to get from point A to point B, but ultimately you lexed
the <<= operator and paid close attention to all of the alternate paths it could’ve branched to.
Along with the g_OpChar* [] arrays, this logic is enough to transition through all 34 operator’s
states and substates and arrive at a solid conclusion.
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New States and Tokens
So, with a firm grasp on the logic behind the state transition tables and the code that will utilize
them, let’s specify some new lexer states and tokens for GetNextToken () to work with. Here’s the
new lexer state:

#define LEX_STATE_OP                    6

You need only one new state because all operators will be lexed in the same way, using the same
state transition tables. That’s why I call the operator states “substates”—they all take place within
the larger, more general LEX_STATE_OP state. Here’s the new token:

#define TOKEN_TYPE_OP                   15

I’ve chosen to use a single token to represent all operators because it keeps the token list a bit
cleaner. A separate function called GetCurrOp (), much like GetCurrLexeme (), can be called after
GetNextToken () returns TOKEN_TYPE_OP to determine which specific operator was lexed. GetCurrOp
() will return one of the following constants:

// ---- Arithmetic
#define OP_TYPE_ADD                0      // +
#define OP_TYPE_SUB                1      // -
#define OP_TYPE_MUL                2      // *
#define OP_TYPE_DIV                3      // /
#define OP_TYPE_MOD                4      // %
#define OP_TYPE_EXP                5      // ^

#define OP_TYPE_INC                15     // ++
#define OP_TYPE_DEC                17     // --

#define OP_TYPE_ASSIGN_ADD         14     // +=
#define OP_TYPE_ASSIGN_SUB         16     // -=
#define OP_TYPE_ASSIGN_MUL         18     // *=
#define OP_TYPE_ASSIGN_DIV         19     // /=
#define OP_TYPE_ASSIGN_MOD         20     // %=
#define OP_TYPE_ASSIGN_EXP         21     // ^=

// ---- Bitwise
#define OP_TYPE_BITWISE_AND             6           // &
#define OP_TYPE_BITWISE_OR              7           // |
#define OP_TYPE_BITWISE_XOR             8           // #
#define OP_TYPE_BITWISE_NOT             9           // ~
#define OP_TYPE_BITWISE_SHIFT_LEFT      30          // <<
#define OP_TYPE_BITWISE_SHIFT_RIGHT     32          // >>
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#define OP_TYPE_ASSIGN_AND              22          // &=
#define OP_TYPE_ASSIGN_OR               24          // |=
#define OP_TYPE_ASSIGN_XOR              26          // #=
#define OP_TYPE_ASSIGN_SHIFT_LEFT       33          // <<=
#define OP_TYPE_ASSIGN_SHIFT_RIGHT      34          // >>=

// ---- Logical
#define OP_TYPE_LOGICAL_AND             23          // &&
#define OP_TYPE_LOGICAL_OR              25          // ||
#define OP_TYPE_LOGICAL_NOT             10          // !

// ---- Relational
#define OP_TYPE_EQUAL                   28          // ==
#define OP_TYPE_NOT_EQUAL               27          // !=
#define OP_TYPE_LESS                    12          // <
#define OP_TYPE_GREATER                 13          // >
#define OP_TYPE_LESS_EQUAL              29          // <=
#define OP_TYPE_GREATER_EQUAL           31          // >=

Upgrading the Lexer
The last step is to apply this all to the state machine. The first stop is just before the state machine
loop; the machine will need a few extra local variables for some internal bookkeeping:

int iCurrOpCharIndex = 0;
int iCurrOpStateIndex = 0;
OpState CurrOpState;

iCurrOpCharIndex keeps track of the current character index within the operator—this can be a
value between 0 and 2, because XtremeScript operators have at most three characters. Of course,
this is set to 0 by default. iCurrOpStateIndex stores the index of the current operator state within
the g_OpChars* [] array specified by iCurrOpCharIndex. Lastly, CurrOpState is a local instance of the
OpState structure, and will contain the current operator state’s information.

In addition, you’ll also need a global variable to store the current operator index, as found in the
OpState structure’s iIndex field. After an operator is fully lexed, you’ll arrive at a final index that
will correspond to the operator. Because GetNextToken () will only return TOKEN_TYPE_OP, you can
use this global to store the specific operator index. The caller can then use GetCurrOp () to
retrieve this value. Here’s the global:

int g_iCurrOp;
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Here’s GetCurrOp (), which simply returns it:

int GetCurrOp ()
{

return g_iCurrOp;
}

With these variables in place, you can start writing the state handlers. Here are the additions that
need to be made to the start state (in bold, as usual):

case LEX_STATE_START:

// Just loop past whitespace, and don't add it to the lexeme
if ( IsCharWhitespace ( cCurrChar ) )
{

++ g_iCurrLexemeStart;
iAddCurrChar = FALSE;

}

// An integer is starting
else if ( IsCharNumeric ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_INT;
}

// A float is starting
else if ( cCurrChar == '.' )
{

iCurrLexState = LEX_STATE_FLOAT;
}

// An identifier is starting
else if ( IsCharIdent ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_IDENT;
}

// A delimiter has been read
else if ( IsCharDelim ( cCurrChar ) )
{

iCurrLexState = LEX_STATE_DELIM;
}
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// An operator is starting
else if ( IsCharOpChar ( cCurrChar, 0 ) )
{

// Get the index of the initial operand state
iCurrOpStateIndex = GetOpStateIndex ( cCurrChar, 0, 0, 0 );
if ( iCurrOpStateIndex == -1 )

ExitOnInvalidInputError ( cCurrChar );

// Get the full state structure
CurrOpState = GetOpState ( 0, iCurrOpStateIndex );

// Move to the next character in the operator (1)
iCurrOpCharIndex = 1;

// Set the current operator
g_iCurrOp = CurrOpState.iIndex;

iCurrLexState = LEX_STATE_OP;
}

// A string is starting, but don't
// add the opening quote to the lexeme
else if ( cCurrChar == '"' )
{

iAddCurrChar = FALSE;
iCurrLexState = LEX_STATE_STRING;

}

// It's invalid
else

ExitOnInvalidInputError ( cCurrChar );

break;

As you can see, operators are the most complex addition to the start state. Actually determining
whether an operator is starting is actually pretty easy, however—you just call IsCharOpChar () to
determine whether the character is a valid operator character. You don’t want to check for just
any operator character, however—you only want to know if it’s a valid character within the first
character index group, because at the start state you know you’d be dealing with the operator’s
first character. IsCharOpChar () therefore accepts two parameters—the character you want to
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check, for which you pass cCurrChar, as well as the character index group to which the character
may belong. For this, you pass zero.

Here’s the code to IsCharOpChar ():

int IsCharOpChar ( char cChar, int iCharIndex )
{

// Loop through each state in the specified character
// index and look for a match
for ( int iCurrOpStateIndex = 0; iCurrOpStateIndex

< MAX_OP_STATE_COUNT;
++ iCurrOpStateIndex )

{
// Get the current state at the specified character index
char cOpChar;
switch ( iCharIndex )
{

case 0:
cOpChar = g_OpChars0 [ iCurrOpStateIndex ].cChar;
break;

case 1:
cOpChar = g_OpChars1 [ iCurrOpStateIndex ].cChar;
break;

case 2:
cOpChar = g_OpChars2 [ iCurrOpStateIndex ].cChar;
break;

}

// If the character is a match, return TRUE
if ( cChar == cOpChar )

return TRUE;
}

// Return FALSE if no match is found
return FALSE;

}

This function scans through each OpState structure in each of the three g_OpChars* [] arrays. It
then extracts the character from the desired array and compares it to the specified character. If
they match, the character belongs to this group of operator states, and TRUE is returned.
Otherwise, FALSE is returned.
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Once the start state knows an operator character from the first character index has been found,
it knows an operator is starting. It then calls GetOpStateIndex () to find the index into the
g_OpChars0 [] array where the character’s OpState structure resides (I’ll explain what each of
those zeroed parameters following cCurrChar mean in a moment.) You technically know this
index exists, because it was already checked by IsCharOpChar (), but I threw in some code to make
sure the returned index wasn’t -1 anyway. You now know where within the array the g_OpChars0
[] array your character’s structure is, which you’ll put to use in a second. First, here’s the code for
GetOpStateIndex ():

int GetOpStateIndex ( char cChar,
int iCharIndex,
int iSubStateIndex,
int iSubStateCount )

{
int iStartStateIndex;
int iEndStateIndex;

// Is the character index zero?
if ( iCharIndex == 0 )
{

// Yes, so there are no substates to worry about
iStartStateIndex = 0;
iEndStateIndex = MAX_OP_STATE_COUNT;

}
else
{

//  No, so save the substate information
iStartStateIndex = iSubStateIndex;
iEndStateIndex = iStartStateIndex + iSubStateCount;

}

// Loop through each possible substate and look for a match
for ( int iCurrOpStateIndex = iStartStateIndex;

iCurrOpStateIndex < iEndStateIndex; ++ iCurrOpStateIndex )
{

// Get the current state at the specified character index
char cOpChar;
switch ( iCharIndex )
{

case 0:
cOpChar = g_OpChars0 [ iCurrOpStateIndex ].cChar;
break;
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case 1:
cOpChar = g_OpChars1 [ iCurrOpStateIndex ].cChar;
break;

case 2:
cOpChar = g_OpChars2 [ iCurrOpStateIndex ].cChar;
break;

}

// If the character is a match, return the index
if ( cChar == cOpChar )

return iCurrOpStateIndex;
}

// Return -1 if no match is found
return -1;

}

This function does almost the same thing IsCharOpChar () does, except it returns the specific
index rather than simply TRUE or FALSE. However, it does some extra stuff, which is why it needs
those three parameters following cChar. Shortly, you’ll also be using this function to search a char-
acter’s substates. As you saw in the last section, a character’s substates always occupy a contiguous
region of one of the g_OpChars* [], so by passing this function the index to start searching from,
as well as the number of substates to search, it will focus its scanning to that specific region.
However, because the first character of an operator can be anything, and therefore isn’t confined
to a specific region, you pass all zeroes to tell the function to scan through everything in the
g_OpChars0 [] array. This is what the following code does:

int iStartStateIndex;
int iEndStateIndex;

// Is the character index zero?
if ( iCharIndex == 0 )
{

// Yes, so there are no substates to worry about
iStartStateIndex = 0;
iEndStateIndex = MAX_OP_STATE_COUNT;

}
else
{
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//  No, so save the substate information
iStartStateIndex = iSubStateIndex;
iEndStateIndex = iStartStateIndex + iSubStateCount;

}

You then call GetOpState () to use the index returned by GetOpStateIndex () to retrieve the actual
OpState structure associated with the character read. You pass it zero, along with this index, to tell
it to return the structure found at the specified index within g_OpChars0 [], as opposed to the
other two arrays. Here’s GetOpState ():

OpState GetOpState ( int iCharIndex, int iStateIndex )
{

OpState State;

// Save the specified state at the specified character index
switch ( iCharIndex )
{

case 0:
State = g_OpChars0 [ iStateIndex ];
break;

case 1:
State = g_OpChars1 [ iStateIndex ];
break;

case 2:
State = g_OpChars2 [ iStateIndex ];
break;

}

return State;
}

You now have the operator substate structure, so the only thing left to do is set iCurrOpCharIndex
(the current character index) to 1, g_iCurrOp to the index in the current OpState structure, and
the lexer state to LEX_STATE_OP. Remember, you set g_iCurrOp now, just in case this happens to be
the first and last character of the operator (as it would be in the case of single-character opera-
tors). If this turns out to be the case, you’ll already have the operator’s index saved globally, so
GetNextToken () can simply return TOKEN_TYPE_OP and rely on GetCurrOp () to provide the caller
with the rest of the information.

This takes care of the start state. After the next character is read, the machine will be in the
LEX_STATE_OP state, so let’s check out its handler:
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case LEX_STATE_OP:

// If the current character within the operator
// has no substates, we're done
if ( CurrOpState.iSubStateCount == 0 )
{

iAddCurrChar = FALSE;
iLexemeDone = TRUE;
break;

}

// Otherwise, find out if the new character is a possible substate
if ( IsCharOpChar ( cCurrChar, iCurrOpCharIndex ) )
{

// Get the index of the next substate
iCurrOpStateIndex = GetOpStateIndex (

cCurrChar, iCurrOpCharIndex,
CurrOpState.iSubStateIndex, CurrOpState.iSubStateCount );

if ( iCurrOpStateIndex == -1 )
ExitOnInvalidInputError ( cCurrChar );

// Get the next operator structure
CurrOpState = GetOpState ( iCurrOpCharIndex,

iCurrOpStateIndex );

// Move to the next character in the operator
++ iCurrOpCharIndex;

// Set the current operator
g_iCurrOp = CurrOpState.iIndex;

}

// If not, the lexeme is done
else
{

iAddCurrChar = FALSE;
iLexemeDone = TRUE;

}

break;
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The first check this handler makes is for the possibility that the current operator state has no sub-
states. In this case, no matter what the current character is, you know you’re done. Next, it com-
pares the current character to the current operator state’s substates to determine whether the
operator is being further developed. If so, you basically repeat the process from the start state—
you use GetOpStateIndex () to get the index into the current g_OpChars* [] array (which you 
specify with iCurrOpCharIndex). You also make sure to pass it the CurrOpState.iSubStateIndex, as
well as CurrOpState.iSubStateCount, so the function knows where in the array to focus its search.
Once you get the next character’s operator state index, you can use it to get its corresponding
OpState structure with GetOpState (). You then increment the character index, and finish up by
updating g_iCurrOp to represent whatever operator could potentially be finished by this character.
If the current character doesn’t match any of the operator state’s substate transitions, the lexeme
is finished.

Completing the Demo
This last section has been a significant one—you’ve added support for delimiters, strings and
multi-character operators. Because of this, you cannot only lex more complex source files, you
can actually lex complete XtremeScript scripts!

Before you can do any of this, you need to make one final change to the program’s main () func-
tion so that it properly handles the most recently added forms of output from GetNextToken ().
The following code is added to the switch block that fills the pstrToken string with a description
of the current token code.

// Operators
case TOKEN_TYPE_OP:

sprintf ( pstrToken, "Operator %d", GetCurrOp () );
break;

// Delimiters
case TOKEN_TYPE_DELIM_COMMA:

strcpy ( pstrToken, "Comma" );
break;

case TOKEN_TYPE_DELIM_OPEN_PAREN:
strcpy ( pstrToken, "Opening Parenthesis" );
break;

case TOKEN_TYPE_DELIM_CLOSE_PAREN:
strcpy ( pstrToken, "Closing Parenthesis" );
break;
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case TOKEN_TYPE_DELIM_OPEN_BRACE:
strcpy ( pstrToken, "Opening Brace" );
break;

case TOKEN_TYPE_DELIM_CLOSE_BRACE:
strcpy ( pstrToken, "Closing Brace" );
break;

case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:
strcpy ( pstrToken, "Opening Curly Brace" );
break;

case TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE:
strcpy ( pstrToken, "Closing Curly Brace" );
break;

case TOKEN_TYPE_DELIM_SEMICOLON:
strcpy ( pstrToken, "Semicolon" );
break;

// Strings
case TOKEN_TYPE_STRING:

strcpy ( pstrToken, "String" );
break;

This completes the program that fully lexes the entire XtremeScript language. Let’s make one
more version of the source file you’ve been adding to throughout this chapter to test it out:

293048 24 895523
-3.14159
235

253
{} 52435 345 {}

[ MyVar0, MyVar1, MyVar2 ]
459245;

rEtUrN

TRUE, false, ();
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3 ++ 2 ( 4 / 2 ) * 2

-22 .5 -.35 2.0

> >> >>=

While

"Hello, world!"

1
0.0 var
1.0 var
0

This_is_an_identifier

02345

_so_is_this___

if ( X < Y ) Z;

63246 -0.2346
34.0

When this file is passed through the final lexer, it produces the following results:

Lexical Analyzer Demo

0: Token: Integer, Lexeme: "293048"
1: Token: Integer, Lexeme: "24"
2: Token: Integer, Lexeme: "895523"
3: Token: Operator 1, Lexeme: "-"
4: Token: Float, Lexeme: "3.14159"
5: Token: Integer, Lexeme: "235"
6: Token: Integer, Lexeme: "253"
7: Token: Opening Curly Brace, Lexeme: "{"
8: Token: Closing Curly Brace, Lexeme: "}"
9: Token: Integer, Lexeme: "52435"
10: Token: Integer, Lexeme: "345"
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11: Token: Opening Curly Brace, Lexeme: "{"
12: Token: Closing Curly Brace, Lexeme: "}"
13: Token: Opening Brace, Lexeme: "["
14: Token: Identifier, Lexeme: "MyVar0"
15: Token: Comma, Lexeme: ","
16: Token: Identifier, Lexeme: "MyVar1"
17: Token: Comma, Lexeme: ","
18: Token: Identifier, Lexeme: "MyVar2"
19: Token: Closing Brace, Lexeme: "]"
20: Token: Integer, Lexeme: "459245"
21: Token: Semicolon, Lexeme: ";"
22: Token: return, Lexeme: "rEtUrN"
23: Token: true, Lexeme: "TRUE"
24: Token: Comma, Lexeme: ","
25: Token: false, Lexeme: "false"
26: Token: Comma, Lexeme: ","
27: Token: Opening Parenthesis, Lexeme: "("
28: Token: Closing Parenthesis, Lexeme: ")"
29: Token: Semicolon, Lexeme: ";"
30: Token: Integer, Lexeme: "3"
31: Token: Operator 15, Lexeme: "++"
32: Token: Integer, Lexeme: "2"
33: Token: Opening Parenthesis, Lexeme: "("
34: Token: Integer, Lexeme: "4"
35: Token: Operator 3, Lexeme: "/"
36: Token: Integer, Lexeme: "2"
37: Token: Closing Parenthesis, Lexeme: ")"
38: Token: Operator 2, Lexeme: "*"
39: Token: Integer, Lexeme: "2"
40: Token: Operator 1, Lexeme: "-"
41: Token: Integer, Lexeme: "22"
42: Token: Float, Lexeme: ".5"
43: Token: Operator 1, Lexeme: "-"
44: Token: Float, Lexeme: ".35"
45: Token: Float, Lexeme: "2.0"
46: Token: Operator 13, Lexeme: ">"
47: Token: Operator 32, Lexeme: ">>"
48: Token: Operator 34, Lexeme: ">>="
49: Token: while, Lexeme: "While"
50: Token: String, Lexeme: "Hello, world!"
51: Token: Integer, Lexeme: "1"

13. LEXICAL ANALYSIS



853

52: Token: Float, Lexeme: "0.0"
53: Token: var, Lexeme: "var"
54: Token: Float, Lexeme: "1.0"
55: Token: var, Lexeme: "var"
56: Token: Integer, Lexeme: "0"
57: Token: Identifier, Lexeme: "This_is_an_identifier"
58: Token: Integer, Lexeme: "02345"
59: Token: Identifier, Lexeme: "_so_is_this___"
60: Token: if, Lexeme: "if"
61: Token: Opening Parenthesis, Lexeme: "("
62: Token: Identifier, Lexeme: "X"
63: Token: Operator 12, Lexeme: "<"
64: Token: Identifier, Lexeme: "Y"
65: Token: Closing Parenthesis, Lexeme: ")"
66: Token: Identifier, Lexeme: "Z"
67: Token: Semicolon, Lexeme: ";"
68: Token: Integer, Lexeme: "63246"
69: Token: Operator 1, Lexeme: "-"
70: Token: Float, Lexeme: "0.2346"
71: Token: Float, Lexeme: "34.0"

Token count: 72

This is certainly nice, but to really test it, let’s throw a full, basic script at it, written entirely in the
XtremeScript language developed in Chapter 7:

func MyFunc ( Param0, Param1, Param2 )
{

return ( Param0 + Param1 ) * Param2;
}

func main ()
{

var MyString;
var X;

MyString = "This is a \"real\" XtremeScript script!";
X = 256;

MyFunc ( MyString, 3.14159, X );
}
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Here are the results:

Lexical Analyzer Demo

0: Token: func, Lexeme: "func"
1: Token: Identifier, Lexeme: "MyFunc"
2: Token: Opening Parenthesis, Lexeme: "("
3: Token: Identifier, Lexeme: "Param0"
4: Token: Comma, Lexeme: ","
5: Token: Identifier, Lexeme: "Param1"
6: Token: Comma, Lexeme: ","
7: Token: Identifier, Lexeme: "Param2"
8: Token: Closing Parenthesis, Lexeme: ")"
9: Token: Opening Curly Brace, Lexeme: "{"
10: Token: return, Lexeme: "return"
11: Token: Opening Parenthesis, Lexeme: "("
12: Token: Identifier, Lexeme: "Param0"
13: Token: Operator 0, Lexeme: "+"
14: Token: Identifier, Lexeme: "Param1"
15: Token: Closing Parenthesis, Lexeme: ")"
16: Token: Operator 2, Lexeme: "*"
17: Token: Identifier, Lexeme: "Param2"
18: Token: Semicolon, Lexeme: ";"
19: Token: Closing Curly Brace, Lexeme: "}"
20: Token: func, Lexeme: "func"
21: Token: Identifier, Lexeme: "main"
22: Token: Opening Parenthesis, Lexeme: "("
23: Token: Closing Parenthesis, Lexeme: ")"
24: Token: Opening Curly Brace, Lexeme: "{"
25: Token: var, Lexeme: "var"
26: Token: Identifier, Lexeme: "MyString"
27: Token: Semicolon, Lexeme: ";"
28: Token: var, Lexeme: "var"
29: Token: Identifier, Lexeme: "X"
30: Token: Semicolon, Lexeme: ";"
31: Token: Identifier, Lexeme: "MyString"
32: Token: Operator 11, Lexeme: "="
33: Token: String, Lexeme: "This is a "real" XtremeScript script!"
34: Token: Semicolon, Lexeme: ";"
35: Token: Identifier, Lexeme: "X"
36: Token: Operator 11, Lexeme: "="
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37: Token: Integer, Lexeme: "256"
38: Token: Semicolon, Lexeme: ";"
39: Token: Identifier, Lexeme: "MyFunc"
40: Token: Opening Parenthesis, Lexeme: "("
41: Token: Identifier, Lexeme: "MyString"
42: Token: Comma, Lexeme: ","
43: Token: Float, Lexeme: "3.14159"
44: Token: Comma, Lexeme: ","
45: Token: Identifier, Lexeme: "X"
46: Token: Closing Parenthesis, Lexeme: ")"
47: Token: Semicolon, Lexeme: ";"
48: Token: Closing Curly Brace, Lexeme: "}"

Token count: 49

How cool is this? The lexer completely understands the language, which means you have a nearly
finished foundation upon which to build the parser, and ultimately, the rest of the compiler.

SUMMARY
With the exception of the operator lexing nightmare near the end, this has hopefully been a rela-
tively straightforward chapter. The results were anything but trivial however—you now have a fully
featured lexer for your language. You’ll have to do a little bit of integrating to get it to work with
the rest of the compiler, which you’ll begin building in the next chapter, but the real work
behind lexical analysis is now behind you. As you know by now, lexing is a very important phase
in the pipeline of a basic compiler, so your accomplishments in this chapter are significant.

As usual, you’re strongly encouraged to check out the source for the three lexer demos built in
this chapter. I specifically aimed to cover virtually every line of code in all three demos in this
chapter, which I did, but it still helps a lot to see everything put together in its final configuration.

ON THE CD
This chapter contains three programs—the three lexer demos you designed and implemented.
These demos are found in the Programs/Chapter 13/ directory. Within this directory you’ll find
three directories in which the specific lexers reside; 13_01/, 13_02/, and 13_03/. As usual, the
demos come in both source and executable form.

This chapter has been solely concerned with text processing, so everything is a simple console
application and should compile and run very easily.

ON THE CD
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Each of the lexer executables accepts a command-line argument to specify which file to lex. Go
ahead and write your own source files to test out its robustness.

CHALLENGES
■ Easy: Add some extra multi-character operators, and see whether you can properly insert

them into the operator transition state tables. Remember to add them to the end of the
tables so they don’t disrupt the preexisting indexes.

■ Intermediate: Currently, the delimiters are all one character and can thus be supported
more easily than operators because there’s no possibility of state transitions. However,
many languages have multi-character delimiters. In order to support this in your own
lexer, you’d need to implement a system similar to what you used for operators in order
to handle such delimiters. Try adding such a system, using the existing operator code as
a guide.

■ Difficult: Add comments to the final lexer. Comments like // ... and /* ... */ can be
implemented using states, much like strings; each character within the comment syntax
is a separate state, along with another state for the comment’s body. This isn’t as easy as it
sounds, however. The problem is, both comments share the / character, which is also
used for the division operator. The only way to resolve this issue is to implement a look-
ahead character, much like the one used in XASM’s parser, to determine whether anoth-
er slash, or an asterisk, appears afterwards. This chapter’s lexers didn’t need a look-
ahead simply because there were no such clashes among characters. As you can see, how-
ever, it’s a vital feature in such cases.

13. LEXICAL ANALYSIS



Building the
XtremeScript

Compiler
Framework

“Telephone, computer, fax machine, fifty-two weekly 
paychecks and forty-eight flight coupons…

we now had corporate sponsorship.”
——Jack, Fight Club

CHAPTER 14



858

With 13 chapters behind you, the moment has finally arrived. You’re now ready to dive
headlong into the real inner-workings of the XtremeScript Compiler—the high-level,

human interface to our nearly complete scripting system.

Regardless of the reasonable complexity associated with both the virtual machine and assembler,
no scripting system is really worth using without a high-level language to drive it in large projects.
Although it’s certainly not impossible, scripting an entire game in pure XVM assembly would be
an exercise in tedium.

In this chapter, you’re going to

■ Plan the design and general architecture of the XtremeScript compiler.
■ Integrate the lexer built in the last chapter with the compiler’s framework.
■ Discuss and create many of the compiler’s major components, including the I-code mod-

ule and code emitter.

The construction of the XtremeScript compiler will ultimately be a three-chapter process. The
last chapter started with the design and implementation of a full-featured lexical analyzer module
that’s ready to be dropped into place. This chapter builds a solid foundation upon which to base
the rest of the compiler, as well as the lexer, by organizing and encapsulating the compiler’s
major structures and modules. The final chapter dealing with the compiler, which is up next,
focuses entirely on parsing the XtremeScript code and converting it to an intermediate format
that the code emitter can output in the form of XVM assembly. Although you won’t actually
process any high-level code in this chapter directly, you will be able to hard-code some values into
the compiler and use them as test data for generating real .XSE executables.

A STRATEGIC OVERVIEW
As is the case with all large and complex software projects, you must be careful to ensure that the
data and code is encapsulated in a clean and logical manner. Chaos is the result of bad organiza-
tion, and because the implementation of a high-level compiler is an uphill battle to begin with,
you don’t want to make things any harder than they already are by being messy.

Fortunately, you don’t have to go too far. The project certainly isn’t so big that it necessarily
demands the use of OOP, so using nearly pure C will still be fine (although as always, I’ll be using
many of C++’s syntactic conveniences). Furthermore, although strongly designed and enforced

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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interfaces are generally a good thing, you don’t need to follow this rule too strictly. There might
still be a handful of globals floating around, or other such “cheating,” but the final result will be
more than clean enough for the purposes here.

As I’ve demonstrated frequently throughout the book so far, compilers are generally built as two
separate “ends,” separated by what is known as an I-code module. I-code is a way to represent a pro-
gram’s source code in a way that’s independent of any source or target language, allowing the
compiler to be retargeted or supportive of multiple high-level languages. The compiler will loose-
ly follow this format, so let’s talk about these major components in more detail. The concept of I-
code separating the front and back ends is illustrated in Figure 14.1.

A STRATEGIC OVERVIEW

Figure 14.1

The I-code module is used to separate the front and back ends.

The Front End
The front end of the compiler will be responsible for loading the source code, preprocessing it,
lexing it into a stream of tokens and lexemes, and parsing it into an equivalent I-code representa-
tion. By the time the front end is done with its job, you will have stripped away all traces of
human interaction, and have a structured, validated, in-memory version of the source code that
can be easily translated to XVM assembly.

The front end will be by far the most complex aspect of the compiler, so let’s break it into its con-
stituent modules. A graphical overview of the front end is illustrated in Figure 14.2.

Figure 14.2

The modules of the front end.
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The Loader Module
The loader module is responsible for initially loading the source code from an .XSS
(XtremeScript Source) file into memory. Although this may seem like a trivial job at first, there
are still some important details to consider.

Storing the Source Code
Unlike the simplified examples of the lexer built in the last chapter, the XtremeScript compiler
will not store the entire source file in a single string. Although this does have some advantages
(because it’s certainly easier to lex a contiguous stream of characters than some other, more com-
plex data structure), you are better off with a linked list, wherein each node stores a single source
line, for a number of reasons. For example, having each line in a separate node allows you to
track both the current line’s string and number, allowing you to produce verbose error messages
that highlight the exact problem (as you did in XASM). Check out Figure 14.3.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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Storing source code in

a linked list, wherein

each node represents

a separate line.

Internalization of the Source Format
Although virtually every plain text file in the world is stored in the ASCII format, the specific
method for denoting line breaks often changes significantly from one platform to the next. To
make things easier to manage internally, and to aid in portability, the loader will be responsible
for ensuring that the in-memory version of the source code uses a consistent representation for
line breaks and newlines.
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The Preprocessor Module
Once the loader has populated the compiler’s internal source code linked list, you’re almost
ready to pass things to the lexer and parser so the compilation process can begin. Before doing
so, however, you have the opportunity to filter and convert the source code to a more convenient
a format via the preprocessor. By inserting a preprocessor module in between the loader and the
lexical analyzer, you can perform any sort of preprocessing operation you want transparently, as
shown originally in Figure 14.1 and more closely in Figure 14.4.

A STRATEGIC OVERVIEW

Figure 14.4

The preprocessor

translates the original

form of the source file

to a different form.

I actually prefer to treat comments as preprocessor “directives,” unlike many compiler writers,
simply because it makes the implementation of the lexer a bit cleaner. For this reason, the pre-
processor will need to do this at the very least. Of course, the XtremeScript language specifica-
tion from Chapter 7 also calls for two basic directives: #include for including files and #define for
defining simple symbolic constants in the form of expandable macros. I’ll talk more about these
later.

The Lexical Analyzer Module
As you know well by now, the lexer is responsible for converting the raw source code into a more
usable format for the parser. This particular module doesn’t do anything on its own, however;
although its convention to treat the lexer as its own conceptual step that takes place independ-
ently, before the parser, it actually operates in parallel with it. The parser is responsible for invok-
ing the lexer on a regular basis to return the next token in the stream, so the lexer doesn’t actual-
ly execute until the parser explicitly calls it.

The lexer you wrote in the last chapter was specifically designed for use in XtremeScript, so your
only job now is to integrate it with the rest of the framework. You’ll see how this is done later in
the chapter.
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The Parser Module
In addition to being the most complex aspect of the compiler, the parser also takes center stage
among the various modules of the front end, and is its final phase. The parser is responsible for
converting the stream of tokens and lexemes produced by the lexical analyzer into I-code, which
is then converted to XVM assembly by the back end. The relationship between the parser and
lexer is depicted in Figure 14.5.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK

Figure 14.5

The relationship

between the lexer 

and parser.

The I-Code Module
The front and back ends never communicate with each other directly, but rather do so indirectly
by interfacing with a common I-code module. Once the front end has produced the I-code, it’s
entirely removed from the picture (conceptually, at least). The focus then shifts exclusively to the
back end, which is responsible for translating the I-code into the target format (which, in this
case, is XVM assembly).

As you’ll see in more detail later in this chapter, the I-code module will really just be a stream of
instructions, very similar in nature to the assembled instruction stream maintained by XASM. The
parser will use a number of I-code interface functions to generate instructions within this stream
and define their operands, which will make the code emitter’s job very easy. Check out Figure 14.6.

Figure 14.6

Separating the code

emitter from the pars-

er via an I-code mod-

ule simplifies and

abstracts both tasks.
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The Back End
The back end is responsible for converting the contents of the I-code module to XVM assembly
and invoking the XASM assembler to create a ready-to-use .XSE executable from it.

The Code Emitter Module
The XtremeScript compiler doesn’t generate actual .XSE executables; rather, it generates an
ASCII-formatted XVM assembly file and relies on the XASM assembler built in Chapter 9 to fin-
ish the job. Although these two tasks could certainly be combined into a single program (which
you could do easily, using only what you’ve learned from this book), this approach is both easier
to grasp from an educational standpoint and also gives you the option to hand-tune the compil-
er’s assembly output before passing it to the assembler. Figure 14.7 depicts the back end and its
modules.

A STRATEGIC OVERVIEW

Figure 14.7

The compiler’s back

end and its modules.

The XASM Assembler
The second “module” of the compiler’s back end is actually an entirely separate program. Once
the code emitter has done its job, a text file containing an XVM assembly script will be ready to
feed into the assembler to produce the final executable. Therefore, the last step in the compiler’s
lifespan is to briefly invoke the XASM assembler to carry out this final task. The assembly file is
then deleted, leaving the user with the original .XSS (source) file, and a newly created executable
script (.XSE) file. To the end user, this process is transparent.

Major Structures
In addition to the phases of the compiler, there will also be a number of structures that play a
vital role in the conversion of high-level code to its low-level equivalent. As you’ll see, most of
these will strongly mirror the structures used in XASM. Let’s take a look.

The Source Code
As mentioned earlier, the source code will be stored internally as a linked list wherein each node
contains a single line of code. Don’t confuse lines of code with statements, however. For example,
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the following line of code is represented as a single node within the list, even though it contains
multiple statements:

X = 256; Y = 512; MyString = "Hello, world!";

Furthermore, single statements can often span multiple lines, such as the following:

X
=
256;

This would be stored internally as three nodes.

The Script Header
Much like the XASM assembler and the XVM, the compiler will maintain a script’s header data
and other miscellaneous properties in a global structure known as the script header. As usual, you
can use this space to store the script’s requested stack size, thread priority, the presence of _Main
(), and other such information.

The Symbol Table
As the source file is parsed, variable declara-
tions are interpreted as signs to add data to
the symbol table. By the end of the parsing
process, the symbol table is a complete and
detailed reflection of the script’s variables and
arrays. Each entry in the table corresponds to
a specific variable or array, and contains perti-
nent information such as its identifier, size,
scope, and so on.

In addition to writing data to the symbol table
to record a variable, the table will be frequent-
ly read to validate the use of a variable based
on the context in which its found——its
scope, whether an array subscript was
accessed, and so on. Check out Figure 14.8 for
a visual explanation of the symbol table.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK

NOTE
Just as was the case with XASM, I use
the term symbol table in a somewhat
ad-hoc sense.Although most compilers
tend to use one giant table to store all
of a program’s identifiers, whether
they’re functions, variables, structures,
classes, or labels, I chose to break it into
multiple tables.Although this particular
table, because it mainly stores variables
and arrays, should probably be called
the “variable table,” I like to hold on to
the original term for posterity.
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The Function Table
The function table is similar to the symbol table, but maintains a record of the script’s functions,
rather than its variables and arrays. The function table stores each function’s name, parameter
count, and other such information. Like the symbol table, it’s written to as functions are initially
parsed, and read from as they’re called.

One major difference between the XtremeScript compiler and XASM is that there’s not a sepa-
rate table for storing host API calls. You’ll find out how this is done later in the chapter, but for
now, just make a mental note of the fact that a single table is used to store all functions——
whether they’re defined by the script or the host. Figure 14.9 depicts the function table.

A STRATEGIC OVERVIEW

Figure 14.8

The symbol table

stores the variables

and arrays of a source

script.

Figure 14.9

The function table

stores the functions of

a source script.
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The String Table
Like an XVM assembly script, a script written in XtremeScript is also likely to contain a number
of string literals. In addition to converting the script’s statements and declarations to valid XVM
assembly, the parser will also be responsible for collecting these strings and storing them in a
table (as well as filter out any duplicates it may come across). Take a look at Figure 14.10 for a
better idea of what the string table does.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK

Figure 14.10

The string table stores

the string literal values

of a source script.

The I-Code Stream
On one end of the spectrum, you have the raw source code stored in a linked list. On the other
end, there’s a stream of I-code that represents the program in an assembly-like form. To be specif-
ic, however, there won’t be a single, global I-code structure. Remember, XVM only allows code to
appear inside functions; because code in the global scope is illegal, it’s better to associate a single
block of I-code with each entry in the function table.

Interfaces and Encapsulation
As important as the compiler’s structures are, it’s equally important that these structures are
accessible to other aspects of the program in a clean and consistent way. Instead of thinking of
these structures as huge blocks of unwieldy data, it’s far easier to conceptualize them as small
groups of functions. These functions may be used to read from and write to the structure, sort or
organize the structure’s data, or any number of things. By not having to deal with the structure’s
implementation itself, the rest of the compiler can focus on how to use it, rather than how it
works. When every module and structure in the compiler looks at every other module and 
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structure in this same way, the entire process of compiling a source file can be broken into a
rather straightforward hierarchy of function calls.

Although object-oriented programming is generally the best foundation for the interfaces and
implementation of a large program’s structures, this compiler still certainly falls within the bound-
aries of what C is capable of. Because of this, you’ll not only pass on classes in favor of structs and
functions, but will also break the rules here and there. You could bend over backwards to respect
and uphold every last convention for truly hiding and encapsulating the compiler’s data, but in
the interest of getting things done quickly and easily, you can let it slide here and there.

The Compiler’s Lifespan
With all of that out of the way, let’s look at a brief and simplified rundown of the major points in
the compiler’s lifespan.

Reading the Command Line
As soon as the compiler starts, the command line is read to interpret the specified filenames and
parameters. The compiler’s internal flags, preferences, and structures are initialized with the
parameters entered by the users, or with defaults for any parameter that was omitted. If any vital
parameters are left out or malformed, an error is displayed and the program exits.

Loading the Source Code
The loader module is then invoked, which uses the source filename specified on the command
line. If the file is found, it’s opened and loaded into a linked list, and its newline conventions are
converted to the compiler’s internal format. If the file isn’t found, an error is displayed and the
program exits.

Preprocessing
The source code then undergoes a preprocessing phase, whose primary job is to strip away com-
ments, both the single-line // variety and the /* */ block style. Other preprocessor directives can
be handled here as well, for tasks such as file inclusion and macro expansion.

Parsing
With the source code loaded and preprocessed, the parser is ready to run. It begins its scan at the
top of the source file and works its way to the bottom. As each statement and declaration of the
script is parsed, information is read from and written to almost all of the compiler’s structure; the
symbol, function, and string tables are accessed to add new entries and verify existing ones, for

A STRATEGIC OVERVIEW
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example. It’s also important to mention that the XtremeScript compiler will work strictly in a sin-
gle pass; rather than scanning through the file multiple times like XASM, it will work its way from
top to bottom in a straight line. This brings with it some restrictions—for example, forward refer-
ences of functions will be illegal. It will help you understand the concept of single-pass versus
multi-pass compilers in a first-hand sense, however.

Of course, the real job of the parser is to generate an I-code representation of the program. By
the time the parser is done with its job, this process is complete and the original source code is
no longer of any use.

Code Emission
At this point, the script’s I-code equivalent has been fully generated, and the compiler is ready to
let the code emitter produce a complete XVM assembly file based on it. The emitter’s job is really
quite simple in the case of this compiler—all it does is scan through each I-code instruction and
convert it to its assembly equivalent (although I’ll discuss this in far more detail later). When this
process is complete, a new file exists in the working directory of the compiler—an .XASM file
containing the equivalent of the original .XSS source file.

Invoking XASM
Finally, XASM is transparently invoked from within the compiler to finish the job and convert the
resulting .XASM file into a ready-to-run .XSE executable. After XASM runs, the compiler-generat-
ed .XASM file is deleted.

The Compiler’s main () Function
To wrap this section up, let’s look at the finished compiler’s main () section:

main ( int argc, char * argv [] )
{

// Print the logo
PrintLogo ();

// Validate the command line argument count
if ( argc < 2 )
{
// If at least one filename isn't present, print the usage info and
// exit

PrintUsage ();
return 0;

}

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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// Verify the filenames
VerifyFilenames ( argc, argv );

// Initialize the compiler
Init ();

// Read in the command line parameters
ReadCmmndLineParams ( argc, argv );

// ---- Begin the compilation process (front end)

// Load the source file into memory
LoadSourceFile ();

// Preprocess the source file
PreprocessSourceFile ();

// ---- Compile the source code to I-code

printf ( "Compiling %s...\n\n", g_pstrSourceFilename );
CompileSourceFile ();

// ---- Emit XVM assembly from the I-code representation (back end)

EmitCode ();

// Print out compilation statistics
PrintCompileStats ();

// Free resources and perform general cleanup
ShutDown ();

// Invoke XASM to assemble the output file to create the .XSE, unless the
// user requests otherwise
if ( g_iGenerateXSE )

AssmblOutputFile ();

// Delete the output (assembly) file unless the user requested it to be
// preserved
if ( ! g_iPreserveOutputFile )

remove ( g_pstrOutputFilename );

return 0;
}

A STRATEGIC OVERVIEW
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Even without an understanding of the rest of the program, this should make reasonable sense.
You start by printing the program’s “logo,” which is really just its title and version information.
The number of command-line arguments is then checked; if it’s less than 2 (meaning only the
name of the program was passed), the user hasn’t specified any action to be taken. In response to
this, usage information that explains the command-line interface is printed and the program
exits. The filenames are then verified, the same basic initialization is performed, and the remain-
ing arguments are read.

At this point, the initial interface with the user is over and the source code is loaded and pre-
processed. A message is then printed, alerting the user that the file is compiling, and the compi-
lation process begins. Once an I-code representation has been generated, the code is emitted
and various statistics gathered during and after the compilation process are presented (just like
in XASM). The compiler then shuts down by freeing its internal structures.

The process isn’t over yet, however. To finish the job, XASM is invoked to convert the assembly
file to an executable and the temporary XVM assembly file is deleted. Notice also that global vari-
ables are checked before both of these tasks are executed; this is done to allow the user to sup-
press either the generation of the executable or the deletion of the assembly file.

What’s really important to notice here is that the entire operation of the compiler boiled down to
a handful of function calls. This is what I mean by clean interfaces; by reducing the compiler’s lifes-
pan to a series of discrete and coarse-grained steps, everything becomes much easier to implement.

THE COMMAND-LINE INTERFACE
Because the XtremeScript compiler is a console application, its primary interface is the com-
mand line. In addition to specifying input and output files, a number of parameters can be inter-
preted as well that afford the user more precise control of the compiler’s output. Here’s the gen-
eral format of the compiler’s command-line interface (notice first that the program’s name is XSC,
which stands for XtremeScript Compiler):

XSC Source.XSS [Output.XASM] [Options]

The Logo and Usage Info
What I call the “logo” really just boils down to the program’s name and version information. It’s
always a good idea to print one at the top of any program you intend for general use. Naturally,
PrintLogo () is a pretty simple function:

void PrintLogo ()
{

printf ( "XSC\n" );

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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printf ( "XtremeScript Compiler Version %d.%d\n", VERSION_MAJOR,
VERSION_MINOR );

printf ( "Written by Alex Varanese\n" );
printf ( "\n" );

}

After printing the logo, main () then prints the program’s usage info and exits if the user didn’t
supply any command-line arguments:

void PrintUsage ()
{

printf ( "Usage:\tXSC Source.XSS [Output.XASM] [Options]\n" );
printf ( "\n" );
printf ( "\t-S:Size      Sets the stack size (must be decimal integer

value)\n" );
printf ( "\t-P:Priority  Sets the thread priority: Low, Med, High or

timeslice\n" );
printf ( "\t             duration (must be decimal integer value)\n" );
printf ( "\t-A           Preserve assembly output file\n" );
printf ( "\t-N           Don't generate .XSE (preserves assembly

output file)\n" );
printf ( "\n" );
printf ( "Notes:\n" );
printf ( "\t- File extensions are not required.\n" );
printf ( "\t- Executable name is optional; source name is used by

default.\n" );
printf ( "\n" );

}

Reading Filenames
The source filename is a mandatory parameter and must come first. Without this, the program
will not operate properly, if at all. Beyond the source filename, a number of optional arguments
may follow, starting with the output filename. Because the compiler technically generates only
.XASM files on its own (it relies on the assembler to create the executable), the filename speci-
fied here relates to the .XASM file it will generate. Of course, the compiler passes this same name
as the output filename for the assembler, so it technically counts for both purposes. If an output
filename is not specified, the input filename is used in its place. Furthermore, neither filename is
required to have an extension; entering MySource as the input name is no different than
MySource.XSS. The compiler will automatically append one in its absence.

THE COMMAND-LINE INTERFACE
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Implementation
According to the compiler’s main () function, the compiler calls a function called VerifyFilenames
() to read the filenames from the command line, append file extensions if necessary, and store
them for subsequent use by other modules. Regardless of how many filenames were initially spec-
ified by the user, VerifyFilenames () produces two separate strings and stores them globally in
these string variables:

char g_pstrSourceFilename [ MAX_FILENAME_SIZE ],
g_pstrOutputFilename [ MAX_FILENAME_SIZE ];

g_pstrSourceFilename stores the .XSS filename, whereas g_pstrOutputFilename stores the filename
that will be used for both the .XASM assembly file and the .XSE executable. Although global
strings certainly aren’t the cleanest or most encapsulated way to pass filenames around, they do
make it a lot easier for any given module to access them when necessary. Both functions make
use of the MAX_FILENAME_SIZE constant, which I have to 2048:

#define MAX_FILENAME_SIZE           2048

Sure, 2048 is complete and utter overkill, but I like to be safe. Really safe. With this kind of
padding, this compiler will still be running happily in the year 2048. :)

Here’s the code for VerifyFilenames ():

void VerifyFilenames ( int argc, char * argv [] )
{

// First make a global copy of the source filename and convert it to
// uppercase
strcpy ( g_pstrSourceFilename, argv [ 1 ] );
strupr ( g_pstrSourceFilename );

// Check for the presence of the .XASM extension and add it if it's not
// there
if ( ! strstr ( g_pstrSourceFilename, SOURCE_FILE_EXT ) )
{
// The extension was not found, so add it to string

strcat ( g_pstrSourceFilename, SOURCE_FILE_EXT );
}

// Was an executable filename specified?
if ( argv [ 2 ] && argv [ 2 ][ 0 ] != '-' )
{
// Yes, so repeat the validation process

strcpy ( g_pstrOutputFilename, argv [ 2 ] );
strupr ( g_pstrOutputFilename );

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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// Check for the presence of the .XSE extension and add it if it's not
// there

if ( ! strstr ( g_pstrOutputFilename, OUTPUT_FILE_EXT ) )
{

// The extension was not found, so add it to string
strcat ( g_pstrOutputFilename, OUTPUT_FILE_EXT );

}
}
else
{
// No, so base it on the source filename

// First locate the start of the extension, and use pointer subtraction
// to find the index

int ExtOffset = strrchr ( g_pstrSourceFilename, '.' ) -
g_pstrSourceFilename;

strncpy ( g_pstrOutputFilename, g_pstrSourceFilename, ExtOffset );

// Append null terminator
g_pstrOutputFilename [ ExtOffset ] = '\0';

// Append executable extension
strcat ( g_pstrOutputFilename, OUTPUT_FILE_EXT );

}
}

The function accepts two parameters—the argu-
ment count and argument array passed to the main
() function from the command line. The argument
at array index 1 should contain the filename, so you
can start there. The first task is to copy the string
into the g_pstrSourceFilename global, and then to
convert it to uppercase to keep things uniform and
consistent. The strstr () function is then used to
determine the presence of the “.” character. If it’s
not found, it’s taken as a sign that the extension was
omitted and strcat () is used to append one using
the SOURCE_FILE_EXT constant:

#define SOURCE_FILE_EXT          ".XSS"

THE COMMAND-LINE INTERFACE

NOTE
Simply checking for the presence
of the dot character isn’t enough
to truly verify whether the exten-
sion was supplied, but it’s close
enough. Chances are, the extension
will either be there or it won’t; any-
thing else will be more or less con-
sidered malformed and ultimately
cause a fatal error down the line.
Either way, the user will be alerted
to the mistake sooner or later.
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This takes care of the first filename, so the second one is read next. This part is a twofold job; in
addition to checking for the presence of the extension, it must be determined whether a second
filename was specified. If not, the filename is based on the first.

The second filename should be located at index 2 of the argv [] array. To find out if the file-
name was provided, it’s first determined if the string is null. If not, the string’s first character is
then read—if it’s a dash (-) character, you know it’s not a filename. This is because, as you’ll see
soon, command-line options are always preceded by a dash. As was the case with the first file-
name, the string is copied into its respective global variable (g_pstrOutputFilename in this case)
and the OUTPUT_FILE_EXT constant is appended:

#define OUTPUT_FILE_EXT             ".XASM"

If, however, an output filename wasn’t specified, it must be based on the source filename. The
process here is easy; because you know for sure that the filename has an extension at this point,
you can simply copy g_pstrSourceFilename into g_pstrExecFilename and replace the first instance of
the . character with a '\0' null terminator. This effectively “cuts the string off” at that point,
allowing you to append the proper extension easily.

Reading Options
Following the filename(s), a number of options may be passed as well. Table 14.1 summarizes
them.
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Table 14.1  Compiler Command-Line Options
Name Valid Values Description

S Decimal Integer Sets the script’s requested stack size

P Decimal Integer, Sets the script’s thread priority
Low, Med, or High

A None Prevents the compiler-generated assembly file from
being deleted

N None Prevents XASM from being invoked, thereby sup-
pressing the generation of an .XSE executable.Also
forces the preservation of the assembly file
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All command-line options must be preceded with a dash (-) to differentiate them from file-
names. Each of them are optional, and although A and N are technically mutually exclusive, this
isn’t enforced. Lastly, the options can appear in any order (unlike the filenames, which must
always be either the first, or first and second in the list). As is shown in the table, the -S and -P
options accept values. Options with values are written in the form of -Option:Value, so a stack size
of 8192 could be requested like this:

-S:8192

A thread time slice of 120 could be set with the priority option like this:

-P:120

However, -P also accepts the three keyword strings listed in Table 14.1, so a medium-level priority
could be requested like this:

-P:Med

Of course, it’s all case-insensitive.

Implementation
Reading these options in is handled by the ReadCmmndLineParams () function. The function begins
by entering a loop that reads each command from the argv [] array and converts it to uppercase.
The loop then determines whether the current argument is a valid option by checking for the
presence of a dash in the first character:

void ReadCmmndLineParams ( int argc, char * argv [] )
{

char pstrCurrOption [ 32 ];
char pstrCurrValue [ 32 ];
char pstrErrorMssg [ 256 ];

for ( int iCurrOptionIndex = 0; iCurrOptionIndex < argc;
++ iCurrOptionIndex )

{
// Convert the argument to uppercase to keep things neat and tidy

strupr ( argv [ iCurrOptionIndex ] );

// Is this command line argument an option?
if ( argv [ iCurrOptionIndex ][ 0 ] == '-' )
{

THE COMMAND-LINE INTERFACE
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pstrCurrOption, psrtCurrValue, and pstrErrorMssg are just local copies of various strings read from
the arrays as the loop executes. Once it’s determined that the current argument is a valid option,
its actual data is extracted. This can be either a one- or two-step process, depending on whether
the option accepts a value. Both the -S and -P options do, but -A and -N don’t:

// Parse the option and value from the string
int iCurrCharIndex;
int iOptionSize;
char cCurrChar;

// Read the option up till the colon or the end of the string
iCurrCharIndex = 1;
while ( TRUE )
{

cCurrChar = argv [ iCurrOptionIndex ][ iCurrCharIndex ];
if ( cCurrChar == ':' || cCurrChar == '\0' )

break;
else

pstrCurrOption [ iCurrCharIndex - 1 ] = cCurrChar;
++ iCurrCharIndex;

}
pstrCurrOption [ iCurrCharIndex - 1 ] = '\0';

// Read the value till the end of the string, if it has one
if ( strstr ( argv [ iCurrOptionIndex ], ":" ) )
{

++ iCurrCharIndex;
iOptionSize = iCurrCharIndex;

pstrCurrValue [ 0 ] = '\0';
while ( TRUE )
{

if ( iCurrCharIndex > ( int ) strlen ( argv [ iCurrOptionIndex ] ) )
break;

else
{

cCurrChar = argv [ iCurrOptionIndex ][ iCurrCharIndex ];
pstrCurrValue [ iCurrCharIndex - iOptionSize ] = cCurrChar;

}
++ iCurrCharIndex;

}
pstrCurrValue [ iCurrCharIndex - iOptionSize ] = '\0';

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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// Make sure the value is valid
if ( ! strlen ( pstrCurrValue ) )
{

sprintf ( pstrErrorMssg, "Invalid value for -%s option",
pstrCurrOption );

ExitOnError ( pstrErrorMssg );
}

}

This is handled in two loops. The first reads all characters
until the end of the string or the first instance of the :
character and adds them to the pstrCurrOption string.
When this loop is complete, pstrCurrOption will contain
the complete option string.

The second loop starts where the first left off, but only if
the option string contains a : character. If it doesn’t, the
loop is skipped entirely because it’s clear that the option
doesn’t contain a value. Otherwise, the character index is
incremented to move it past the : read in the last loop, and every subsequent character read
from the string is added to pstrCurrValue. When these two loops have completed, pstrCurrOption
and pstrCurrValue will be populated with separate strings containing the option’s name and
value. Lastly, the resulting pstrCurrValue string is analyzed to make sure it’s a valid value (in other
words, its length has to be greater than zero).

With the option’s name and value isolated, the option is carried out. First up is the -S directive,
which sets the stack size:

// Set the stack size
if ( stricmp ( pstrCurrOption, "S" ) == 0 )
{

// Convert the value to an integer stack size
g_ScriptHeader.iStackSize = atoi ( pstrCurrValue );

}

As you can see, it’s pretty simple; the pstrCurrValue string is converted to an integer with the atoi
() function, and placed in the g_ScriptHeader.iStackSize field. I haven’t covered the
g_ScriptHeader structure yet, but this should all be pretty self-explanatory.

Next up is -P, which sets the script’s thread priority:

THE COMMAND-LINE INTERFACE

NOTE
As you can see, command-
line options can be more
than one character, even if
none of the existing options
has taken advantage of this.
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// Set the priority
else if ( stricmp ( pstrCurrOption, "P" ) == 0 )
{

// ---- Determine what type of priority was specified

// Low rank
if ( stricmp ( pstrCurrValue, PRIORITY_LOW_KEYWORD ) == 0 )
{

g_ScriptHeader.iPriorityType = PRIORITY_LOW;
}

// Medium rank
else if ( stricmp ( pstrCurrValue, PRIORITY_MED_KEYWORD ) == 0 )
{

g_ScriptHeader.iPriorityType = PRIORITY_MED;
}

// High rank
else if ( stricmp ( pstrCurrValue, PRIORITY_HIGH_KEYWORD ) == 0 )
{

g_ScriptHeader.iPriorityType = PRIORITY_HIGH;
}

// User-defined time slice
else
{

g_ScriptHeader.iPriorityType = PRIORITY_USER;
g_ScriptHeader.iUserPriority = atoi ( pstrCurrValue );

}
}

This one’s a bit more work because it not only has to interpret integer values, but the Low, Med,
and High strings as well. pstrCurrValue is compared to the PRIORITY_*_KEYWORD constants to deter-
mine whether it’s one of them, and the g_ScriptHeader.iPriorityType field is set accordingly with
one of three PRIORITY_* constants. Here they are:

#define PRIORITY_NONE               0
#define PRIORITY_USER               1
#define PRIORITY_LOW                2
#define PRIORITY_MED                3
#define PRIORITY_HIGH               4
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#define PRIORITY_LOW_KEYWORD        "Low"
#define PRIORITY_MED_KEYWORD        "Med"
#define PRIORITY_HIGH_KEYWORD       "High"

If the option’s value doesn’t match any of the keywords, pstrCurrValue is unconditionally convert-
ed to an integer and assigned to g_ScriptHeader.iUserPriority. The iPriorityType field is then set
to PRIORITY_USER to reflect this.

The last two command-line options are -A and -N, which preserve the assembly file and suppress
the generation of the executable, respectively:

// Preserve the assembly file
else if ( stricmp ( pstrCurrOption, "A" ) == 0 )
{

g_iPreserveOutputFile = TRUE;
}

// Don't generate an .XSE executable
else if ( stricmp ( pstrCurrOption, "N" ) == 0 )
{

g_iGenerateXSE = FALSE;
g_iPreserveOutputFile = TRUE;

}

Because these options don’t relate specifically to the script itself, I kept them in separate global
variables. iPreserveOutputFile is TRUE if the compiler-generated .XASM file should be saved, and
g_iGenerateXSE is FALSE if XASM should not be invoked to create an .XSE executable. Notice that
the -N option automatically preserves the assembly file, whether or not the -A option was pres-
ent—without this, the -A and -N option would result in the compiler doing nothing at all if they
were both passed by the user.

Any option other than these is invalid:

// Anything else is invalid
else
{

sprintf ( pstrErrorMssg, "Unrecognized option: \"%s\"", pstrCurrOption );
ExitOnError ( pstrErrorMssg );

}

Throughout this section, you’ve been making use of the ExitOnError () function. This behaves
just as the function of the same name did in XASM, but I’ll cover it in a moment anyway. It
shouldn’t take much effort to figure out what it does until then, however.

THE COMMAND-LINE INTERFACE
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ELEMENTARY DATA STRUCTURES
Before proceeding, I’d like to get one
thing out of the way. This chapter, as
well as the next, will make heavy use of
both the stack and linked list data types.
Although these are obviously both sim-
ple to understand and implement, I
think it’s a good idea to briefly cover
their specific implementation in the
XtremeScript compiler, so you’ll fully
understand their usage later.

Linked Lists
The compiler makes heavy use of linked
lists, which are implemented in a quick and simple way using C structures and functions. I’ve
implemented the lists with two structures: one to represent nodes and one to represent a list’s
base structure that keeps track of everything. Let’s start with the node structure, LinkedListNode:

typedef struct _LinkedListNode   // A linked list node
{

void * pData;    // Pointer to the node's data
_LinkedListNode * pNext;     // Pointer to the next node in

// the list
}

LinkedListNode;

As you can see, this is a singly linked list, so it can only be traversed in a single direction. Each
node needs only two fields—the void data pointer, pData, and the pointer to the next node in the
chain, pNext.

The list itself is maintained with the LinkedList structure:

typedef struct _LinkedList      // A linked list
{

LinkedListNode * pHead,     // Pointer to head node
* pTail;     // Pointer to tail nail node

int iNodeCount;             // The number of nodes in the
// list

}
LinkedList;
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Naturally, in a real project I’d suggest taking
an object-oriented approach to these struc-
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leveraging the existing STL versions.After all,
the STL has been in steady development for
years, is feature rich and easy to use, and is
highly robust. For the purpose of a book,
however, it’s often easier to simply go with
traditional, C-style custom solutions that
readers can be walked through in entirety.
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This simple structure consists of three fields. The two pointers, pHead and pTail, point to the head
and tail nodes of the list. iNodeCount keeps track of how many nodes the list contains. Check out
Figure 14.11.

ELEMENTARY DATA STRUCTURES

Figure 14.11

The linked list 

structure.

The Interface
The linked list interface is rather simple; it has a handful of functions for initializing and freeing
lists, adding nodes, deleting nodes, and managing string nodes.

Initializing Lists
Let’s start with InitLinkedList (), which initializes a linked list:

void InitLinkedList ( LinkedList * pList )
{

// Set both the head and tail pointers to null
pList->pHead = NULL;
pList->pTail = NULL;

// Set the node count to zero, since the list is currently empty
pList->iNodeCount = 0;

}

The function does its job simply by pointing the head and tail nodes at nothing and resetting the
node count, based on the specified LinkedList structure pointer.
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Freeing Lists
Initializing a list is easy, but freeing one is a bit more complex:

void FreeLinkedList ( LinkedList * pList )
{

// If the list is empty, exit
if ( ! pList )

return;

// If the list is not empty, free each node
if ( pList->iNodeCount )
{
// Create a pointer to hold each current node and the next node

LinkedListNode * pCurrNode,
* pNextNode;

// Set the current node to the head of the list
pCurrNode = pList->pHead;

// Traverse the list
while ( TRUE )
{

// Save the pointer to the next node before freeing the current one
pNextNode = pCurrNode->pNext;

// Clear the current node's data
if ( pCurrNode->pData )

free ( pCurrNode->pData );

// Clear the node itself
if ( pCurrNode )

free ( pCurrNode );

// Move to the next node if it exists; otherwise, exit the loop
if ( pNextNode )

pCurrNode = pNextNode;
else

break;
}

}
}

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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The function takes a single LinkedList structure pointer. The list is traversed with two node point-
ers, pCurrNode and pNextNode. pCurrNode is set to the head of the list, and the traversal begins. At
each iteration of the loop, the pointer to the next node is saved in pNextNode. The current node’s
data is then freed, as well as the structure representing the node itself, and the saved pCurrNext
pointer is used to advance to the next node in the list. If the next node is null, it’s taken as a sign
that the tail has been reached and the loop exits.

Adding Nodes
Adding a node to the list requires two cases to be considered; that either the new node is the
head (because the list was empty before the addition), or the node is being added to a non-
empty list and is therefore the new tail. Let’s have a look:

int AddNode ( LinkedList * pList, void * pData )
{

// Create a new node
LinkedListNode * pNewNode = ( LinkedListNode * )

malloc ( sizeof ( LinkedListNode ) );

// Set the node's data to the specified pointer
pNewNode->pData = pData;

// Set the next pointer to NULL, since nothing will lie beyond it
pNewNode->pNext = NULL;

// If the list is currently empty, set both the head and
// tail pointers to the new node
if ( ! pList->iNodeCount )
{
// Point the head and tail of the list at the node

pList->pHead = pNewNode;
pList->pTail = pNewNode;

}

// Otherwise append it to the list and update the tail pointer
else
{
// Alter the tail's next pointer to point to the new node

pList->pTail->pNext = pNewNode;
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// Update the list's tail pointer
pList->pTail = pNewNode;

}

// Increment the node count
++ pList->iNodeCount;

// Return the new size of the linked list - 1,
// which is the node's index
return pList->iNodeCount - 1;

}

The first thing the function does is allocates space for the new node’s LinkedListNode structure. It
then sets the node’s data pointer to the pData parameter, and the next node pointer to NULL. The
specified list, pList, is then analyzed to determine whether it’s already populated with at least one
node. If not, both its head and tail pointers are set to the new node. Otherwise, the tail node is
updated to point to the new node (which becomes the new tail), and the base LinkedList struc-
ture’s tail is updated to point to the new node as well. The function wraps up by incrementing
the node count and returning the node count minus one as an index. You subtract one because
otherwise, the index would always be one higher than it needs to be; when the node count is
one, the first index is zero, and so on.

Deleting Nodes
Deleting a node also requires that attention be paid to specific cases. Care must be taken to patch
up the hole left by the deleted node, so that its immediate neighbors will link with one another
and keep the list contiguous. This matter is complicated by the fact that the head node does not
require any patching. Here’s the function:

void DelNode ( LinkedList * pList, LinkedListNode * pNode )
{

// If the list is empty, return
if ( pList->iNodeCount == 0 )

return;

// Determine if the head node is to be deleted
if ( pNode == pList->pHead )
{
// If so, point the list head pointer to the node just after the
// current head

pList->pHead = pNode->pNext;
}
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else
{
// Otherwise, traverse the list until the specified node's previous
// node is found

LinkedListNode * pTravNode = pList->pHead;
for ( int iCurrNode = 0; iCurrNode < pList->iNodeCount; ++ iCurrNode )
{

// Determine if the current node's next node is the specified one
if ( pTravNode->pNext == pNode )
{

// Determine if the specified node is the tail
if ( pList->pTail == pNode )
{

// If so, point this node's next node to NULL and set it as
// the new tail

pTravNode->pNext = NULL;
pList->pTail = pTravNode;

}
else
{

// If not, patch this node to the specified one's next node
pTravNode->pNext = pNode->pNext;

}
break;

}

// Move to the next node
pTravNode = pTravNode->pNext;

}
}

// Decrement the node count
-- pList->iNodeCount;

// Free the data
if ( pNode->pData )

free ( pNode->pData );

// Free the node structure
free ( pNode );

}
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The function accepts a linked list pointer, pList, and a node pointer, pNode. It starts by determin-
ing whether the node to be deleted is the head node. If so, it sets the base structure’s head point-
er to the node just after the current head pointer.

If the node to be deleted isn’t the head, it creates a new node pointer called pTravNode to traverse
the node and find it. At each iteration, pTravNode’s next node is compared to pNode to determine
whether they match. If so, the function then finds out if the node to be deleted is the tail. The
tail node is handled by setting pTravNode’s next pointer to NULL, and setting the base structure’s
tail pointer to pTravNode. This effectively separates the old tail from the list and allows you to safe-
ly delete it. If the node isn’t the tail, it simply sets pTravNode’s next pointer to the node immediate-
ly following its current next node. The function ends by decrementing the node count and free-
ing both the node’s data and LinkedListNode structure.

Adding String Nodes
The string table is an example of a table in which every node’s pData field simply points to a
string. In XASM, because both the string and host API call tables were implemented in the same
way, I created a generic function called AddString () that would add any string pointer to any
linked list. This allowed both tables to leverage the same function and minimize the redundant
code that would’ve otherwise resulted. Even though the XtremeScript compiler will only use one
pure string linked list, I left AddString () unchanged:

int AddString ( LinkedList * pList, char * pstrString )
{

// ---- First check to see if the string is already in the list

// Create a node to traverse the list
LinkedListNode * pNode = pList->pHead;

// Loop through each node in the list
for ( int iCurrNode = 0; iCurrNode < pList->iNodeCount; ++ iCurrNode )
{
// If the current node's string equals the specified string, return its
// index

if ( strcmp ( ( char * ) pNode->pData, pstrString ) == 0 )
return iCurrNode;

// Otherwise move along to the next node
pNode = pNode->pNext;

}
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// ---- Add the new string, since it wasn't added

// Create space on the heap for the specified string
char * pstrStringNode = ( char * ) malloc ( strlen ( pstrString ) + 1 );
strcpy ( pstrStringNode, pstrString );

// Add the string to the list and return its index
return AddNode ( pList, pstrStringNode );

}

This function accepts two parameters—a linked list pointer called pList and a string pointer
called pstrString—and gets most of its functionality from AddNode (), which is ultimately called to
add the string to the list. Before doing so, however, it iterates through each string in the table and
compares it to pstrString. If they match, the function returns the index of the current node; oth-
erwise, the string is added and the index returned by AddNode () is returned to the caller.

Retrieving String Nodes
The last basic linked list function I’ve included is called GetStringByIndex (), and returns the
string at the node corresponding to the specified index:

char * GetStringByIndex ( LinkedList * pList, int iIndex )
{

// Create a node to traverse the list
LinkedListNode * pNode = pList->pHead;

// Loop through each node in the list
for ( int iCurrNode = 0; iCurrNode < pList->iNodeCount; ++ iCurrNode )
{
// If the current node's string equals the
// specified string, return its index

if ( iIndex == iCurrNode )
return ( char * ) pNode->pData;

// Otherwise move along to the next node
pNode = pNode->pNext;

}

// Return a null string if the index wasn't found
return NULL;

}
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This function accepts a linked list pointer, pList, as well as an integer index, iIndex, which it uses
to find the desired string. It does so by iterating through each node in the list and comparing the
current node counter, iCurrNode, to the specified index. If a match is found, the node’s pData
pointer is cast to a string pointer and returned to the caller. Otherwise, NULL is returned.

Stacks
Although stacks are unique data structures unto themselves, I’ve based their implementation
almost entirely on the previous linked list. You can see this quite clearly in the implementation of
the Stack structure:

typedef struct _Stack           // A stack
{

LinkedList ElmntList;       // An internal linked list to
// hold the elements

}
Stack;

By basing the stack on a
linked list, it always takes 
up exactly as much memo-
ry as it needs, and can grow
and shrink indefinitely.
Stacks are illustrated in
Figure 14.12.
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NOTE
Notice I continue to use a Stack structure, even though it
consists solely of a nested LinkedList structure and could
very well be omitted. I did this to help abstract the under-
lying implementation of the stack so it can be changed
later without breaking any code.

Figure 14.12

The stack structure.

The Interface
As you probably imagine, the stack structure’s interface is pretty simple. And because it’s based
entirely on the pre-existing linked list interface, the functions are extremely short. Let’s have a
quick look.
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Initializing Stacks
Because the initialization of a stack really just means the initialization of its underlying linked list,
all this function boils down to is a call to InitLinkedList ():

void InitStack ( Stack * pStack )
{

// Initialize the stack's internal list
InitLinkedList ( & pStack->ElmntList );

}

Freeing Stacks
The same goes for freeing a stack; all that’s required is to free its internal linked list:

void FreeStack ( Stack * pStack )
{

// Free the stack's internal list
FreeLinkedList ( & pStack->ElmntList );

}

Determining Whether a Stack is Empty
As you’ll see later, it will be important down the line to quickly determine whether a stack is
empty. This can be done by evaluating the linked list’s iNodeCount field. If it’s greater than zero,
TRUE can be returned. Otherwise, FALSE is returned:

int IsStackEmpty ( Stack * pStack )
{

if ( pStack->ElmntList.iNodeCount > 0 )
return FALSE;

else
return TRUE;

}

Pushing Elements onto a Stack
This brings you to the first of part of the classic stack interface, pushing an element. Because a
push operation always puts the new element on top of the stack, you could use the linked list’s
pTail pointer to determine where the current “top” is, and simply add the node after that. In fact,
AddNode () already does this for you, which means Push () really just wraps it:
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void Push ( Stack * pStack, void * pData )
{

// Add a node to the end of the stack's internal list
AddNode ( & pStack->ElmntList, pData );

}

Popping Elements off a Stack
The opposite of pushing, of course, is popping. Unlike traditional stacks, however, the stack will
not return the data member it removes from the top of the stack; rather, it will simply delete it. It
does this by passing DelNode () a pointer to the list’s tail node:

void Pop ( Stack * pStack )
{

// Free the tail node of the list and its data
DelNode ( & pStack->ElmntList, pStack->ElmntList.pTail );

}

Peeking at the Top Element
Because Pop () doesn’t return the actual data it removes, you need another way to access it. This
can be done with Peek (), which returns a pointer to the topmost element’s data:

void * Peek ( Stack * pStack )
{

// Return the data at the tail node of the list
return pStack->ElmntList.pTail->pData;

}

INITIALIZATION AND SHUTDOWN
To steer the discussion back to reality, let’s shift the focus to the basic initialization and shutdown
process taken by the compiler. In order for this to make sense, however, I have to cover some of
the compiler’s basic global variables and structures first.

Global Variables and Structures
The major global variables and structures used by the program consist of the script header, the
script’s source code, and the symbol, function, and string tables. All but the first are implemented
as linked lists:

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



891

LinkedList g_SourceCode;
LinkedList g_FuncTable;
LinkedList g_SymbolTable;
LinkedList g_StringTable;

The script header, however, is an instance of the ScriptHeader structure. Here’s its definition:

typedef struct _ScriptHeader    // Script header data
{

int iStackSize;             // Requested stack size

int iIsMainFuncPresent;     // Is _Main () present?
int iMainFuncIndex;         // _Main ()'s function index

int iPriorityType;          // The thread priority type
int iUserPriority;          // The user-defined priority

// (if any)
}

ScriptHeader;

If you recall from Chapter 9, notice that it’s almost identical to the XASM script header structure.
It keeps track of the stack size, the whereabouts of the _Main () function, and information on the
script’s thread priority (with space for both a rank and a user-defined time slice duration).

As mentioned, g_ScriptHeader is simply an instance of the structure:

ScriptHeader g_ScriptHeader;

Initialization
When the compiler starts, it calls the Init () function to perform some basic setup:

void Init ()
{

// ---- Initialize the script header

g_ScriptHeader.iIsMainFuncPresent = FALSE;
g_ScriptHeader.iStackSize = 0;
g_ScriptHeader.iPriorityType = PRIORITY_NONE;

// ---- Initialize the main settings

INITIALIZATION AND SHUTDOWN
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// Mark the assembly file for deletion
g_iPreserveOutputFile = FALSE;

// Generate an .XSE executable
g_iGenerateXSE = TRUE;

// Initialize the source code list
InitLinkedList ( & g_SourceCode );

// Initialize the tables
InitLinkedList ( & g_FuncTable );
InitLinkedList ( & g_SymbolTable );
InitLinkedList ( & g_StringTable );

}

The function should be pretty clear. It starts by initializing g_ScriptHeader some default values. It
initially assumes that _Main () isn’t present, and that a stack size and thread priority were not
requested (hence the PRIORITY_NONE constant). The g_iPreserveOutputFile and g_iGenerateXSE
global flags are set to their defaults as well, which might not be overwritten by the command-line
arguments passed by the user. Lastly, the compiler’s linked lists are initialized.

Shutting Down
The shutdown sequence is even easier than initialization. All that’s necessary is the freeing of the
compiler’s linked lists:

void ShutDown ()
{

// Free the source code
FreeLinkedList ( & g_SourceCode );

// Free the tables
FreeLinkedList ( & g_FuncTable );
FreeLinkedList ( & g_SymbolTable );
FreeLinkedList ( & g_StringTable );

}

Another function is provided for causing the compiler to exit at any time, called Exit ():

void Exit ()
{

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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// Give allocated resources a chance to be freed
ShutDown ();

// Exit the program
exit ( 0 );

}

This decidedly trivial function simply allows the caller to run the compiler’s shutdown sequence
and exit the program in a single call.

THE COMPILER’S MODULES
Because the compiler is a decidedly more complex project than the XASM assembler or the
XVM, it’s broken into a number of source and header files to further abstract and encapsulate its
various modules. These files are listed in Table 14.2.

THE COMPILER’S MODULES

Table 14.2  Compiler Module Files
Filename Description

code_emit.cpp|h The code emission module

error.cpp|h Error handling

func_table.cpp|h The function table

i_code.cpp|h The I-code module

lexer.cpp|h The lexical analyzer module

linked_list.cpp|h Linked list implementation

parser.cpp|h The parser module

preprocessor.cpp|h The preprocessor module

stack.cpp|h Stack implementation

symbol_table.cpp|h The symbol table

xsc.cpp|h The main module, in charge of running everything else

globals.h Basic global data that all modules share
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By breaking the project down like this, it’s simply a matter of knocking out each module, one by
one, until they’re all finished. You’ve already seen some of this; much of xsc.cpp|h has been
explained in the earlier sections (although the rest will be revisited), I just finished a thorough
discussion of both linked_list.cpp|h and stack.cpp|h, and lexer.cpp|h will be a slightly modified
version of the lexer implemented in the last chapter. The rest of this chapter will be concerned
with the implementation of each of these remaining modules, with the exception of
parser.cpp|h—it’s the focus of the next chapter. Figure 14.13 depicts the layout of the compiler’s
modules.
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While you’re at, you might as well get globals.h taken out too. As Table 14.2 mentions, this just
contains some basic global data that everyone needs, which really just boils down to the TRUE and
FALSE macros, as well as some useful #includes:

#ifndef XSC_GLOBALS
#define XSC_GLOBALS

// ---- Include Files ---------------------------------------

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <time.h>
#include <process.h>

// ---- Constants ----------------------------------------

// ---- General --------------------------------------

#ifndef TRUE
#define TRUE                    1   // True

#endif

#ifndef FALSE
#define FALSE                   0   // False

#endif

#endif

This module listing gives you something of a road map to follow in the discussion of the rest of
the compiler, so let’s knock them out one by one.

THE LOADER MODULE
If you recall the initial overview at the beginning of this chapter, you’ll remember that the
XtremeScript compiler is broken up into a front end, I-code module, and the back end. The
front end contains a number of modules, the first of which is the loader module.

The loader module isn’t explicitly defined in the file structure, because it really just boils down to
a single in xsc.cpp|h. It’s also rather simple, as you probably expect:

THE LOADER MODULE
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void LoadSourceFile ()
{

// ---- Open the input file
FILE * pSourceFile;

if ( ! ( pSourceFile = fopen ( g_pstrSourceFilename, "r" ) ) )
ExitOnError ( "Could not open source file for input" );

// ---- Load the source code

// Loop through each line of code in the file
while ( ! feof ( pSourceFile ) )
{

// Allocate space for the next line
char * pstrCurrLine = ( char * ) malloc ( MAX_SOURCE_LINE_SIZE + 1 );

// Read the line from the file
fgets ( pstrCurrLine, MAX_SOURCE_LINE_SIZE, pSourceFile );

// Add it to the source code linked list
AddNode ( & g_SourceCode, pstrCurrLine );

}

// ---- Close the file
fclose ( pSourceFile );

}

The file is opened using the filename stored in g_pstrSourceFilename by VerifyFilenames (). Each
line of the file is then read with fgets () into a locally allocated string buffer, which is then added
to the g_SourceCode linked list with a call to AddNode () (you can’t use AddString () here because
you need to preserve duplicate lines of code—how many times does something like “++ X;”
appear in your code?). Once the EOF is reached, the file is closed and the function exits. The
result is a linked list containing each line of the source code, as shown in Figure 14.14.

Because of the nature of fgets (), which returns everything from the beginning of the line until
the first instance of a newline, including the newline itself, you more or less get implicit internal-
ization in regards to a consistent newline format. If you had been reading the file character by
character in a binary-safe mode, however, you have to be careful to watch for line break/newline
sequences and convert them as an internal character buffer was filled. Fortunately, between the
use of fgets () and the line-by-line separation of the linked list, you can safely assume the han-
dling of the newline situation is adequate.
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At this point, you’ve loaded a source file into memory and are ready to go. Let’s move on to see
how the file will be transformed and converted as it passes through the compiler’s remaining
modules.

THE PREPROCESSOR MODULE
The preprocessor is the source code’s first stop on its trip through the system. The preprocessor
is implemented as a single function called PreprocessSourceFile (), found in preprocessor.cpp|h.
Its main job is to rid the source code linked list of both single-line and block comments.

The function begins by declaring a few flags, as well as a local LinkedListNode structure pointer
that will be used to traverse the g_SourceCode linked list. It then proceeds to loop through each
line of the source file, and makes a local copy of the node’s string pointer. Take a look:

void PreprocessSourceFile ()
{

// Are we inside a block comment?
int iInBlockComment = FALSE;

// Are we inside a string?
int iInString = FALSE;

// Node to traverse list
LinkedListNode * pNode;
pNode = g_SourceCode.pHead;

THE PREPROCESSOR MODULE

Figure 14.14

The loader populates a

linked list with the

source code.
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// Traverse the source code
while ( TRUE )
{
// Create local copy of the current line

char * pstrCurrLine = ( char * ) pNode->pData;

The iInBlockComment and iInString flags are there so the preprocessor can tell at all times
whether it’s currently inside a string or block comment. You’ll see why the former of these two
flags is important in a moment, but you should already recognize the iInString flag from the
StripComments () function in XASM. Remember, it’s valid for a string literal to contain // or /*, so
the preprocessor needs to know when it’s inside a string literal in order to intelligently determine
what is and isn’t a comment.

At each iteration of the while loop, a for loop is started that scans through each character in the
current line, looking for comments. The first order of business within this loop is updating the
iIsInString flag:

for ( int iCurrCharIndex = 0; iCurrCharIndex < ( int ) strlen ( pstrCurrLine );
++ iCurrCharIndex )

{
// If the current character is a quote, toggle the in string flag
if ( pstrCurrLine [ iCurrCharIndex ] == '"' )
{

if ( iInString )
iInString = FALSE;

else
iInString = TRUE;

}

At this point, you have the current character of the current line of code and know whether
you’re inside a string. You’re all set to nuke some comments.

Single-Line Comments
The first catch of the day will be single-line comments, denoted with the //. The basic strategy
here is this: whenever a / character is found, read the character immediately following it to find
out if it’s a / as well. If so, the // token has been found, which denotes the beginning of a multi-
line comment. Before proceeding, make sure the iInString and iInBlockComment flags are both
FALSE. If so, replace the first / with a null terminator, thus terminating the string at the start of the
comment. This, for example, will convert the following line:

ScreenX = X / Z;    // Get the screen space coordinate of X
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to this:

ScreenX = X / Z;

Of course, there’s still the whitespace in between the semicolon and the start of the former com-
ment, but that obviously doesn’t matter. Here’s the code:

// Check for a single-line comment, and terminate the rest
// of the line if one is found
if ( pstrCurrLine [ iCurrCharIndex ] == '/' &&

pstrCurrLine [ iCurrCharIndex + 1 ] == '/' &&
! iInString && ! iInBlockComment )

{
pstrCurrLine [ iCurrCharIndex ] = '\n';
pstrCurrLine [ iCurrCharIndex + 1 ] = '\0';
break;

}

Block Comments
Block comments allow both multi-line blocks of code to be commented out, as well as individual
character strings within a given line. They start with an opening /* token and end with */. The
strategy behind removing them from the source code is a bit more brute-force oriented than
were single-line comments, but it’s very easy.

You could start by replacing the /* with a null terminator, just like you did with //, but that would
only take out the first line in a potentially multi-line block. Furthermore, not all block comments
are meant to comment out the entire remainder of the line. For example, this is a valid comment:

U = V /* Comment */ + W;

Although this certainly calls the coder’s style into question, it’s still valid according to syntax.
Replacing the /* with a line break would result in this:

U = V

This is not only different than what the coder wanted, but is syntactically illegal. So, a better solu-
tion is to set a flag when the opening /* is reached, and replace each character starting from that
index with a space until the closing */ is found. Although this doesn’t actually remove the space
taken up by the comment, it replaces it with harmless whitespace, so the effect is the same over-
all. Figure 14.15 demonstrates the identification and deletion of block comments by the pre-
processor.

THE PREPROCESSOR MODULE
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Figure 14.15

The preprocessor iden-

tifying and deleting

block comments.

TIP
If you really want to physically remove comments, the algorithm is conceptually sim-
ple but might be a bit tricky to implement.The key is understanding that block com-
ments can result in a number of different “line types”.The first line type is just like the
single-line comment; a /* that opens up somewhere within the line extends all the
way to the end.This is handled just like //—by replacing it with a null terminator.The
next case is a line that is entirely contained with a larger block comment. In this case,
DelNode () can be used to dispose of it entirely.The next type is a comment that ends
on the current line but starts on a previous one; in this case, the first character after
the closing */ is considered the new first character of the line, which means the string
has to be shifted to the left until the space taken up by the comment is entirely over-
written.A null terminator is then placed after the last character of the original string
to free the garbage characters left over on the right side. Lastly is a line type wherein
the block comment starts and ends on the same line. In this case, the process is simi-
lar to the last case—starting at the closing */, shift every character over to the left
until it reaches the opening /*, and insert a null terminator after the last non-garbage
character of the new string to clear off the now unused right side.
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Here’s the code for replacing a block comment with whitespace:

// Check for a block comment
if ( pstrCurrLine [ iCurrCharIndex ] == '/' &&

pstrCurrLine [ iCurrCharIndex + 1 ] == '*' &&
! iInString && ! iInBlockComment )

{
iInBlockComment = TRUE;

}

// Check for the end of a block comment
if ( pstrCurrLine [ iCurrCharIndex ] == '*' &&

pstrCurrLine [ iCurrCharIndex + 1 ] == '/' &&
iInBlockComment )

{
pstrCurrLine [ iCurrCharIndex ] = ' ';
pstrCurrLine [ iCurrCharIndex + 1 ] = ' ';
iInBlockComment = FALSE;

}

// If we're inside a block comment, replace the
// current character with whitespace
if ( iInBlockComment )
{

if ( pstrCurrLine [ iCurrCharIndex ] != '\n' )
pstrCurrLine [ iCurrCharIndex ] = ' ';

}

Whenever a / is read, the next char-
acter is read to determine whether
it’s a *. If it is, and the block com-
ment and string flags are both
FALSE, the iInBlockComment flag is
set. If a * is read, and the character
immediately following it is /, and
the iInBlockComment flag is set, the
flag is cleared and the two charac-
ters composing the */ are replaced
with whitespace. Otherwise, the
iInBlockComment is checked for any
other character; if it’s set, the char-
acter is replaced with whitespace.

THE PREPROCESSOR MODULE

NOTE
Notice that the character at iCurrCharIndex + 1
is read without any checks to make sure the index
isn’t beyond the end of the string.You can do this
safely, because you’re only looping through the
string from index zero to the length of the string
minus one, as returned by strlen (). Because of
this, even if you were to read a / on the very last
character in the string, iCurrCharIndex + 1 would
point to the \0 character immediately following it,
and therefore still be a safe operation.
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Preprocessor Directives
The language specification from Chapter 7 included two preprocessor directives, #include and
#define. #include replaces itself with the contents of the file it specifies, whereas #define defines a
symbolic constant and assigns it a value. The preprocessor then scans over the entire source code
and replaces all instances of the symbol’s name with the specified value.

I’ve decided to leave the implementation of the preprocessor directives to you, as an intermedi-
ate-level challenge. Handling these directives is a lot simpler than it may sound, and requires only
the skills you’ve already learned. To get you started though, let’s take a quick look at some imple-
mentation ideas.

Implementing #include
The primary principal behind #include is that the contents of whatever file it specifies is used to
physically replace the directive. Once the preprocessor is done, there shouldn’t be any trace that
an #include directive was ever there.

The fact that the source code is stored as a linked list makes #include remarkably easy in a lot of
ways. For example, removing the #include directive from the source code is as easy as deleting its
node, whereas adding the newlines of the file is as easy as inserting new nodes just before the
node containing the line that immediately follows the #include directive’s line.

In order to make this work, a new function must be added to the linked list implementation, per-
haps called InsertNode (). InsertNode () is a lot like AddNode (), except that it accepts a
LinkedListNode structure pointer in addition to the data pointer. The node pointed to by the
node pointer is found, and the new node is inserted into the list either directly in front of or
directly behind it. Inserting a node is similar to deleting a node in the sense that you have to
patch up the pointers that bind a node to its next node, and have to be on the lookout for the
special cases of the head and tail nodes.

Once you can insert a node, the next challenge is parsing the #include line. Fortunately, you can
use the lexer designed in the last chapter for this. By passing the source code through the lexer
in a preprocessing stage, and adding a new token type, TOKEN_TYPE_PREP_INCLUDE, perhaps, you can
scan the source file for include directives. Then, as long as a TOKEN_TYPE_STRING token immediately
follows, you’ve got a valid directive and can use the string lexeme as the filename.

Open the specified file and read each line of code. As each line is read, use InsertNode () to insert
them just after the #include line. Once the file is fully loaded, use the pointer to the #include line to
delete it with DelNode (). Figure 14.16 summarizes the job of the #include directive.
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Nested #include Directives
The only caveat left is the issue of nested #include directives, wherein the file you’re including
includes files of its own. Because this is a vital feature of file inclusion directives, it’s important to
support this feature.

I personally think the best way to solve this issue is to make the #include directive’s handler func-
tion recursive. As it’s reading the file, allow it to scan each line for #include as well, and call itself
in the event that it finds one. The recursively called function will then open the next include file
and begin inserting its lines as well.

There is the issue of which files are nested, however. The same file should never be included
more than once, for example—this can lead to both wasted memory and compile time errors if
variables and functions are declared multiple times as a result. There are far more dire conse-
quences of improper use of the directive as well; imagine if a file attempts to include itself, or if
two files include each other. In these cases, the compiler will hang until it either runs out of stack
space from too many recursive calls, or runs out of heap space from the source code growing too
large. To prevent these situations from happening, I suggest keeping a record of the filenames
(including paths) of all included files. This way, whenever a new #include is encountered, its 
specified file can be checked against those already loaded, and the entire directive can be
ignored if a match is found.

Implementing #define
#define is somewhat similar to #include, in the sense that it involves replacing instances of a direc-
tive with other data. This process is known as macro expansion, and was used in C to define symbol-
ic constants until C++ introduced the const keyword (although anyone still programming in pure
C uses traditional macros, of course).

THE PREPROCESSOR MODULE
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The implementation of #define is a bit more in-depth than #include. Let’s first review its syntax.
Although C’s #define is capable of macros that span multiple lines and even accept parameters,
this version of #define is relegated to symbolic constants that map a single-line string to an identi-
fier, like these:

#define MY_NAME    "Alex"
#define PI         3.14159
#define BEGIN      {
#define END        }

The first step in implementing this directive is making sure to record each macro in a table as it’s
encountered. A hash table structure would come in handy here, as it’s really just a matter of stor-
ing them in key:value form. The macros’ identifiers, like MY_NAME and PI are the keys, whereas the
values, like "Alex" and 3.14159, are the values.

Parsing the #define line itself is easy; just as you added TOKEN_TYPE_PREP_INCLUDE to the lexer in the
last section, you can add TOKEN_TYPE_PREP_DEFINE so the lexer will automatically notice #define and
return it as such. Once a #define token is found, the next lexeme, no matter what it is, is the
macro’s value. Simply read it, add it to the table, and move on.

Now, as each line is read, the macro’s identifier (the key) needs to be specifically searched for. To
do this, feed each lexeme returned by the lexer to a function that uses it as a search key in the
macro table. If a match is found, the value associated with that key needs to replace it on the line.

This is the tricky part. One simple approach is to simply allocate a new string,
MAX_SOURCE_LINE_SIZE in length, and use it to piece together a new line of code based on the old
line and macro’s value. First, read every character up until the macro lexeme, and add it to the
newly allocated line. Now, dump the macro’s value directly into the source code immediately fol-
lowing the characters you just added. Finally, resynchronize your pointer within the old source
line so that it lies just after the macro identifier, and append the remainder of the old line to the
new one. You can then delete the old node and replace it with the new one. The only problem
here is that it quickly becomes an inefficient solution when a single line contains more than one
or two macros, because you’re constantly freeing and allocating large character blocks, as well as
performing costly string copy operations. It works, though, and because I can assure you that a
script compiler will rarely need to worry about performance, there’s nothing wrong with it.

THE COMPILER’S TABLES
In order to properly parse and understand the script’s source code, the compiler maintains a
number of tables. As you’ve seen, these tables are all based on the linked list structure developed
earlier, and they are further enhanced by a specific interface of functions that allows them to be
accessed and manipulated easily.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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The Symbol Table
As the source code is parsed, perhaps the most obvious collection of data that needs to be organ-
ized, maintained, and tracked is the script’s variables and arrays (see Figure 14.17). As you can
imagine, high-level programming wouldn’t get very far without them, so it’s a logical place to start.

THE COMPILER’S TABLES

Figure 14.17

The symbol table

tracking the script’s

variables.

The symbol table is implemented in symbol_table.cpp|h, and provides a number of functions to
make the otherwise pure linked-list implementation easier to work with.

The SymbolNode Structure
You’ve already declared the g_SymbolTable linked list, but each node in that list needs a data mem-
ber. Each symbol table node will be embodied by the SymbolNode structure:

typedef struct _SymbolNode          // A symbol table node
{

int iIndex;                     // Index
char pstrIdent [ MAX_IDENT_SIZE ];      // Identifier
int iSize;                      // Size (1 for variables, N

// for arrays)
int iScope;                     // Scope (0 for globals, N

// for locals' function index)
int iType;                      // Symbol type (parameter

// or variable)
}

SymbolNode;
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As will be the case with most node structures, the first field is an integer index called iIndex. The
reason you need an explicit field for this, as opposed to simply basing a node’s index on its physi-
cal position within the list, is to prepare for the possibility of the lists order changing arbitrarily. If
this were to happen for whatever reason, it would be helpful if its existing nodes were able to
retain their indexes, because that’s what they are known by.

Next up are the obvious fields: the identifier and size. The symbol’s identifier is stored in the stat-
ically allocated pstrIdent string, whose length is stored in the MAX_IDENT_SIZE constant:

#define MAX_IDENT_SIZE        256

As usual, I’ve chosen overkill over sensibility because it really doesn’t matter either way and I
always like to err on the side of too much. In this specific case, however, I got the 256-character
figure from Java; the javac compiler imposes the same limit on its identifiers.

A symbol’s size is measured in XVM stack indexes, and because the XtremeScript language is so
strongly typeless, this means that all non-array variables occupy a single stack index in all cases,
and therefore have a size of 1. Arrays, because they’re simply an aggregate of single-index vari-
ables, are measured by the same scale and range from 1 to N.

The iScope field tracks a variable’s scope; in other words, where it can be referenced. Because
XtremeScript doesn’t support classes, structures, or nested functions, a symbol can have only one
of two scopes—the global scope, or the local scope of a particular function. In the first case,
iScope is set to zero, which is a special flag that marks the symbol as a global. In the case of local
variables and arrays, the iScope field is set to the function’s index in the function table. If you
recall Chapter 9, you’ll recognize this as the same scheme used to track a variable’s scope in
XASM.

Last up is iType, which is used to track the type of the symbol. In the case of XtremeScript, this
boils down to one of two things—variables (which include arrays as well, and are independent of
scope) or parameters (which can only be single variables, and are highly dependent on scope).
Because a parameter can often be thought of simply as just another local variable within a func-
tion, the same symbol table is used to store them. The only difference is that their iType flag is set
to reflect their status as parameters.

To make things easier to work with, symbol_table.h defines a few constants for making a variable’s
settings more symbolic. For example, the iType field of all globals is zero, so I provided the
SCOPE_GLOBAL constant, which is of course set to zero, to add a bit of readability to the process of
dealing with globals. Second, I could’ve simply used TRUE and FALSE to represent whether a vari-
able is a parameter, but this is not only less readable, but also more or less cuts off the possibility
of adding additional symbol types later. To remedy this, I defined the SYMBOL_TYPE_VAR and SYM-
BOL_TYPE_PARAM constants.
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#define SCOPE_GLOBAL                    0

#define SYMBOL_TYPE_VAR                 0
#define SYMBOL_TYPE_PARAM               1

The Interface
The symbol table interface is more or less what you expect—it provides a function for adding a
new symbol, retrieving symbols based on their indexes and identifiers, and so on.

Adding Symbols
Because the first and most vital operation as the compiler slowly lifts off the ground will be
adding a symbol to the table, let’s look at the AddSymbol () function, which does just that:

int AddSymbol ( char * pstrIdent, int iSize, int iScope, int iType )
{

// If a label already exists
if ( GetSymbolByIdent ( pstrIdent, iScope ) )

return -1;

// Create a new symbol node
SymbolNode * pNewSymbol = ( SymbolNode * )

malloc ( sizeof ( SymbolNode ) );

// Initialize the new label
strcpy ( pNewSymbol->pstrIdent, pstrIdent );
pNewSymbol->iSize = iSize;
pNewSymbol->iScope = iScope;
pNewSymbol->iType = iType;

// Add the symbol to the list and get its index
int iIndex = AddNode ( & g_SymbolTable, pNewSymbol );

// Set the symbol node's index
pNewSymbol->iIndex = iIndex;

// Return the new symbol's index
return iIndex;

}

THE COMPILER’S TABLES
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The first thing the function does is call GetSymbolByIdent () to find out if the symbol already
exists. I haven’t covered this function yet, so rest assured that it does just what it says—returns a
pointer to the symbol matching the specified identifier if one was found, and returns NULL other-
wise. If this function returns a valid pointer, it means the symbol already resides in the table and 
-1 is returned to the caller of AddSymbol () to alert them.

If this first test passes, the symbol’s SymbolNode structure is allocated and initialized. The identifier
is copied into the string, the size, scope and type is set, and AddNode () is called to add the com-
pleted symbol node to the list. The returned index is then used to set the symbol node’s iIndex
field, and is also returned to the caller.

Retrieving Symbols
You just witnessed the necessity of a function that returns the pointer to a symbol’s SymbolNode
structure based on its identifier, so let’s define it next:

SymbolNode * GetSymbolByIdent ( char * pstrIdent, int iScope )
{

// Local symbol node pointer
SymbolNode * pCurrSymbol;

// Loop through each symbol in the table to find the match
for ( int iCurrSymbolIndex = 0;

iCurrSymbolIndex < g_SymbolTable.iNodeCount;
++ iCurrSymbolIndex )

{
// Get the current symbol structure

pCurrSymbol = GetSymbolByIndex ( iCurrSymbolIndex );

// Return the symbol if the identifier and scope matches
if ( pCurrSymbol && stricmp ( pCurrSymbol->pstrIdent, pstrIdent )

== 0 && pCurrSymbol->iScope == iScope )
return pCurrSymbol;

}

// The symbol was not found, so return a NULL pointer
return NULL;

}

The function’s main purpose is traversing the symbol table. Once again, however, you find a call
to an as-of-yet undefined function, this time called GetSymbolByIndex (). This function does the
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same thing as GetSymbolByIdent (), except it returns the symbol corresponding to the specified
index (obviously). Once the symbol has been read from the table, its identifier is compared to
the specified one, as well as its scope. If a match is found, the structure is returned; otherwise,
NULL is returned.

Moving on, the next function is GetSymbolByIdent (), which does almost the same job, and was
referenced by the last function:

SymbolNode * GetSymbolByIndex ( int iIndex )
{

// If the table is empty, return a NULL pointer
if ( ! g_SymbolTable.iNodeCount )

return NULL;

// Create a pointer to traverse the list
LinkedListNode * pCurrNode = g_SymbolTable.pHead;

// Traverse the list until the matching structure is found
for ( int iCurrNode = 0; iCurrNode < g_SymbolTable.iNodeCount; ++ iCurrNode )
{
// Create a pointer to the current symbol structure

SymbolNode * pCurrSymbol = ( SymbolNode * ) pCurrNode->pData;

// If the indexes match, return the symbol
if ( iIndex == pCurrSymbol->iIndex )

return pCurrSymbol;

// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The symbol was not found, so return a NULL pointer
return NULL;

}

This function works in a familiar manner. Using a symbol node, it traverses the list by jumping
from pointer to pointer until the matching index is found. Upon the discovery of a match, the
corresponding pointer is returned. If a match is not found, NULL is returned.

Lastly, there’s one more function worth mentioning. As you’ll see when you write the parser, it
can be useful to get a variable’s size quickly and easily (for example, when it needs to be verified
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that the specified identifier is indeed an array). In these cases, GetSizeByIdent () is called—pass it
the variable’s identifier, and it returns its size:

int GetSizeByIdent ( char * pstrIdent, int iScope )
{

// Get the symbol's information
SymbolNode * pSymbol = GetSymbolByIdent ( pstrIdent, iScope );

// Return its size
return pSymbol->iSize;

}

Pretty simple, huh? With one call to GetSymbolByIdent (), it has the symbol. It returns its iSize
field and calls it a day.

The Function Table
The function table is very similar to the symbol table in most respects, so this section should be pret-
ty easy if you understood how symbols were dealt with. As was shown in Table 14.2, the function
table is implemented in function_table.cpp|h and tracks the script’s functions (see Figure 14.18).
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The FuncNode Structure
Just as symbols needed a separate structure to store each of their nodes, so do functions:

typedef struct _FuncNode            // A function table node
{

int iIndex;                     // Index
char pstrName [ MAX_IDENT_SIZE ];   // Name
int iIsHostAPI;                 // Is this a host API

// function?
int iParamCount;                // The number of accepted

// parameters
LinkedList ICodeStream;         // Local I-code stream

}
FuncNode;

In a lot of ways it’s similar to the SymbolNode structure; its first field is an explicit index, and its sec-
ond is an identifier string the size of MAX_IDENT_SIZE. Up next is iIsHostAPI. As I mentioned earli-
er, the XtremeScript compiler doesn’t maintain a separate function table for host API calls;
rather, both host and script functions are stored in the same table and differentiated based on
this flag. You’ll learn more about how host API calls work in the high-level XtremeScript lan-
guage in the next chapter.

The next parameter is iParamCount, which of course stores the number of parameters the function
accepts. Unlike XASM, which had no way to determine how many parameters a function was
being passed (because they were all handled with separate Push instructions), the XtremeScript
compiler is explicitly told which parameters are being passed to each function. iParamCount helps
the compiler validate them.

Lastly, there’s a nested linked list called ICodeStream. I’ll talk about this in far greater depth later
in the chapter, but for now, all you need to know is that this is where the function’s I-code is
stored. Remember, because a valid XVM assembly script has no code outside of functions, there’s
no need for a global I-code stream. Rather, each function has its own “local” block of I-code.

The Interface
Continuing with the parallels, the interface to the function table will of course bear a striking
resemblance to symbol table. Right off the bat you’ll have functions for adding functions to the
table, reading them based on their names, indexes, and so on.
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Adding Functions
Let’s start at the beginning, with the predictably titled AddFunc ():

int AddFunc ( char * pstrName, int iIsHostAPI )
{

// If a function already exists with the specified name,
// exit and return an invalid index

if ( GetFuncByName ( pstrName ) )
return -1;

// Create a new function node
FuncNode * pNewFunc = ( FuncNode * ) malloc ( sizeof ( FuncNode ) );

// Set the function's name
strcpy ( pNewFunc->pstrName, pstrName );

// Add the function to the list and get its index, but add
// one since the zero index is reserved for the global scope
int iIndex = AddNode ( & g_FuncTable, pNewFunc ) + 1;

// Set the function node's index
pNewFunc->iIndex = iIndex;

// Set the host API flag
pNewFunc->iIsHostAPI = iIsHostAPI;

// Set the parameter count to zero
pNewFunc->iParamCount = 0;

// Clear the function's I-code block
pNewFunc->ICodeStream.iNodeCount = 0;

// If the function was _Main (), set its flag and index in the header
if ( stricmp ( pstrName, MAIN_FUNC_NAME ) == 0 )
{

g_ScriptHeader.iIsMainFuncPresent = TRUE;
g_ScriptHeader.iMainFuncIndex = iIndex;

}

// Return the new function's index
return iIndex;

}
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The basic strategy here is just the same as it was in AddSymbol ():

■ Determine whether the function being added is already in the table. If so, return the
existing node’s index to the caller (note I haven’t covered GetFuncByName () yet).

■ Allocate a FuncNode structure and initialize it based on the parameters passed.
■ Add the node to the table.
■ Return the index to the caller.

And, as you can see, this is more or less what happens. The only extra detail worth covering is the
issue of the _Main () function. Just as it was in XASM, it’s important to track both the presence
and index of _Main (), because it has exceptional properties that require special treatment on
behalf of the compiler. To this end, the function closes with a comparison of the specified func-
tion name and a constant called MAIN_FUNC_NAME, which looks like this:

#define MAIN_FUNC_NAME        "_Main"

If the comparison results in a match, the _Main () function has been found, so the script header’s
iIsMainFuncPresent field is set to TRUE, and the iMainFuncIndex field is set to whatever index AddNode
() returned.

Speaking of AddNode ()’s index, it’s very important to note that you add one to it. Why? Because, if
you remember, the zero index of the function table is reserved for the global scope. For example,
the SymbolNode structure uses a single field to determine both the scope of a symbol, as well as its
index into the function table in the event that it’s global. In order for this to work, the zero index
can’t be associated with any specific function.

Retrieving Functions
Because the last function made a call to GetFuncByName () to determine whether the new function
was already in the table, I should cover this one next:

FuncNode * GetFuncByName ( char * pstrName )
{

// Local function node pointer
FuncNode * pCurrFunc;

// Loop through each function in the table to find the match
for ( int iCurrFuncIndex = 1; iCurrFuncIndex <= g_FuncTable.iNodeCount;

++ iCurrFuncIndex )
{
// Get the current function structure

pCurrFunc = GetFuncByIndex ( iCurrFuncIndex );
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// Return the function if the name matches
if ( pCurrFunc && stricmp ( pCurrFunc->pstrName, pstrName ) == 0 )

return pCurrFunc;
}

// The function was not found, so return a NULL pointer
return NULL;

}

Again, just as was the case with the symbol table interface, this function is making repeated calls
to GetFuncByIndex () as it iterates through the function table. As each node is read, its pstrName
field is compared to the specified name to determine a match.

Continuing along the food chain, GetFuncByName () called GetFuncByIndex (). Let’s have a look:

FuncNode * GetFuncByIndex ( int iIndex )
{

// If the table is empty, return a NULL pointer
if ( ! g_FuncTable.iNodeCount )

return NULL;

// Create a pointer to traverse the list
LinkedListNode * pCurrNode = g_FuncTable.pHead;

// Traverse the list until the matching structure is found
for ( int iCurrNode = 1; iCurrNode <= g_FuncTable.iNodeCount;

++ iCurrNode )
{
// Create a pointer to the current function structure

FuncNode * pCurrFunc = ( FuncNode * ) pCurrNode->pData;

// If the indexes match, return the current pointer
if ( iIndex == pCurrFunc->iIndex )

return pCurrFunc;

// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The function was not found, so return a NULL pointer
return NULL;

}
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At this point, the function should be entirely self-explanatory. A local node pointer is used to 
traverse the list, node by node, until a match is found by comparing the specified index to each
node’s iIndex field. In the event of a match, the pointer is returned; otherwise, NULL is returned
when the end of the loop is reached.

Updating a Function’s Parameter Count
There’s one last function to describe to complete the function table’s interface, so let’s knock it
out. It’s called SetFuncParamCount (), and is used to set the parameter count of a function table
that already exists in the table:

void SetFuncParamCount ( int iIndex, int iParamCount )
{

// Get the function
FuncNode * pFunc = GetFuncByIndex ( iIndex );

// Set the parameter count
pFunc->iParamCount = iParamCount;

}

Using GetFuncByIndex (), this function grabs the function from the table based on its index and
sets its parameter count to the specified value. Although this function will make the most sense
once you reach the parser, it should be easy enough to understand after having done virtually the
same thing in XASM with the SetFuncInfo () function. A function is immediately added to the
table when its found—even before its parameter list is parsed—so you need a separate function
for adding the parameter count retroactively.

The String Table
The string table is barely a table onto itself; its implementation is solely based on the vanilla
linked list covered earlier. There’s no need to create any extra structures for maintaining its
nodes, because each node’s data member is simply a raw string. And you’ve already got AddString
(), which not only adds strings to the specified list, but also automatically filters out duplicates.
Because you’ve seen the implementation of both the linked list and the AddString () and
GetStringByIndex () functions already, there’s nothing left to cover here. Figure 14.19 once 
again demonstrates the string table.
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INTEGRATING THE LEXICAL
ANALYZER MODULE
The last chapter saw you through the design and implementation of a lexical analyzer capable 
of lexing the entire XtremeScript language. Although the lexer you built was complete, the 
issue of integrating it smoothly with the compiler framework you’re building in this chapter is 
still significant.

Rewinding the Token Stream
In the last chapter, the lexer’s only job was to read the next token from the character stream and
spit it out. Things aren’t so cut and dried in the XtremeScript compiler, however—for example,
you may want to read the look-ahead character like you did in XASM in Chapter 9 (which Ill
come back to in a moment). You may need to take even more drastic action, by reading an entire
token from the stream and “putting it back” if we decide it’s not what we thought it was going to
be. As you can imagine, reading a token and putting it back is almost like using the look-ahead
character; it allows you to find out what lies beyond the current token without permanently dis-
turbing the stream.

As you’ll see during the implementation of the parser in the next chapter, this capability to 
read a token and later restore the stream to the status it held before the token was read is invalu-
able in certain situations. This process is called “rewinding the token stream,” and is illustrated in
Figure 14.20.
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Lexer States
So how is the token stream rewound? The key to understanding how it works is to simply realize
that at any given time, the lexer is in a particular “state” (not to be confused with the states of the
state machine in GetNextToken ()). By “state”, I mean the lexeme stream contains a specific lex-
eme, the current token contains a specific token code, and the lexeme pointers within the cur-
rent line of code are pointing to specific locations (among many other things).

Whenever a new token is read, these values are disturbed; the lexeme string is overwritten with a
new one, the token code is updated, and the lexeme pointers advance through the current line
by a certain amount. It seems, then, that an easy way to “rewind” the token stream is simply to
save the state of each of these variables before GetNextToken () is called. This way, if it’s later decid-
ed that reading the token was a mistake, the state of the lexer before the read occurred can be
restored simply by reading the saved variables. Of course, unless an array or other aggregate
structure is used, this means the stream can only be rewound once per token read. Fortunately,
this won’t pose a problem.

In order to save the lexer’s state, your first reaction might simply be to duplicate each of the
lexer’s globals, like this, for example:

// ---- Main
char g_pstrCurrLexeme [ MAX_LEXEME_SIZE ];   // Current lexeme
char g_pstrPrevLexeme [ MAX_LEXEME_SIZE ];

// ---- Current Lexeme
int g_iCurrLexemeStart;      // Current lexeme's starting index
int g_iCurrLexemeEnd;        // Current lexeme's ending index
int g_iPrevLexemeStart;
int g_iPrevLexemeEnd;
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// ---- Operators
int g_iCurrOp;               // Current operator
int g_iPrevOp;

As you can see by the bold code, each variable has been duplicated and prefixed with Prev.
Now, GetNextToken () can save each of the Curr versions to the Prev versions of the variable, like
g_iCurrLexemeStart to g_iPrevLexemeStart, for example. Once this is done, the caller then has the
option of rewinding the stream by moving g_iPrevLexemeStart back into g_iCurrLexemeStart, along
with the rest of them.

Although this solution works, there’s a lot of redundancy going on. Although it’s true that each
variable does need a duplicate, or backup, in order to preserve the state long enough to facilitate
a rewinding of the stream, there’s a better way to do this than by applying brute force and just
duplicating everything. Specifically, it would be better to just wrap everything in a single struct,
and then make both a “current” and “previous” instance of that structure. All of the original Curr
variables can be wrapped in the LexerState structure, like this:

typedef struct _LexerState          // The lexer's state
{

char pstrCurrLexeme [ MAX_LEXEME_SIZE ];    // Current lexeme
int iCurrLexemeStart;           // Current lexeme's

// starting index
int iCurrLexemeEnd;             // Current lexeme's ending

// index
int iCurrOp;                    // Current operator

}
LexerState;

Now, you can simply instantiate this structure as many times as you want and be done with it. The
unwieldy collection of globals from the original example can now be replaced with just two:

LexerState g_CurrLexerState;
LexerState g_PrevLexerState;

Furthermore, by writing a function that will copy each of the fields from one LexerState structure
to another, you can save and restore the lexer’s state easily. Of course, this means that any refer-
ence to a global variable in the lexer’s code from now on will be prefixed by one of the lexer
state structures. For example, this:

++ g_iCurrLexemeStart;

becomes this:

++ g_CurrLexerState.iCurrLexemeStart;
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Now that you can arbitrarily instantiate lexer states at will, an important operation will be copying
the contents of one state to another. This is facilitated with the CopyLexerState () function, which
accepts two LexerState pointers and copies one into the other:

void CopyLexerState ( LexerState & pDestState, LexerState & pSourceState )
{

// Copy each field individually to ensure a safe copy
strcpy ( pDestState.pstrCurrLexeme, pSourceState.pstrCurrLexeme );
pDestState.iCurrLexemeStart = pSourceState.iCurrLexemeStart;
pDestState.iCurrLexemeEnd = pSourceState.iCurrLexemeEnd;
pDestState.iCurrOp = pSourceState.iCurrOp;

}

Naturally, there’s not much to explain. Each field is copied from pSourceState to pDestState. The
best part is, with this function finished, you can rewind the token stream in a single line. Here’s
the RewindTokenStream () function:

void RewindTokenStream ()
{

CopyLexerState ( g_CurrLexerState, g_PrevLexerState );
}

Pretty simple, huh? This can be called at any time after calling GetNextToken () to restore the
lexer to the state it was in before the call. Remember, though, that because you have only one
previous state instance, the token stream can only be rewound once per token read. Of course,
none of this matters if GetNextToken () doesn’t take advantage of it, so let’s add a call to
CopyLexerState () to the top of the function:

Token GetNextToken ()
{

// Save the current lexer state for future rewinding
CopyLexerState ( g_PrevLexerState, g_CurrLexerState );

Locked and loaded.

A New Source Code Format
One of the most significant differences between the lexer in the last chapter and the version
you’re adapting to work with the XtremeScript compiler is the format of the source code. The
original demo was so simplistic that all it really needed was a large character string to work with.
XtremeScript, because of its greater complexity, functions better with a linked list wherein each
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node represents a separate line from the original source file. Getting the lexer to work with this
new format will be the next challenge to face.

If you recall, the lexer in the last chapter relied heavily on a function called GetNextChar (). At
any time, this function could be called to both read and return the next character from the
source buffer, but would automatically increment the lexeme end pointer as well so that the next
call would return the next character in the string. By calling this function repeatedly, the entire
source buffer was scanned by the lexer.

Although you could spend all night rigging GetNextToken () itself to handle the new linked list
structure, you would be much smarter to simply add the new functionality to GetNextChar (). This
way, GetNextToken () can remain completely the same—the new underlying method of source code
storage will remain entirely transparent. Figure 14.21 illustrates this concept of abstracting the
underlying storage method of the source code by isolating the logic in GetNextChar ().
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The first thing you have to do in order to make this work is add some new fields to the LexerState
structure. Namely, you need a pointer to the current source line in the g_SourceCode linked list at
all times. It will also help, for error-handling purposes, to keep the current line number on hand.
Here’s the new structure layout, with the added fields in bold:

typedef struct _LexerState          // The lexer's state
{

int iCurrLineIndex;             // Current line index
LinkedListNode * pCurrLine;     // Current line node

// pointer
char pstrCurrLexeme [ MAX_LEXEME_SIZE ];    // Current lexeme
int iCurrLexemeStart;           // Current lexeme's

// starting index
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int iCurrLexemeEnd;             // Current lexeme's
// ending index

int iCurrOp;                    // Current operator
}

LexerState;

Let’s take a look at the new version of GetNextChar (), capable now of reading the next character
from the source buffer in linked list format:

char GetNextChar ()
{

// Make a local copy of the string pointer, unless we're at the end of the
// source code
char * pstrCurrLine;
if ( g_CurrLexerState.pCurrLine )

pstrCurrLine = ( char * ) g_CurrLexerState.pCurrLine->pData;
else

return '\0';

// If the current lexeme end index is beyond the length of the string,
// we're past the end of the line
if ( g_CurrLexerState.iCurrLexemeEnd >= ( int ) strlen ( pstrCurrLine ) )
{
// Move to the next node in the source code list

g_CurrLexerState.pCurrLine = g_CurrLexerState.pCurrLine->pNext;

// Is the line valid?
if ( g_CurrLexerState.pCurrLine )
{

// Yes, so move to the next line of code and reset the lexeme
// pointers

pstrCurrLine = ( char * ) g_CurrLexerState.pCurrLine->pData;
++ g_CurrLexerState.iCurrLineIndex;
g_CurrLexerState.iCurrLexemeStart = 0;
g_CurrLexerState.iCurrLexemeEnd = 0;

}
else
{
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// No, so return a null terminator to alert the lexer that the end
// of the source code has been reached

return '\0';
}

}

// Return the character and increment the pointer
return pstrCurrLine [ g_CurrLexerState.iCurrLexemeEnd ++ ];

}

Simply to keep the code readable, the first thing the function does is makes a local copy of the
pCurrLine pointer in the g_CurrLexerState structure. It first makes sure, however, that the current
line isn’t the end of the source code; if it is, the pointer will be NULL and \0 is returned to
GetNextToken () as a sign that the end of the source has been reached.

It’s then determined whether the current lexeme end pointer is beyond the end of the current
line. If so, the program moves to the next line by reading the pCurrLine structure’s pNext pointer.
The next task is to determine whether the line is valid; if it’s NULL, it means you’ve reached the
end of the source code and \0 should once again be immediately returned. Otherwise, the
pstrCurrLine string pointer is updated to point to the new line of code, the iCurrLineIndex
field of g_CurrLexerState is incremented, and the lexeme pointers are both reset to the line’s 
first character.

With any potential line increments taken care of, the current character in the stream is returned
and the lexeme end pointer is incremented. GetNextChar () now functions with an entirely differ-
ent underlying storage structure, but remains identical to GetNextToken (). This means that the
entire lexer is now on board with the compiler’s method of storing source code, and the majority
of your work is done.

New Miscellaneous Functions
With the major tasks out of the way—rewinding the token stream and upgrading the lexer to
work with a linked list source buffer—you’re ready to finish things up. Fortunately, you have only
a few minor tweaks and additions here and there left to deal with.

Adding a Look-Ahead Character
Just as was the case with XASM in Chapter 9, the XtremeScript compiler’s parser will need the
capability to read the first character of the next token in the stream, also known as the look-ahead.
Fortunately, between the capability to preserve the current lexer state, as well as GetNextChar ()’s
capability to continually return new characters regardless of line breaks and node boundaries
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within the linked list, writing a look-ahead function is no problem. Here’s the code to
GetLookAheadChar ():

char GetLookAheadChar ()
{

// Save the current lexer state
LexerState PrevLexerState;
CopyLexerState ( PrevLexerState, g_CurrLexerState );

// Skip any whitespace that may exist and return the
// first non-whitespace character
char cCurrChar;
while ( TRUE )
{

cCurrChar = GetNextChar ();
if ( ! IsCharWhitespace ( cCurrChar ) )

break;
}

// Restore the lexer state
CopyLexerState ( g_CurrLexerState, PrevLexerState );

// Return the look-ahead character
return cCurrChar;

}

The function begins by preserving the current lexer state in a local LexerState instance. It does
this because it’s going to need to enlist GetNextChar () in order to locate the first character of the
next token, but as you just saw, the new version of this function will automatically advance the
lexer state every time it’s called. By saving the state first, you can call it all you want as long as you
remember to restore it before returning the look-ahead. The concept of a look-ahead character is
demonstrated in Figure 14.22.

A while loop is then entered that reads characters from the source buffer until the first non-
whitespace character is found. This is considered the look-ahead, and is returned to the caller
(but not before restoring the lexer state, of course).

Handling Invalid Tokens
The lexer prototype built in the last chapter would simply print an error message and exit upon
the encounter of an invalid token. Although the compiler will do more or less the same thing, it’s
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still not the lexer’s place to terminate the program and display error messages. That task is han-
dled by the error-handling functions defined in error.cpp|h, which you should be mindful of.
Because the lexer is now but a single part in a much larger system, it should now simply return an
error flag that signifies invalid tokens, allowing the caller (most likely the parser) to handle the
error.

To implement this, you need a new token type to represent invalid tokens. Not surprisingly, you
can call this TOKEN_TYPE_INVALID:

#define TOKEN_TYPE_INVALID              1

I set this new token’s value for 1, so that it would immediately follow TOKEN_TYPE_END_OF_STREAM.
Although this decision was ultimately arbitrary, I did it so I could group error-related token types
together before getting into the valid token types that immediately follow. Of course, this means
that the other token type constants had to be renumbered, but because they’re constants, this has
no effect on the rest of the program. Check out the source on the companion CD to see what I
mean.

In addition, the lexer needs to keep track of invalid lexemes so that it can set the token type to
TOKEN_TYPE_INVALID when the state machine finishes extracting them. To do this, you need a new
lexer state called LEX_STATE_UNKNOWN:

#define LEX_STATE_UNKNOWN               0

Every instance within the lexer’s state machine that used to call an error function now simply sets
the lexer state to LEX_STATE_UNKNOWN. As an example, check out the floating-point lexeme state
handler:

case LEX_STATE_FLOAT:
// If a numeric is read, keep the state as-is
if ( IsCharNumeric ( cCurrChar ) )
{
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iCurrLexState = LEX_STATE_FLOAT;
}

// If whitespace or a delimiter is read, the lexeme is done
else if ( IsCharWhitespace ( cCurrChar ) || IsCharDelim ( cCurrChar ) )
{

iLexemeDone = TRUE;
iAddCurrChar = FALSE;

}
// Anything else is invalid
else

iCurrLexState = LEX_STATE_UNKNOWN;
break;

As soon as a non-float character is read, the state transitions to unknown. Upon the next iteration
of the machine, this state handler will be invoked:

// If an unknown state occurs, the token is invalid, so exit
case LEX_STATE_UNKNOWN:

iLexemeDone = TRUE;
break;

Once outside of the state machine loop, it’s time to assign a token type to the lexeme that was
read. The new LEX_STATE_UNKNOWN state is easy to convert to a token; you just need to add a new
case to the switch block used to map terminal lexer states to tokens:

// Determine the token type
Token TokenType;
switch ( iCurrLexState )
{

// Unknown
case LEX_STATE_UNKNOWN:

TokenType = TOKEN_TYPE_INVALID;
break;

The lexer now gracefully handles invalid tokens without terminating the program, allowing the
caller to deal with the problem in a more appropriate manner.

Returning the Current Token
GetNextToken () always returns the current token (whichever one it read), whereas separate func-
tions like GetCurrLexeme () and GetCurrOp () can be used to get the current lexeme string or
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operator. However, even though GetNextToken () returns it initially, it would be nice to be able to
read the token again at any time. As you might imagine, this is an easy feature to add. All you
need to do is expand the LexerState function to track the current token, make sure GetNextToken
() saves the token type there before returning, and add a new one-line function that returns that
saved value. To start, let’s make one final addition to the LexerState structure:

typedef struct _LexerState          // The lexer's state
{

int iCurrLineIndex;             // Current line index
LinkedListNode * pCurrLine;     // Current line node

// pointer
Token CurrToken;                // Current token
char pstrCurrLexeme [ MAX_LEXEME_SIZE ];    // Current lexeme
int iCurrLexemeStart;           // Current lexeme's

// starting index
int iCurrLexemeEnd;             // Current lexeme's

// ending index
int iCurrOp;                    // Current operator

}
LexerState;

With the structure now capable of storing the current token, you need to add some code to the
end of GetNextToken () to do so:

// Return the token type and set the global copy
g_CurrLexerState.CurrToken = TokenType;
return TokenType;

}

Lastly, a separate function needs to be created for returning this new value:

Token GetCurrToken ()
{

return g_CurrLexerState.CurrToken;
}

Copying the Current Lexeme
GetCurrLexeme () already returns a pointer to the current lexeme string, but the parser may likely
have the need to make a physical copy at some point. In these cases, it would be nice to have a
function available that will do it in a single call. For this, there’s CopyCurrLexeme ():
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void CopyCurrLexeme ( char * pstrBuffer )
{

strcpy ( pstrBuffer, g_CurrLexerState.pstrCurrLexeme );
}

Error-Printing Helper Functions
The error-handling functions discussed later in the chapter will require that the lexer expose a
few key pieces of information to help make its messages more verbose and informative for the
users. As with XASM, it’s helpful to print the actual line of code where the error was found, as
well as the line number, and the pointer to the first character of the offending lexeme. To do
this, you need functions for returning these three values.

Returning the current line of code is just a matter of returning the string pointer stored in the
current node of the g_SourceCode linked list, but it’s important to make sure the node is valid
before doing so. Here’s the source to GetCurrSourceLine ():

char * GetCurrSourceLine ()
{

if ( g_CurrLexerState.pCurrLine )
return ( char * ) g_CurrLexerState.pCurrLine->pData;

else
return NULL;

}

If the current node pointer is invalid, a null string pointer is returned. Otherwise, the node’s
pData member is cast to a string pointer and returned.

Next up are functions for returning the current line number (which I refer to in the code as the
line index), as well as the starting index of the current lexeme. Both of these are simple, one-line
functions, so let’s just look at them both:

int GetCurrSourceLineIndex ()
{

return g_CurrLexerState.iCurrLineIndex;
}

int GetLexemeStartIndex ()
{

return g_CurrLexerState.iCurrLexemeStart;
}

Simple, yes, but these will prove invaluable later.
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Resetting the Lexer
One last modification to the lexer worth mentioning is that InitLexer () is now known as
ResetLexer (). It’s the same function, but because the compiler may need to reset the lexer multi-
ple times during its lifespan, I feel the name change is appropriate for the new environment.

THE PARSER MODULE
The parser will be left blank for this chapter, because it’s an equally large topic unto itself. The
next chapter focuses solely on its development, so you’ll just have to wait until then.

ERROR HANDLING
Error handling is implemented in error.cpp|h and consists primarily of two functions for printing
the two major types of error messages. Just as was the case in XASM, the XtremeScript compiler
differentiates between general errors and errors that relate specifically to the source code, such as
syntax errors.

General Errors
Printing a general error is trivial and is handled by the ExitOnError () function:

void ExitOnError ( char * pstrErrorMssg )
{

// Print the message
printf ( "Fatal Error: %s.\n", pstrErrorMssg );

// Exit the program
Exit ();

}

It’s simply a matter of printing the error message to the screen and calling Exit (), a function
defined earlier that lets the compiler clean up after itself just before exiting. Note that the printf
() call automatically appends a trailing period to the message, so the error messages will not con-
tain one.

Code Errors
Printing a code error is more complex than that of a general error, because it’s helpful to give
the users detailed information about the specifics of the error. Like XASM, the XtremeScript

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK



929

compiler will display the current line, print the line number, and use a caret symbol to point out
the offending character/lexeme:

void ExitOnCodeError ( char * pstrErrorMssg )
{

// Print the message
printf ( "Error: %s.\n\n", pstrErrorMssg );
printf ( "Line %d\n", GetCurrSourceLineIndex () );

// Reduce all of the source line's spaces to tabs so it takes less space
// and so the caret lines up with the current token properly
char pstrSourceLine [ MAX_SOURCE_LINE_SIZE ];

// If the current line is a valid string, copy it into the local source
// line buffer
char * pstrCurrSourceLine = GetCurrSourceLine ();
if ( pstrCurrSourceLine )

strcpy ( pstrSourceLine, pstrCurrSourceLine );
else

pstrSourceLine [ 0 ] = '\0';

// If the last character of the line is a line break, clip it
int iLastCharIndex = strlen ( pstrSourceLine ) - 1;
if ( pstrSourceLine [ iLastCharIndex ] == '\n' )

pstrSourceLine [ iLastCharIndex ] = '\0';

// Loop through each character and replace tabs with spaces
for ( unsigned int iCurrCharIndex = 0;

iCurrCharIndex < strlen ( pstrSourceLine );
++ iCurrCharIndex )

if ( pstrSourceLine [ iCurrCharIndex ] == '\t' )
pstrSourceLine [ iCurrCharIndex ] = ' ';

// Print the offending source line
printf ( "%s\n", pstrSourceLine );

// Print a caret at the start of the (presumably) offending lexeme
for ( int iCurrSpace = 0;

iCurrSpace < GetLexemeStartIndex ();
++ iCurrSpace )

printf ( " " );
printf ( "^\n" );

ERROR HANDLING
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// Print message indicating that the script could not be assembled
printf ( "Could not compile %s.", g_pstrSourceFilename );

// Exit the program
Exit ();

}

The function first prints the error message and the line number. It then statically allocates a local
string buffer to hold the current line of code, the pointer to which it gets from GetCurrSourceLine
(). Once it has a physical copy, it looks for a trailing line break and clips it by replacing it with a
null terminator. It does this because it’s better to control the formatting of the message yourself,
without having to worry about whether the line of code will impose its own line breaks. The func-
tion then scans through each character of the line, replacing tabs with single spaces. You’ll see
why in a moment.

The offending line of code is then printed. Directly underneath it, a series of spaces are printed
on the same line corresponding to the number of characters between the beginning source line
and the starting index of the current lexeme. These spaces are immediately followed by a caret,
which now points to the beginning of the lexeme where the error occurred. This should make it
clear why you had to replace tabs with spaces; even though a tab is expressed on the screen as
multiple spaces, it’s represented internally as a single \t character. If you were to print the code
as-is, the tabs would cause the code line to be desynchronized with the caret, and the wrong 
character would be highlighted for the users.

Cascading Errors
One popular feature of most modern compilers, from assemblers all the way up to C++ and Java
compilers, is the cascading error. An error-handling system is said to cascade when it continues to
parse the source file even after an error was found, in an attempt to list all of a script or pro-
gram’s errors in one shot (the term cascade comes from the fact that, more often than not, subse-
quent errors are simply the result of the first error). I chose not to implement cascading errors in
the XtremeScript compiler for a number of reasons:

■ They’re more complex.
■ They aren’t necessarily accurate, often making only the first error, or first few errors,

worth noting.
■ Although they’re understandably useful in compilers used for large projects, scripts are

smaller, simpler pieces of code almost by nature. It’s unlikely that you’ll need error han-
dling as robust and verbose as a high-end C++ compiler for writing individual game
scripts.
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However, it’s an interesting topic and one that I’ll discuss briefly. To implement a cascading error
system, the parser needs to be able to resynchronize itself after detecting an error. On a basic level,
this means finding the next valid token with which it can pick itself up, dust itself off, and resume
a normal parsing process.

For example, imagine the following code fragment:

// Declare a function
func Square ( X )
{

return X * X;
}

// Declare some variables
var MyVar0;
var MyVar1;

// Use the variables and functions
MyVar0 = MyVar1 [ 3 ];    // Error - MyVar1 is not an array
MyVar1 = Square ( 4 );    // Valid
Square ( MyVar0, MyVar1 );    // Error - Square () only accepts one

// parameter

As you can see, there are two clear errors here; one in which MyVar1 is treated as an array, and
one in which Square () is passed two parameters instead of the one it accepts. In the error system
you’ll implement in the next chapter’s parser, only the first error will be flagged before the pro-
gram terminates. In a cascading error system, however, both errors would appear.

This is accomplished by resynchronizing the parser at the next valid lexeme. In the case of the
first error, the next valid token is the MyVar1 on the following line. To better illustrate this, the two
lines in question are reprinted here, with two lexemes in bold:

MyVar0 = MyVar1 [ 3 ];    // Error - MyVar1 is not an array
MyVar1 = Square ( 4 );    // Valid

The first bolded lexeme, [, is where the error occurs. As soon as the lexer sends the [ token to
the parser, it knows that MyVar1 is being used as an array illegally. From that point on, there are
three tokens left in the statement—3, ], and ;. None of these should concern you, because you
know that the statement from here on out is invalid. So, a basic strategy for resynchronizing the
parser after the detection of an error is to simply consume tokens until the next semicolon is
read. The token following that semicolon must be the first token of the next line, which is where
the parser will attempt to get back on track.
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The parser will read the next line without a problem, because it’s perfectly valid. The line after
that, however, in which Square () is passed two parameters, presents another error. And because
the parser is still active, it will catch it as well as the first one. The end result is two errors printed
where a more simplistic error mechanism would print only one.

Of course, this was just a basic strategy; there are more sophisticated methods of error recovery
out there. For example, it may be necessary to resynchronize within the current statement,
because multiple errors can certainly occur before the next semicolon. Also, remember that not
all statements will end in a semicolon; for example, function declarations and while loops are two
likely candidates for syntax errors, but neither is terminated in the same way a statement is. In
these cases, the parser has to be smart enough to finish parsing whatever type of statement it’s cur-
rently processing, in order to intelligently make its way to the next line.

Once you read the next chapter, you should be able to modify the parser you’ll build to support
this feature in the basic way I’ve described it here.

THE I-CODE MODULE
In between the source code and lexeme and token streams of the front end, and the XVM assem-
bly output of the back end, there’s the I-code module. As has been explained a number of times
throughout the book, the purpose of intermediate code is to allow the parser and the code emit-
ter to talk to a common structure without having to directly talk to one another. The logic behind
the parser is complicated enough as it is; having to directly output ASCII-formatted assembly
would make things considerably more difficult. By allowing it to instead interface with an
abstracted I-code module through an API of simple functions, the parser can focus almost exclu-
sively on what it does best—parsing the token stream. The XtremeScript compiler I-code module
is implemented in i_code.cpp|h.

Approaches to I-Code
There are a number of ways to approach I-code. On the one hand, I-code is often implemented
as what is known as an annotated syntax tree, which is a hierarchical representation of the source
code (see Figure 14.23), in a streamlined format that minimizes extraneous data. Another com-
mon approach is a linked list or other such aggregate structure of instructions that represent a
generalized, abstracted instruction set. This lets the front end reduce the source code to an
assembly-style format without being bogged down by the details and nuances of the specific 
platform.

One of the main ways I-code implementations can be classified is how close they are to one 
of the compiler’s ends. High-level I-code, like annotated syntax trees, are much closer to the 
original source code—and therefore the front end——and often maintain statements and nested

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK



933

structures that are similar to the source language. Low-level I-code implementations, like lists of
pseudo-instructions, are closer to the back end and resemble Assembly far more than they would
C++ or Pascal.

To keep things simple but still useful, I’ve chosen to base XtremeScript’s I-code module on the
latter of the two options. The intermediate code generated by the parser will be very similar to
XVM assembly, but represented in a numeric form like a compiled instruction stream rather than
an ASCII-formatted string of characters. The I-code will be stored in a linked list, wherein each
node represents a separate instruction. Each instruction will contain an opcode, an operand
count, and a list of operands—again, much like the compiled instruction stream generated by
XASM and executed by the XVM.

A Simplified Instruction Set
After deciding to go with an assembly-style, instruction-based I-code scheme, the next decision is
what the instruction set will look like. If the compiler was targeting the Intel 80x86, for example,
you would have a very complex target code to deal with. 80x86 assembly is a complex instruction
set with hundreds of instructions, countless rules, exceptions, and idiosyncrasies, and plenty of
other issues that make generating valid, functional 80x86 code a very difficult task. So, to help
separate the parser and other front-end elements from this complex environment, the I-code
module would represent source code using a higher-level, far more simplistic instruction set. The
code emitter would then be responsible for translating the I-code’s higher-level, simplified lan-
guage to Intel’s language.

THE I-CODE MODULE
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For example, the 80x86 has a multiplication operator that differs strongly from the XVM’s Mul
operator (even though they share the same name). Here’s an example of multiplying two vari-
ables, X and Y, and storing the result in X:

MOV    EAX, X
MUL    Y
MOV    X, EAX

The first thing to remember is that the 80x86 platform has a number of hardware registers, of
which EAX is an example. The MUL (multiplication) operator requires that the destination operand
be the EAX register. The source, which the destination is multiplied by, can be either another reg-
ister or a memory location. This is why you can specify Y as the operand for MUL. Because EAX is
already specified as the destination operand in all cases, MUL only needs to accept a single
operand. What this also means is that X must first be moved into EAX before the multiplication,
and that EAX must be moved back to X afterwards.

This example should make it clear that often times, a target language is inconvenient to work
with. There’s no arguing that it’s a conceptually simple process to simply say Mul X, Y, like you
could on the XVM. Rather than having to use specific registers, and implied operands, it’s easier
to just specify exactly what you want and be done with it. This is why it’s far easier to represent a
multiplication operation in this manner within the I-code, and rely on the code emitter module
to convert it to valid 80x86 assembly in a later phase. This is demonstrated in Figure 14.24.
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The XtremeScript I-Code Instruction Set
The funny thing, however, is that the XVM is already designed around an intentionally simplistic
and easy-to-use instruction set. Although I’m sure it’s possible to find ways to make it even simpler
(within reason), I designed it intentionally from day one to iron out the difficulties associated
with many native hardware assembly languages. Because of this, there’s not much you can do to
make your I-code language any easier than XVM assembly already is.

Because of this, XtremeScript I-code will more or less mirror XVM assembly, all the way down to
the individual instructions and their operands. This design decision may seem to invalidate the
very purpose of I-code in the first place—after all, why waste the effort converting something to
an “intermediate” code that’s actually identical to the target code?

The reason XtremeScript I-code is still more useful than forcing the parser to directly output
XVM assembly is because of the interface. As you’ll see shortly, the I-code module makes it
extremely easy to add instructions to its internal list with only a few function calls. Furthermore,
writing directly to the output file brings with it a number of drawbacks; for example, there’s no
easy or efficient way to shift around large blocks of data, or make changes after something’s been
written. By writing everything to an intermediate linked-list of instructions, you’re free to perform
virtually any form of manipulation at any time. In addition, this prevents the parser from having
to deal with actual code, which is string-based and messy. It’s much easier for the parser to simply
say, “move the integer literal value of 2 into the symbol table index 186,” than it is to literally spell
out "Mov MyVar, 2”, character by character. It’s also far less error prone, because numeric data
wrapped in constants is much cleaner and simpler to work with.

As if that wasn’t reason enough, there’s still the main attraction to I-code—the capability to retar-
get other platforms. For example, you could one day decide that it would be useful for the
XtremeScript compiler to generate real, 80x86 machine code. If this was ever decided, it would
be a huge pain to have to convert the token stream directly to the Intel’s far more complex
instruction set. By leaving the I-code module in place, the parser and front end can remain
entirely unchanged; only the code emitter will require modifications to output code for the new
platform. And because XVM assembly is far simpler than 80x86 machine code, it makes for the
perfect I-code syntax.

The XtremeScript I-Code
Implementation
Implementing I-code in XtremeScript is a lot like implementing the assembled instruction stream
was in XASM. The only real difference is that instead of using a statically allocated array to hold
the instruction stream, a linked list is used to allow it to grow and shrink dynamically as the pars-
ing process progresses.
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Instructions
Each node of this list will represent a single instruction, complete with an opcode and operands.
To keep things as simple as possible, these opcodes will map directly to XVM assembly opcodes,
so you can copy and paste the list of instruction constants directly from XASM:

#define INSTR_MOV               0

#define INSTR_ADD               1
#define INSTR_SUB               2
#define INSTR_MUL               3
#define INSTR_DIV               4
#define INSTR_MOD               5
#define INSTR_EXP               6
#define INSTR_NEG               7
#define INSTR_INC               8
#define INSTR_DEC               9

#define INSTR_AND               10
#define INSTR_OR                11
#define INSTR_XOR               12
#define INSTR_NOT               13
#define INSTR_SHL               14
#define INSTR_SHR               15

#define INSTR_CONCAT            16
#define INSTR_GETCHAR           17
#define INSTR_SETCHAR           18

#define INSTR_JMP               19
#define INSTR_JE                20
#define INSTR_JNE               21
#define INSTR_JG                22
#define INSTR_JL                23
#define INSTR_JGE               24
#define INSTR_JLE               25

#define INSTR_PUSH              26
#define INSTR_POP               27
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#define INSTR_CALL              28
#define INSTR_RET               29
#define INSTR_CALLHOST          30

#define INSTR_PAUSE             31
#define INSTR_EXIT              32

This takes care of the I-code instructions, but you of course need operands as well. Like the
instructions, you can copy these directly from XASM, but they’ll require a bit of modification.
Here are the XtremeScript I-code operand types:

#define OP_TYPE_INT                 0   // Integer literal value
#define OP_TYPE_FLOAT               1   // Floating-point literal value
#define OP_TYPE_STRING_INDEX        2   // String literal value
#define OP_TYPE_VAR                 3   // Variable
#define OP_TYPE_ARRAY_INDEX_ABS     4   // Array with absolute index
#define OP_TYPE_ARRAY_INDEX_VAR     5   // Array with relative index
#define OP_TYPE_JUMP_TARGET_INDEX   6   // Jump target index
#define OP_TYPE_FUNC_INDEX          7   // Function index
#define OP_TYPE_REG                 9   // Register

I-code instruction operands can be integer literals, floating-point literals, indexes into the string
table (string literals), indexes into the symbol table (variables), indexes into the symbol table with
an offset (arrays indexed with an immediate integer value), indexes into the symbol table with an
offset contained in another symbol table offset (arrays indexed with variables), jump targets (the
I-code representation of a line label, (which I’ll discuss in more detail shortly), indexes into the
function table, or register codes (which, for now, always means _RetVal).

Thanks to XASM, you can lift these constants almost directly. You now need a data structure to
hold their values. Again, like XASM, you need a structure that represents a single I-code instruc-
tion’s opcode and operand list. The structure is called ICodeInstr, and looks like this:

typedef struct _ICodeInstr      // An I-code instruction
{

int iOpcode;                // Opcode
LinkedList OpList;          // Operand list

}
ICodeInstr;

Unlike XASM, however, you’re using another dynamic linked list to hold the operand list.
Because of this, you don’t need a separate field to store the operand count. OpList’s iNodeCount
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member will contain it at all times. The operand list still needs an operand structure to embody
each of its nodes, however. For this, you need the Op structure:

typedef struct _Op              // An I-code operand
{

int iType;                  // Type
union                       // The value
{

int iIntLiteral;        // Integer literal
float fFloatLiteral;    // Float literal
int iStringIndex;       // String table index
int iSymbolIndex;       // Symbol table index
int iJumpTargetIndex;   // Jump target index
int iFuncIndex;         // Function index
int iRegCode;           // Register code

};
int iOffset;                // Immediate offset
int iOffsetSymbolIndex;     // Offset symbol index

}
Op;

Most of this should look familiar; a union combines all of the mutually exclusive fields into a sin-
gle, overlapping block of memory, and the iType function lets you know which field of the union
is currently active. You’ll notice that within the union, there’s no mention of labels or target
instructions, but rather iJumpTargetIndex. I’ll talk about this more in the next section.
iSymbolIndex is used to store the index into the symbol table for variables and arrays. iOffset and
iOffsetSymbolIndex are used for array indexing. If the array is indexed with an immediate value, it
goes into iOffset. If it’s indexed by a variable, that variable’s symbol table index is stored in
iOffsetSymbolIndex.

Jump Targets
Instructions aren’t quite enough, however. Just as is the case with XVM assembly, the I-code repre-
sentation of a program needs the capability to express iterative and conditional logic in the form
of jump instructions. Of course, in order for a jump instruction to work, it needs a label to jump
to. Because labels are generally designed to enhance the readability of a program for a human, the
I-code version of the program will only need bare-bone markers, or jump targets, that represent a
specific node to jump to and are represented by a numeric index. Check out Figure 14.25.

Although you could simply add a flag to the ICodeInstr structure to mark certain instructions as
jump targets, as well as a second field that contains the target’s index, this suffers from some
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drawbacks. For example, it is possible that at some point, you’ll need to insert an instruction arbi-
trarily into the stream. If, by chance, this insertion must take place in between the jump target
and the instruction to which that target is bound, you’re hosed—there’s no way to separate the
target from its instruction, because they both occupy the same structure. The only solution would
be to clear the old instruction’s jump target flag and set it in the new one, but this is a lot of
unnecessary work.

Rather, you can take a lesson from human-readable labels and make them separate I-code nodes
unto themselves. This way, no matter how much the neighboring instructions change and evolve,
the jump target always remains in place, as a separate, intact entity of its own.

At this point, you can formulate the basis for a general I-code node structure, of which the I-code
stream linked list will be composed. You now know that you need at least two structures within
each node—one to represent jump targets and one to represent instructions. Because it would be
silly to store these separately, you’ll once again use a union. Here’s the ICodeNode structure:

typedef struct _ICodeNode           // An I-code node
{

int iType;                      // The node type
union
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{
ICodeInstr Instr;           // The I-code instruction
int iJumpTargetIndex;       // The jump target index

};
}

ICodeNode;

Now, the ICodeStream linked list found in the FuncNode structure discussed earlier can be filled
with ICodeNode structures. Each node is capable of functioning as either a jump target or instruc-
tion, allowing for a complete representation of any source program in an abstracted I-code for-
mat. Very cool.

Of course, you need to create some new constants to represent instructions and jump targets:

#define ICODE_NODE_INSTR        0
#define ICODE_NODE_JUMP_TARGET  1

And you’re all set!

Source Code Annotation
There is one more detail worth mentioning before you get into the nitty-gritties of the I-code
module interface (isn’t there always?). In addition to instructions and jump targets, there’s a
third possible node type that I think is important to consider. This third type is known as source
code annotation.

If you’ve ever used the Visual C++ disassembler to view the compiler’s output, you know what I’m
talking about. Because each C++ instruction is compiled down to N number of assembly instruc-
tions, it can be hard to follow which instructions belong to which parts of the original source
code. To remedy this problem, the VC++ disassembler has an option to automatically annotate its
assembly output with comments that contain each line of the original source. For example, take
the following block of C++ code:

main ()
{

int X, Y;

Y = 4;
X = Y * 8;
Y = X / 2;

int Z = X + Y;
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return 0;
}

With source code annotation turned on, the Microsoft VC++ disassembler produces the 
following:

; 5    :     Y = 4;

mov   DWORD PTR _Y$[ebp], 4

; 6    :     X = Y * 8;

mov   eax, DWORD PTR _Y$[ebp]
shl   eax, 3
mov   DWORD PTR _X$[ebp], eax

; 7    :     Y = X / 2;

mov   eax, DWORD PTR _X$[ebp]
cdq
sub   eax, edx
sar   eax, 1
mov   DWORD PTR _Y$[ebp], eax

; 8    :
; 9    :     int Z = X + Y;

mov   ecx, DWORD PTR _X$[ebp]
add   ecx, DWORD PTR _Y$[ebp]
mov   DWORD PTR _Z$[ebp], ecx

As you can see, it’s much easier to follow when you can tell exactly which instructions came from
which statements.

Because you’ll be doing a lot of examinations on the XVM assembly code emitted by the compil-
er, you’ll benefit greatly from this feature. Especially when developing a compiler, it’s extremely
important to have a way to ensure that the I-code module is being fed the proper instructions
from the proper source code.

This feature can be added easily with the addition of a string pointer in the ICodeNode union and a
new node type. Here’s the addition to the ICodeNode structure:
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typedef struct _ICodeNode           // An I-code node
{

int iType;                      // The node type
union
{

ICodeInstr Instr;           // The I-code instruction
char * pstrSourceLine;      // The source line with

// which this instruction
// is annotated

int iJumpTargetIndex;       // The jump target index
};

}
ICodeNode;

Here’s the addition of a new constant to reflect the new node type:

#define ICODE_NODE_INSTR        0
#define ICODE_NODE_SOURCE_LINE  1
#define ICODE_NODE_JUMP_TARGET  2

Simply by allowing certain nodes to contain pointers to source code strings (which can remain in
the g_SourceCode linked list), the code emitter will have all it needs to generate source code anno-
tated assembly output. For now, however, your work here is done. The structures and constants
needed by the I-code module are in place, so all you need now is a set of interface functions for
manipulating them easily.

The Interface
The I-code module’s interface is responsible for enabling a number of tasks:

■ Adding instructions to the end of the current I-code stream.
■ Adding operands of all types to those instructions after they’ve been added.
■ Automatically generating the next unique jump target index and adding it to the instruc-

tion stream.
■ Adding source code annotation.
■ Retrieving an I-code node based on its order within the stream.

Once you have functions for each of these tasks, you’ll have a completed I-code module that’s
ready to use.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK



943

Adding Instructions
The first and most basic I-code module operation is the addition of an instruction. Remember,
all I-code must exist within the scope of a specific FuncNode structure in the function table. In
other words, code only exists within functions. Because of this, a function for adding an I-code
instruction needs both the opcode to add, as well as a function table index to specify the proper
scope. This is done with the AddICodeInstr () function:

int AddICodeInstr ( int iFuncIndex, int iOpcode )
{

// Get the function to which the instruction should be added
FuncNode * pFunc = GetFuncByIndex ( iFuncIndex );

// Create an I-code node structure to hold the instruction
ICodeNode * pInstrNode = ( ICodeNode * ) malloc ( sizeof ( ICodeNode ) );

// Set the node type to instruction
pInstrNode->iType = ICODE_NODE_INSTR;

// Set the opcode
pInstrNode->Instr.iOpcode = iOpcode;

// Clear the operand list
pInstrNode->Instr.OpList.iNodeCount = 0;

// Add the instruction node to the list and get the index
int iIndex = AddNode ( & pFunc->ICodeStream, pInstrNode );

// Return the index
return iIndex;

}

As I said, this function accepts a function index, iFuncIndex, and an opcode, iOpcode. The 
first order of business is retrieving the FuncNode structure of the specified function using
GetFuncByIndex (). A new ICodeNode structure is then allocated and initialized by setting its iType
field to ICODE_NODE_INSTR and its iOpcode field to the specified opcode. The operand list is cleared
by setting its iNodeCount member to zero. Lastly, AddNode () is called, and the index it provides is
returned to the caller.
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The index returned by AddICodeInstr () is actually of significant importance; because operands
will be added to the instruction in subsequent function calls, the caller needs to be able to specify
which node index in the stream the operands should be added to.

Adding Operands
Speaking of which, adding operands to preexisting instructions in an I-code stream is the focus of
the next set of functions I’m going to discuss. Once an instruction exists in the I-code stream,
operands can be added to its OpList linked list. This is done with the AddICodeOp () function:

void AddICodeOp ( int iFuncIndex, int iInstrIndex, Op Value )
{

// Get the I-code node
ICodeNode * pInstr = GetICodeNodeByImpIndex ( iFuncIndex, iInstrIndex );

// Make a physical copy of the operand structure
Op * pValue = ( Op * ) malloc ( sizeof ( Op ) );
memcpy ( pValue, & Value, sizeof ( Op ) );

// Add the instruction
AddNode ( & pInstr->Instr.OpList, pValue );

}

The function is passed a function index, iFuncIndex, which it uses to find the specific I-code
stream. It’s also passed an instruction index, iInstrIndex, which allows it to find the proper
instruction within that stream. Lastly, we send it an Op structure containing the operand’s value,
Value. A call is made to a function called GetICodeNodeByImpIndex (), which returns a pointer to
the I-code node. I’ll come back to this function soon, but for now, all you need to know is that it
returns a node pointer based on a specific function index and instruction index. The node is
found in the instruction stream based on its implicit index, which is just another way of saying its
physical order in the list.

A new Op structure is then allocated to store a physical copy of the one passed in the Value param-
eter. This Op structure is ultimately the one that’s added to the list with AddNode (). Note that this
function doesn’t seem to care about the new node’s index—this is because there’s no need to
modify an operand after it’s added.

Making Operand Addition Easier
This function is certainly convenient, but it’s still a bit of a hassle to have to create a new Op struc-
ture every time you want to add an operand. If you’re adding an integer literal operand, it would
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be nice to simply pass the function an integer value. If you’re adding a symbol table index
operand, it would be easier if you could just pass the index itself. To do this, you can create a
number of helper functions that will wrap AddICodeOp () to make the addition of specific operand
values easier. Let’s start with AddIntICodeOp (), which adds integer values as I-code operands:

void AddIntICodeOp ( int iFuncIndex, int iInstrIndex, int iValue )
{

// Create an operand structure to hold the new value
Op Value;

// Set the operand type to integer and store the value
Value.iType = OP_TYPE_INT;
Value.iIntLiteral = iValue;

// Add the operand to the instruction
AddICodeOp ( iFuncIndex, iInstrIndex, Value );

}

This function declares a local Op structure, sets its iType field to OP_TYPE_INT, sets its iIntLiteral
field to the integer value specified by specified iValue, and adds the operand by calling 
AddICodeOp ().

The rest of the functions work in exactly the same way; they only differ by the constant they
assign to iType and the values they put in the rest of the Op structure. Because of this, there’s no
point in wasting the time and page space involved in printing and dissecting them individually.
To check them out for yourself, however, you’re encouraged to browse the XtremeScript compil-
er source provided on the companion CD.

Retrieving Operands
As you’ll see when studying the implementation of the code emitter module, it will be necessary
to retrieve an I-code’s operands based on their index within the list. This is done by the
GetICodeOpByIndex () function:

Op * GetICodeOpByIndex ( ICodeNode * pInstr, int iOpIndex )
{

// If the list is empty, return a NULL pointer
if ( ! pInstr->Instr.OpList.iNodeCount )

return NULL;

// Create a pointer to traverse the list
LinkedListNode * pCurrNode = pInstr->Instr.OpList.pHead;
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// Traverse the list until the matching index is found
for ( int iCurrNode = 0;

iCurrNode < pInstr->Instr.OpList.iNodeCount;
++ iCurrNode )

{
// If the index matches, return the operand

if ( iOpIndex == iCurrNode )
return ( Op * ) pCurrNode->pData;

// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The operand was not found, so return a NULL pointer
return NULL;

}

This simple function accepts an ICodeNode structure pointer, as well as an index within its operator
list. The function then traverses the list, assuming it’s not empty, until the specified index match-
es the current index. If a match is found, the operand structure pointer is returned; otherwise,
NULL is returned.

Adding Jump Targets
Now that you can add instructions, you need to add jump targets to facilitate looping and branch-
ing. Fortunately, this is just as easy as adding instructions was, and is handled with the
AddICodeJumpTarget () function:

void AddICodeJumpTarget ( int iFuncIndex, int iTargetIndex )
{

// Get the function to which the source line should be added
FuncNode * pFunc = GetFuncByIndex ( iFuncIndex );

// Create an I-code node structure to hold the line
ICodeNode * pSourceLineNode = ( ICodeNode * )

malloc ( sizeof ( ICodeNode ) );

// Set the node type to jump target
pSourceLineNode->iType = ICODE_NODE_JUMP_TARGET;
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// Set the jump target
pSourceLineNode->iJumpTargetIndex = iTargetIndex;

// Add the instruction node to the list and get the index
AddNode ( & pFunc->ICodeStream, pSourceLineNode );

}

Predictably, this function accepts a function index and a jump target index. It calls GetFuncByIndex
() to retrieve a pointer to the function node, and then allocates space for the new I-code node. 
It sets the newly created node’s iType to ICODE_NODE_JUMP_TARGET, and the iJumpTargetIndex field
to the index specified by the iTargetIndex parameter. Finally, it adds the node with a call to
AddNode ().

This is a simple enough function, and it’s pretty obvious how everything works, but how do you
determine the jump target’s index? It’s extremely important that at least within the same scope,
all jump targets have unique indexes. Otherwise, chaos will ensue as the compiler and assembler
attempt to direct different jumps to the same instruction, and ultimately declare multiple labels
with the same name in the resulting assembly output.

To remedy this, you need a function that can guarantee a new, unique jump target index every
time it’s called. Implementing this is actually rather simple; the I-code module just maintains a
global variable called g_iCurrJumpTargetIndex and increments it every time a new one is requested.
This is handled by the GetNextJumpTargetIndex () function:

int GetNextJumpTargetIndex ()
{

// Return and increment the current target index
return g_iCurrJumpTargetIndex ++;

}

This can now be called just before a call to AddICodeJumpTarget () to ensure that a unique target
index is used every time.

Adding Source Code Annotation
The last type of I-code node that can be added to the stream is source code annotation, which
simply contains a string pointer that references one of the strings in the g_SourceCode linked list.
Adding the annotation is a somewhat trivial matter; it’s based on the same principals as
AddICodeInstr () and AddICodeJumpTarget () before it. Here’s the function responsible for it,
AddICodeSourceLine ():
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void AddICodeSourceLine ( int iFuncIndex, char * pstrSourceLine )
{

// Get the function to which the source line should be added
FuncNode * pFunc = GetFuncByIndex ( iFuncIndex );

// Create an I-code node structure to hold the line
ICodeNode * pSourceLineNode = ( ICodeNode * )

malloc ( sizeof ( ICodeNode ) );

// Set the node type to source line
pSourceLineNode->iType = ICODE_NODE_SOURCE_LINE;

// Set the source line string pointer
pSourceLineNode->pstrSourceLine = pstrSourceLine;

// Add the instruction node to the list and get the index
AddNode ( & pFunc->ICodeStream, pSourceLineNode );

}

As you might expect, it accepts a function index and a source line in the form of a string pointer.
It grabs the function’s node, uses it to determine which I-code stream to add the node to, allo-
cates a new I-code node, and initializes it. The iType field is set to ICODE_NODE_SOURCE_LINE and the
pstrSourceLine string pointer member is set to the pointer specified. And of course, the process is
completed with a call to AddNode ().

Retrieving I-Code Nodes
The last function your I-code module interface needs is one to retrieve an entire I-code node. As
you’ll see when you write the code emitter module, the best way to retrieve I-code nodes is by
their implicit index. The node’s implicit index, unlike most of the other nodes you’ve dealt with in
other tables, is simply its physical order in the list. So, if the node in question is the third node
from the head, its implicit index is 2. Let’s take a look at GetICodeNodeByImpIndex (), which
returns an I-code node based on its implicit index:

ICodeNode * GetICodeNodeByImpIndex ( int iFuncIndex, int iInstrIndex )
{

// Get the function
FuncNode * pFunc = GetFuncByIndex ( iFuncIndex );

// If the stream is empty, return a NULL pointer
if ( ! pFunc->ICodeStream.iNodeCount )

return NULL;
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// Create a pointer to traverse the list
LinkedListNode * pCurrNode = pFunc->ICodeStream.pHead;

// Traverse the list until the matching index is found
for ( int iCurrNode = 0;

iCurrNode < pFunc->ICodeStream.iNodeCount;
++ iCurrNode )

{
// If the implicit index matches, return the instruction

if ( iInstrIndex == iCurrNode )
return ( ICodeNode * ) pCurrNode->pData;

// Otherwise move to the next node
pCurrNode = pCurrNode->pNext;

}

// The instruction was not found, so return a NULL pointer
return NULL;

}

This simple function follows the pattern of most of the compiler’s other retrieval functions. A
node pointer is used to traverse the list, and at each iteration, the specified index is compared to
the current one. If a match is found, the pointer is returned. NULL is returned in the event that
the specified index does not exist.

THE CODE-EMITTER MODULE
Code emission is the final step of a compiler, wherein the I-code generated by the parser is finally
converted to the compiler’s target format. In this case, the target format is an XVM assembly file
compatible with the XASM assembler built in Chapter 9. Because the I-code module devised in
the last system is so similar to this language, it will be an easy translation. The code emitter is
implemented in code_emit.cpp|h.

Code-Emission Basics
On a basic level, the code emitter just needs to produce a valid text file that can be fed to the
assembler. Its job is nothing more than taking the I-code stream, which is very similar to the com-
piled instruction stream created by the XASM assembler, and converting it back to a text repre-
sentation. Opcodes are converted back to their instruction mnemonics, symbol table indexes are
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emitted as variable identifiers, entries in the function table are emitted as formal XASM function
declarations, and so on.

Although you could just emit a bare-bones, completely unformatted chunk of borderline unread-
able text, there are a number of reasons to expend some extra effort formatting the generated
assembly file for both general aesthetics and readability:

■ You will most likely find it useful to do some hand-tuning to the compiler’s output for
certain scripts, mostly for the purpose of optimization.

■ The compiler may generate erroneous output, which causes XASM to complain. To get
to the root of the problem, it will be invaluable to be able to easily browse the assembly
file it generates.

■ You can learn a lot about how everything works by simply observing the compiler’s out-
put.

In each of these three cases, the common thread is that a human will have to read the compiler’s
output on at least a semi-regular basis. To this end, it’s important that the compiler do everything
it can to make the assembly file as human-like as possible, to enhance the reader’s comfort and
minimize confusion.

Of course, XASM couldn’t care less either way. You specifically designed the assembler to filter
out all forms of extraneous whitespace, comments, and other such human formatting, just as the
compiler will.

The General Format
Before writing any emitter code, it would be a good idea to decide on a single, general format
used to create uniform assembly output files all across the board. Here’s what I came up with:

; Filename.XASM

; Source File: Filename.XSS
; XSC Version: 0.8
;   Timestamp: Thu Sep 05 00:42:46 2002

; ---- Directives ---------------------------------

; Directives go here

; ---- Global Variables ---------------------------

; Global variable declarations go here
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; ---- Functions ----------------------------------

; Non-_Main () function declarations go here

; ---- Main ---------------------------------------

; _Main ()'s function declaration goes here, if present

As you can see, this is designed to mimic the formatting style I’ve been using throughout the
book. Each segment of the file is partitioned in a very visual, verbose manner that helps guide the
reader. Each file begins with a standard header, which states the file’s name, the name of the
.XSS source file from which it was generated, the version of the assembler that created it, and a
timestamp.

Immediately following the header are declarations, such as SetStackSize and SetPriority.
Following those are global variable declarations. After the globals come the definitions for each
of the script’s functions, except _Main (). As in my own scripts, the XtremeScript compiler will emit
_Main () separately, in its own fenced off area.

Generating this basic skeleton is easy—it’s just a series of hard-coded fprintf () calls. The real
issue is emitting the code and declarations that lie within each segment. The rest of this section
covers the emission of these segments, one by one.

Global Definitions
The first aspects of the code emitter to understand are the few basic global definitions it uses.
First up is the global file handle it uses to track the output file as it’s written to:

FILE * g_pOutputFile = NULL;

Next is an array of strings that are used to map I-code instruction opcodes to their human-read-
able mnemonics. The opcode of each instruction is used as an index into the array, which allows
for an easy one-to-one mapping. If you recall Chapter 10, you may notice that I lifted this directly
from the original XVM prototype, which used it to print the mnemonic of the instruction it was
currently executing:

char ppstrMnemonics [][ 12 ] =
{

"Mov",
"Add", "Sub", "Mul", "Div", "Mod", "Exp", "Neg", "Inc", "Dec",
"And", "Or", "XOr", "Not", "ShL", "ShR",
"Concat", "GetChar", "SetChar",
"Jmp", "JE", "JNE", "JG", "JL", "JGE", "JLE",
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"Push", "Pop",
"Call", "Ret", "CallHost",
"Pause", "Exit"

};

Last is a single constant that is used to track the width of tab stops:

#define TAB_STOP_WIDTH                      8

This will come in handy when aligning the columns of instructions and their operands in the out-
putted code.

Emitting the Header
The header is probably the easiest part of the output file, and because it comes at the very top, is
a good place to start. The header is emitted by the EmitHeader () function:

void EmitHeader ()
{

// Get the current time
time_t CurrTimeMs;
struct tm * pCurrTime;
CurrTimeMs = time ( NULL );
pCurrTime = localtime ( & CurrTimeMs );

// Emit the filename
fprintf ( g_pOutputFile, "; %s\n\n", g_pstrOutputFilename );

// Emit the rest of the header
fprintf ( g_pOutputFile, "; Source File: %s\n", g_pstrSourceFilename );
fprintf ( g_pOutputFile, "; XSC Version: %d.%d\n",

VERSION_MAJOR, VERSION_MINOR );
fprintf ( g_pOutputFile, ";   Timestamp: %s\n", asctime ( pCurrTime ) );

}

The function first calculates the time and date with the localtime () function. localtime ()
returns a pointer to a tm structure containing a full timestamp based on the current time in mil-
liseconds, which is returned by time () and stored in the time_t structure instance CurrTimeMs.
You can store the result of localtime () in pCurrTime for use in a subsequent fprintf () call.

You then emit the filename, which is of course readily available in g_pstrOutputFilename, followed
by the rest of the header. This includes the original source filename, as found in
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g_pstrSourceFilename, and the version of the compiler, found in VERSION_MAJOR and VERSION_MINOR
(defined in xsc.h):

#define VERSION_MAJOR               0
#define VERSION_MINOR               8

The final line of the header is the timestamp calculated earlier. To convert the contents of the
structure pointed to by pCurrTime to something that can be printed to a file by fprintf (),use the
asctime () to convert it to a string representation.

Emitting Directives
The emission of directives is pretty straightforward; the only issue to keep in mind is that if a
directive hasn’t been defined by the users (via the command-line), it should be left out of the
generated code. Directive emission is handled by EmitDirectives ():

void EmitDirectives ()
{

// If directives were emitted, this is set to TRUE so we remember to
// insert extra line breaks after them
int iAddNewline = FALSE;

// If the stack size has been set, emit a SetStackSize directive
if ( g_ScriptHeader.iStackSize )
{

fprintf ( g_pOutputFile, "\tSetStackSize %d\n",
g_ScriptHeader.iStackSize );

iAddNewline = TRUE;
}

// If the priority has been set, emit a SetPriority directive
if ( g_ScriptHeader.iPriorityType != PRIORITY_NONE )
{

fprintf ( g_pOutputFile, "\tSetPriority " );
switch ( g_ScriptHeader.iPriorityType )
{

// Low rank
case PRIORITY_LOW:

fprintf ( g_pOutputFile, PRIORITY_LOW_KEYWORD );
break;
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// Medium rank
case PRIORITY_MED:

fprintf ( g_pOutputFile, PRIORITY_MED_KEYWORD );
break;

// High rank
case PRIORITY_HIGH:

fprintf ( g_pOutputFile, PRIORITY_HIGH_KEYWORD );
break;

// User-defined time slice
case PRIORITY_USER:

fprintf ( g_pOutputFile, "%d", g_ScriptHeader.iUserPriority );
break;

}
fprintf ( g_pOutputFile, "\n" );
iAddNewline = TRUE;

}

// If necessary, insert an extra line break
if ( iAddNewline )

fprintf ( g_pOutputFile, "\n" );
}

The first thing the function does is set a flag called iAddNewLine to FALSE. This flag is used to deter-
mine whether the function should emit a trailing newline after the directives. This will make a bit
more sense when you see how an entire file is emitted in the last section, but for now, just think
of it like this; if no directives were set by the user, the function shouldn’t output anything. If one
or both of the directives were set, however, that’s one or two more lines emitted by the function
that wouldn’t have been there anyway. To keep the overall formatting of the file consistent, this
extra content should be padded with an extra newline to separate it from whatever might come
next. This extra line should be generated only if necessary. If this doesn’t make perfect sense, yet,
however, don’t worry. You’ll see more of why this is important in a later section. Either way, it’s a
rather trivial formatting detail that has little to do with the overall theory of the code emitter.

The function first checks the script header’s iStackSize field. If it’s nonzero, the emitter takes
that as a sign that the user set it to a specific size that should be reflected in the output file. To
emit the directive, a single fprintf () call is made to print the “SetStackSize” string, followed by a
single space and the iStackSize field’s value. Note that the iAddNewLine flag is set after emitting
the directive, and that the directive is inset by a single tab stop.
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The next directive is SetPriority, whose value is represented within the script header by two sepa-
rate fields. Before doing anything, the function determines whether the script header’s
iPriorityType field is PRIORITY_TYPE_NONE. If so, it’s taken as a sign that the user never entered a
priority. Otherwise, it’s assumed to be the type of priority requested.

fprintf () is called first to emit the “SetPriority” string, followed by a space. A switch block is
then used to emit the proper priority value, depending on the iPriorityType field. If it’s one of
the PRIORITY_LOW, PRIORITY_MED or PROIRITY_HIGH constants, the corresponding PRIORITY_*_KEYWORD
string constant is emitted. Otherwise, it’s a user-defined time slice duration (PRIORITY_TYPE_USER),
so the script header’s iUserPriority value is emitted.

Finally, a newline is emitted if the iAddNewLine flag was set at any point during the function.

Emitting Symbol Declarations
With the header and directives out of the way, the next stop on your way down the output file are
the global variable and array declarations. To emit these declarations, all you need to do is scan
through the symbol table, read the relevant nodes, and print them in the style and format of an
XVM declaration. For example, a symbol node whose identifier string is “MyVar” and whose size is
1 can be emitted like this:

Var MyVar

A node whose identifier string is “MyArray” and whose size is 16 can be emitted like this:

Var MyArray [ 16 ]

The general formats for variable and array declaration emission are as follows:

Var <pstrIdent>
Var <pstrIdent> [ <iSize> ]

Of course, there’s also the issue of a variable’s type, as well as its scope. Because the iType variable
can differentiate between variables and parameters, you need a third format in case iType is equal
to SYMBOL_TYPE_PARAM:

Param <pstrIdent>

This process is illustrated in Figure 14.26.

In terms of scope, the key to remember is this: even though global and local declarations are
located in different places within the script, they’re composed of the exact same token sequences.
The only real difference is that global declarations never use the Param directive. Because of this,
it would be silly to handle local and global symbol declaration emission in separate functions;
because the logic is the same in both places, a more intelligent solution would be to simply code
a single function that emits symbol declarations within a specified scope. This function is called
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EmitScopeSymbols () and can be used to emit both the global declarations at the top of the script,
and the local declarations within each function:

void EmitScopeSymbols ( int iScope, int iType )
{

// If declarations were emitted, this is set to TRUE so we remember to
// insert extra line breaks after them
int iAddNewline = FALSE;

// Local symbol node pointer
SymbolNode * pCurrSymbol;

// Loop through each symbol in the table to find the match
for ( int iCurrSymbolIndex = 0;

iCurrSymbolIndex < g_SymbolTable.iNodeCount;
++ iCurrSymbolIndex )
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{
// Get the current symbol structure

pCurrSymbol = GetSymbolByIndex ( iCurrSymbolIndex );

// If the scopes and parameter flags match, emit the declaration
if ( pCurrSymbol->iScope == iScope && pCurrSymbol->iType == iType )
{

// Print one tab stop for global declarations, and two for locals
fprintf ( g_pOutputFile, "\t" );
if ( iScope != SCOPE_GLOBAL )

fprintf ( g_pOutputFile, "\t" );

// Is the symbol a parameter?
if ( pCurrSymbol->iType == SYMBOL_TYPE_PARAM )

fprintf ( g_pOutputFile, "Param %s", pCurrSymbol->pstrIdent );

// Is the symbol a variable?
if ( pCurrSymbol->iType == SYMBOL_TYPE_VAR )
{

fprintf ( g_pOutputFile, "Var %s", pCurrSymbol->pstrIdent );

// If the variable is an array, add the size declaration
if ( pCurrSymbol->iSize > 1 )

fprintf ( g_pOutputFile, " [ %d ]", pCurrSymbol->iSize );
}
fprintf ( g_pOutputFile, "\n" );
iAddNewline = TRUE;

}
}

// If necessary, insert an extra line break
if ( iAddNewline )

fprintf ( g_pOutputFile, "\n" );
}

After clearing the iAddNewLine flag, the function begins a traversal of the symbol table to find all
symbols matching the specified scope. Upon a match, the function ensures that the symbol is also
of the specified type. EmitScopeSymbols () allows the caller to emit a scope’s variables and parame-
ters separately, which will come in handy in the next section when you emit functions. If the sym-
bol matches both the specified scope and type, it’s time to emit it. The first step is to emit the
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appropriate number of tab stops. The function can be used for both global and local declara-
tions, and this fact is reflected here. Globals and functions are both indented by a single tab. So,
a global variable declaration only needs one tab stop to precede it. However, because a local dec-
laration’s function is one tab in as well, the declaration itself needs two tab stops so it appears to
be “within” its surrounding function. Here’s an example of what I mean:

; ---- Globals ------------------------------------

Var MyGlobal

; ---- Functions ----------------------------------

Func MyFunc
{

Var MyLocal
}

Notice that the global is inset by only one tab stop, whereas the local is indented by two. After
emitting the tab stops, the function checks the specified type. If it’s SYMBOL_TYPE_PARAM, the Param
directive is emitted. Otherwise, Var is the output. In both cases, the directive is immediately fol-
lowed by a single space and the symbol’s identifier, as found in its node’s pstrIdent field. At this
point, both single variables and parameters have been emitted, but arrays need special attention.
This is handled by determining whether a variable symbol’s iSize node is greater than one. If so,
a second call to fprintf () is made to emit the size value enclosed in braces.

This function will emit a contiguous sequence of declarations for all variables and parameters
within a given scope. You can directly apply this to the emission of functions, so let’s check them
out next.

Emitting Functions
Functions are without question the most complex aspect of code emission in the XtremeScript
compiler, because they’re solely responsible for the emission of actual I-code. A function’s decla-
ration takes the following general form:

Func <pstrName>
{

; Parameter declarations
; Local variable declarations

; Code
}
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Everything except the code is a snap; the
function declaration itself is just a matter
of emitting the Func directive, the function
node’s pstrName field, and the curly braces.
Parameters and local variables can each be
emitted with two calls to the
EmitScopeSymbols () function developed in
the last section. The code, however, is
where things get tricky. Because you’re
emitting instruction mnemonics and
operands based on a purely numeric I-
code representation, it’s almost as if it’s
the reverse of the process performed by
XASM. In this regard, writing the code
emitter is very similar to writing a disassembler.

The Function and Local Symbol Declarations
Functions are emitted with EmitFunc (), which emits a single function based on a function node
pointer that is passed from the caller. Let’s get started:

void EmitFunc ( FuncNode * pFunc )
{

// Emit the function declaration name and opening brace
fprintf ( g_pOutputFile, "\tFunc %s\n", pFunc->pstrName );
fprintf ( g_pOutputFile, "\t{\n" );

// Emit parameter declarations
EmitScopeSymbols ( pFunc->iIndex, SYMBOL_TYPE_PARAM );

// Emit local variable declarations
EmitScopeSymbols ( pFunc->iIndex, SYMBOL_TYPE_VAR );

As I said, the easy part of function emission was taken care of in only a few lines. The Func direc-
tive was followed by the function’s name, a line break, and an opening curly brace. If the func-
tion node’s pstrName field pointed to the string “MyFunc”, the emitter would produce the following
so far:

Func MyFunc
{

THE CODE-EMITTER MODULE

NOTE
In case you aren’t familiar with the term, a
disassembler is a utility that converts the
compiled instruction stream of an exe-
cutable back to assembly language, by
replacing each opcode with a mnemonic
string, and each operand with its human-
readable equivalent. Because of this, it’s
more or less the opposite of an assembler,
hence the name. Disassemblers are useful
when reverse-engineering a compiled exe-
cutable when the source is not accessible.
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Two calls to EmitScopeSymbols (), used to emit the function’s parameters and variables (in that
order), are then made. At this point, all that remains is the code. The function node stores this
code in its nested ICodeStream linked list, so you begin by determining whether it contains any-
thing:

// Does the function have an I-code block?

if ( pFunc->ICodeStream.iNodeCount > 0 )
{

Once you know there’s an I-code stream to process, you can begin a traversal of the list to output
each node. Once you have the node, you can use its iType field to determine what it is and how
to emit it:

// Used to determine if the current line is the first
int iIsFirstSourceLine = TRUE;

// Yes, so loop through each I-code node to emit the code
for ( int iCurrInstrIndex = 0; iCurrInstrIndex < pFunc->ICodeStream.iNodeCount; ++
iCurrInstrIndex )
{

// Get the I-code instruction structure at the current node
ICodeNode * pCurrNode = GetICodeNodeByImpIndex ( pFunc->iIndex,

iCurrInstrIndex );

// Determine the node type
switch ( pCurrNode->iType)
{

The iIsFirstSourceLine flag is yet another formatting-related issue. As you’ll see as you get deeper
into this function’s code, it can be beneficial to determine whether the line currently being print-
ed is the first in the I-code block, to resolve certain vertical whitespace issues. I’ll come back to
this. In the meantime, you’ve got a copy of the I-code node pointer and are about to dive into a
switch block that will let you emit it based on its type.

At this point, there are three I-code node types you could be dealing with:

■ Source code annotation. Certain I-code nodes are reserved entirely for holding a pointer
to a string within the source code linked list. These are simply emitted as comments to
help guide a human reader through the assembly output.
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■ I-code instruction. An I-code instruction in the XtremeScript compiler has a one-to-one
mapping with the XVM instruction set, so all you have to do here is emit the proper
mnemonic and each of its operands.

■ Jump target. Jump targets are ultimately translated to labels by the code emitter, which
must generate a unique label name on the fly. You’ll learn how this is done shortly.

Source Code Annotation
Let’s start at the top and look at the emission code for a source code annotation node:

case ICODE_NODE_SOURCE_LINE:
{

// Make a local copy of the source line
char * pstrSourceLine = pCurrNode->pstrSourceLine;

// If the last character of the line is a line break, clip it
int iLastCharIndex = strlen ( pstrSourceLine ) - 1;
if ( pstrSourceLine [ iLastCharIndex ] == '\n' )

pstrSourceLine [ iLastCharIndex ] = '\0';

// Emit the comment, but only prepend it with a line break
// if it's not the first one
if ( ! iIsFirstSourceLine )

fprintf ( g_pOutputFile, "\n" );

fprintf ( g_pOutputFile, "\t\t; %s\n\n", pstrSourceLine );

break;
}

These are easy. The function first makes a local copy of the source line pointer for convenience,
and then clips any trailing line breaks that may be present so that it doesn’t mess up the format-
ting you’d like to enforce. You can make direct alterations to the code without making a physical
copy first at this point because you’re at the end of the compilation pipeline and you’ll never
need it again. Once you’ve ensured that the line break is gone, you can check the
iIsFirstSourceLine flag. If this is the first line of code in the I-code block, you can already rely on
the blank line appended to the last emission. If you’re inside the I-code block, however, you have
to generate your own. Following this vertical whitespace is the commented source note itself, con-
taining the original line of code. Note the use of two tab stops to ensure that the comment
appears within its surrounding function.
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I-Code Instructions
Instructions are hands down the most complex part about emitting I-code. Fortunately, the
process is really just a regurgitation of the ones performed many times during the implementa-
tion of XASM and the XVM.

Naturally, the first thing to do when emitting an instruction is to map the opcode to its corre-
sponding string in the mnemonic array declared earlier, and then to print it. This mnemonic
should be immediately followed by either one or two tab stops, depending on its length. To
understand why this is done, consider the following fragment:

Mov    X, Y
Add    X, Z
Jmp    MyLabel

This does fine with a single tab stop. The problem occurs when the CallHost instruction finds its
way into the stream:

Mov    X, Y
Add    X, Z
Jmp    MyLabel
CallHost    MyHostFunc

Suddenly, the columns are misaligned and all hell is breaking loose! I admit I’m a bit anal when
it comes to organization and formatting, but I still stand by the results. By appending CallHost
with a single tab and Mov, Add, and Jmp by two, you get much cleaner output:

Mov         X, Y
Add         X, Z
Jmp         MyLabel
CallHost    MyHostFunc

It may be a little on the “spacey” side, but it’s a godsend when you’re trying to wade through a
thousand lines of the stuff and can barely keep your head straight as it is. To combat this, the
length of the mnemonic is compared to the TAB_STOP_WIDTH constant mentioned earlier. If the
mnemonic is greater, a single tab stop is used; otherwise, two are emitted. Here’s the next block
of code, implementing everything just discussed:

case ICODE_NODE_INSTR:
{

// Emit the opcode
fprintf ( g_pOutputFile, "\t\t%s", ppstrMnemonics

[ pCurrNode->Instr.iOpcode ] );
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// Determine the number of operands
int iOpCount = pCurrNode->Instr.OpList.iNodeCount;

// If there are operands to emit, follow the instruction with some space
if ( iOpCount )
{
// All instructions get at least one tab

fprintf ( g_pOutputFile, "\t" );

// If it's less than a tab stop's width in characters, however, they
// get a second

if ( strlen ( ppstrMnemonics [ pCurrNode->Instr.iOpcode ] ) <
TAB_STOP_WIDTH )
fprintf ( g_pOutputFile, "\t" );

}

As always seems to be the case, however, the real complications arise when the operands are emit-
ted. As usual, it’s because operands come in many forms, each of which must be handled differ-
ently. In addition to emitting the operand, it’s also important to remember that each operand
must be followed by a comma, unless it’s the last. Here’s the code for looping through each
operand in the I-code node’s list and emitting them:

for ( int iCurrOpIndex = 0; iCurrOpIndex < iOpCount; ++ iCurrOpIndex )
{

// Get a pointer to the operand structure
Op * pOp = GetICodeOpByIndex ( pCurrNode, iCurrOpIndex );

// Emit the operand based on its type
switch ( pOp->iType )
{
// Integer literal

case OP_TYPE_INT:
fprintf ( g_pOutputFile, "%d", pOp->iIntLiteral );
break;

// Float literal
case OP_TYPE_FLOAT:

fprintf ( g_pOutputFile, "%f", pOp->fFloatLiteral );
break;

THE CODE-EMITTER MODULE



964

// String literal
case OP_TYPE_STRING_INDEX:

fprintf ( g_pOutputFile, "\"%s\"", GetStringByIndex
( & g_StringTable, pOp->iStringIndex ) );

break;

// Variable
case OP_TYPE_VAR:

fprintf ( g_pOutputFile, "%s", GetSymbolByIndex
( pOp->iSymbolIndex )->pstrIdent );

break;

// Array index absolute
case OP_TYPE_ARRAY_INDEX_ABS:

fprintf ( g_pOutputFile, "%s [ %d ]",
GetSymbolByIndex ( pOp->iSymbolIndex )->pstrIdent, pOp->iOffset );
break;

// Array index variable
case OP_TYPE_ARRAY_INDEX_VAR:

fprintf ( g_pOutputFile, "%s [ %s ]", GetSymbolByIndex
( pOp->iSymbolIndex )->pstrIdent,
GetSymbolByIndex ( pOp->iOffsetSymbolIndex )->pstrIdent );

break;

// Function
case OP_TYPE_FUNC_INDEX:

fprintf ( g_pOutputFile, "%s", GetFuncByIndex
( pOp->iSymbolIndex )->pstrName );

break;

// Register (just _RetVal for now)
case OP_TYPE_REG:

fprintf ( g_pOutputFile, "_RetVal" );
break;

// Jump target index
case OP_TYPE_JUMP_TARGET_INDEX:

fprintf ( g_pOutputFile, "_L%d", pOp->iJumpTargetIndex );
break;

}
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// If the operand isn't the last one, append it with a comma and space
if ( iCurrOpIndex != iOpCount - 1 )

fprintf ( g_pOutputFile, ", " );
}

This should look pretty straightforward, but here’s a quick rundown. Integer operands are print-
ed by simply emitting the iIntLiteral field of the Op structure. Floats are handled the same way;
they come directly out of the fFloatLiteral field. Strings are almost emitted in their exact form,
but must be surrounded by double-quotes. The string itself is obtained with a call to
GetStringByIndex (), using the iStringIndex field. Variables are represented simply as their identi-
fier string, pstrIdent, so that’s all that needs to be emitted. In the case of arrays indexed with
absolute values, the identifier string is immediately followed by an integer value, stored in the
iOffset field, surrounded by braces. The same goes for arrays indexed with variables, except that
the indexing variable’s identifier is placed in between the braces, instead of an integer index.
Function operands (used in the Call and CallHost instructions) are simply emitted as their
pstrName string. Register codes are up next; for now, because the XVM only has one register, the
code itself is ignored and _RetVal is unconditionally emitted.

Last up are jump targets, which are emitted as label names. Because the jump target is simply an
integer value, you have to construct a label name on the fly. Fortunately, this is easy to do.
Remember, within a given scope, labels have to be unique. Because of this, you can use the jump
target’s integer index as the basis for labels that will always be unique, because each jump target’s
index is unique. For example, if you convert the index to a string and prefix it with something
like “_L”, you could generate a limitless amount of unique labels in a single line of code. For
example, if you have three jump indexes, 0, 1, and 2, they’ll be emitted as the labels _L0, L1, and
_L2. The leading underscore is the convention I’ve used throughout the book to represent special
or compiler-generated identifiers, and the L of course stands for label.

With the operand emitted, the last step is to immediately follow it with a comma and a space (to
help visually separate it from the next operand), unless it’s the last one in the list. The instruction
is now complete, so you simply tack on a line break and consider it finished:

// Finish the line
fprintf ( g_pOutputFile, "\n" );
break;

Jump Targets
Luckily, the last I-code node type is extremely simple. Its only job is to convert a jump table index
into a label (using the same process devised in the last section) and emitting it in the form of a
label declaration:
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case ICODE_NODE_JUMP_TARGET:
{

// Emit a label in the format _LX, where X is the jump target
fprintf ( g_pOutputFile, "\t_L%d:\n", pCurrNode->iJumpTargetIndex );

}

It’s simply a matter of prefixing the jump target index with _L to make a valid label, and then fol-
lowing it with a colon to turn it into a declaration.

Finishing Up
The rest of the operand emission loop and the EmitFunc () function is pretty uneventful. Let’s
have a quick look:

}
// Update the first line flag

if ( iIsFirstSourceLine )
iIsFirstSourceLine = FALSE;

}
}
else
{

// No, so emit a comment saying so
fprintf ( g_pOutputFile, "\t\t; (No code)\n" );

}

// Emit the closing brace
fprintf ( g_pOutputFile, "\t}" );

After emitting the I-code node, regardless of its type, the iFirstSourceLine flag is cleared. You’ll
also notice an else clause to the original determination of whether the function had any I-code in
the first place; if it doesn’t, the emitter will simply generate a “(No code)” message in the form of
a comment. The function is then wrapped up with the emission of its closing curly brace.

Emitting a Complete XVM Assembly File
With the capability to emit the script’s header and directives, as well as its variables and functions,
it’s time to wrap everything up into a single file that will emit an entire XVM assembly file. This
main code emission function is called EmitCode (), and starts by opening the output file and emit-
ting the header:
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void EmitCode ()
{

// ---- Open the output file
if ( ! ( g_pOutputFile = fopen ( g_pstrOutputFilename, "wb" ) ) )

ExitOnError ( "Could not open output file for output" );

// ---- Emit the header
EmitHeader ();

Immediately following the header are the directives:

// ---- Emit directives
fprintf ( g_pOutputFile, "; ---- Directives ---------------------------\n\n" );
EmitDirectives ();

Up next are the script’s global variables, which are emitted with a call to EmitScopeSymbols (),
with the iScope parameter set to the SCOPE_GLOBAL constant and the iType parameter set to SYM-
BOL_TYPE_VAR (because there’s no such thing as a global parameter):

// ---- Emit global variable declarations
fprintf ( g_pOutputFile, "; ---- Global Variables ---------------------\n\n" );

// Emit the globals by printing all non-parameter symbols in the global scope
EmitScopeSymbols ( SCOPE_GLOBAL, FALSE );

The next segment of the XVM assembly file contains each of its function definitions, with the
exception of _Main () if it’s present. Even with the aid of EmitFunc (), this is a more complex
process than the last three have been, because you need to manually traverse the function list in
order to pass the proper function node pointers. Furthermore, you need to keep an eye out for
the _Main () function, and suppress its emission. You have to remember to save its pointer for use
in the next section. Here’s the code:

// ---- Emit functions
fprintf ( g_pOutputFile, "; ---- Functions ----------------------------\n\n" );

// Local node for traversing lists
LinkedListNode * pNode = g_FuncTable.pHead;

// Local function node pointer
FuncNode * pCurrFunc;
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// Pointer to hold the _Main () function, if it's found
FuncNode * pMainFunc = NULL;

// Loop through each function and emit its declaration and code, if functions
// exist
if ( g_FuncTable.iNodeCount > 0 )
{

while ( TRUE )
{
// Get a pointer to the node

pCurrFunc = ( FuncNode * ) pNode->pData;

// Don't emit host API function nodes
if ( ! pCurrFunc->iIsHostAPI )
{

// Is the current function _Main ()?
if ( stricmp ( pCurrFunc->pstrName, MAIN_FUNC_NAME ) == 0 )
{

// Yes, so save the pointer for later (and don't emit it yet)
pMainFunc = pCurrFunc;

}
else
{

// No, so emit it
EmitFunc ( pCurrFunc );
fprintf ( g_pOutputFile, "\n\n" );

}
}

// Move to the next node
pNode = pNode->pNext;
if ( ! pNode )

break;
}

}

Begin by setting up a few variables. First is pNode, a linked list node pointer that starts off pointing
at the head of the function table. Next is pCurrFunc, a function node pointer that will point to the
current function’s node structure. Last is pMainFunc, another function node pointer specifically set
aside to store a pointer to the _Main () function node if it’s found during the traversal of the
table. You intentionally set this to NULL for now.
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The table traversal then begins, assuming it’s not empty, and pCurrFunc is set to pNode’s current
pData member at each iteration. The first thing to determine is whether the current function is
defined by the script, or whether it belongs to the host API. Host API functions are simply kept in
the function table for the parser’s benefit so it can validate function calls as the code is parsed. By
the time the code emitter is running, they have no use and are ignored.

Assuming the function isn’t part of the host API, it’s determined whether the function is _Main
(). If not, it’s emitted with a call to EmitFunc () and followed by two line breaks. Otherwise, the
pointer is saved in pMainFunc for later use. This wraps up the emission of functions.

The last steps are emitting the _Main () function, if present, and closing the output file:

// ---- Emit _Main ()
fprintf ( g_pOutputFile, "; ---- Main -------------------------------------" );

// If the last pass over the functions found a _Main () function. emit it
if ( pMainFunc )
{

fprintf ( g_pOutputFile, "\n\n" );
EmitFunc ( pMainFunc );

}

// ---- Close output file
fclose ( g_pOutputFile );

That’s it! You’ve converted the I-code, symbol table, function table, and string table to a fully for-
matted and valid XVM assembly file. It’s all ready to be fed to XASM, so next you find out how
that’s done and finish the job.

GENERATING THE FINAL EXECUTABLE
Finally, you’re at the last stage of the pipeline. With the exception of the parser, you’ve seen every
step the source code takes as it slips and slides from its initial raw form, to a compiled I-code rep-
resentation, to a human-readable XVM assembly file generated by the code emitter. Now, with
every piece of the puzzle in place, you can make a quick call to the XASM assembler built in
Chapter 9 to deliver the coup de grace.

The execution of XASM is handled by the AssmblOutputFile () function, found in xsc.cpp|h. All
you’re really doing is using the C standard library function spawnv () to invoke a new process.
Here’s the code:
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void AssmblOutputFile ()
{

// Command-line parameters to pass to XASM
char * ppstrCmmndLineParams [ 3 ];

// Set the first parameter to "XASM" (not that it really matters)
ppstrCmmndLineParams [ 0 ] = ( char * ) malloc ( strlen ( "XASM" ) + 1 );
strcpy ( ppstrCmmndLineParams [ 0 ], "XASM" );

// Copy the .XASM filename into the second parameter
ppstrCmmndLineParams [ 1 ] = ( char * )

malloc ( strlen ( g_pstrOutputFilename ) + 1 );
strcpy ( ppstrCmmndLineParams [ 1 ], g_pstrOutputFilename );

// Set the third parameter to NULL
ppstrCmmndLineParams [ 2 ] = NULL;

// Invoke the assembler
spawnv ( P_WAIT, "XASM.exe", ppstrCmmndLineParams );

// Free the command-line parameters
free ( ppstrCmmndLineParams [ 0 ] );
free ( ppstrCmmndLineParams [ 1 ] );

}

This function is basically a wrapper for spawnv (), which spawns new processes. If you’re not
familiar with this function, it’s declared in process.h and has the following prototype:

int spawnv ( int mode, const char * cmdname, const char * const * argv );

In a nutshell, the function is designed to load and execute a new process from another. In this
case, you can use it to invoke the XASM executable, which you’ll provide in the same working
directory as the XtremeScript compiler.

spawnv ()’s parameters are described in Table 14.3.

In short, this function lets you simulate what would happen if you typed this into the command
line:

XASM MyFunc.xasm
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The AssmblOutputFile () function begins by declaring a string array of three elements called
ppstrCmmndLineParams []. You allocate three elements because the argv [] array passed to a con-
sole application’s main () function always includes the name of the executable as typed at the
command line at index zero of the array. The second element in the array is the filename of the
.XASM file you want to assemble, and the third is set to NULL so spawnv () can determine when it’s
processed all of the parameters you want to pass.

Even though it’s not necessary, the function sets the first parameter to the string “XASM”. The sec-
ond parameter is set to the output filename created originally by VerifyFilenames (). Notice that
you don’t explicitly specify an executable filename; you do this because XASM allows the name of
the executable to be omitted and uses the name of the .XASM file in its place. Lastly, you set the
pointer at index 2 to NULL.

With the command-line arguments in place, you’re ready to invoke the assembler. You do this
with a call to spawnv (), of course. The first parameter you pass is P_WAIT, a constant that causes
the compiler to wait until the new process terminates. This makes the invocation of the assembler
very similar to a function call. The next parameter is “XASM.exe”, which is of course the assembler
itself. As I mentioned earlier, you’ll simply place a copy of the executable in the compiler’s work-
ing directory. The last parameter is of course the command-line parameter array.

By following these steps, the .XASM file created by the code emitter module will be compiled
into a fully functional .XSE executable. Back in the compiler’s main () function, as you saw earli-
er, the original .XASM is then deleted.

GENERATING THE FINAL EXECUTABLE

Table 14.3  spawnv () Parameters
Name Type Description

mode Integer The “execution mode” for the calling process.What this
means is basically whether you’ll wait idly for XASM to
finish.You can pass it P_WAIT to tell the function that you
would like to wait until the assembler is done.

cmdname String The path of the executable to launch.

argv String Array The command-line arguments expressed as an array of
string pointers.The last element of this array must be a
null pointer so the function can determine how many
arguments are being passed.



972

WRAPPING IT ALL UP
At this point, you’ve seen how every component of the XtremeScript compiler was designed and
implemented from the ground up, and for the most part, seen how they fit together. This section
covers a few loose ends left over from the previous discussion.

Initiating the Compilation Process
Earlier in the chapter, the compiler’s main () function was listed as a general layout of the lifes-
pan of the program. There still remains one function called from main () you haven’t seen yet,
although it doesn’t do much in this incarnation of the compiler. It’s called CompileSourceFile ()
and is defined in xsc.cpp|h:

void CompileSourceFile ()
{

// Parse the source file to create an I-code representation
ParseSourceCode ();

}

As you can see, it’s currently just one line that calls ParseSourceCode (). You haven’t defined this
function yet, as it’s the focus on the next chapter. For now, just understand that this is where the
real action begins. After the loader and preprocessor have done their jobs, CompileSourceFile ()
calls ParseSourceCode () to create an I-code representation of the code. You’ll add a bit more to
this function in the next chapter.

Printing Compilation Statistics
As a final touch (which was also present in XASM), I like to display a number of “compilation sta-
tistics” that are gathered during the compilation process. They’re just an idle novelty in most
cases, but they can be rather helpful when debugging. The basic idea is to just print a bunch of
miscellaneous totals, such as the number of variables, globals, arrays, functions, and so on. This is
handled by the PrintCompileStats () function, found in xsc.cpp|h:

void PrintCompileStats ()
{

// ---- Calculate statistics

// Symbols
int iVarCount = 0,

iArrayCount = 0,
iGlobalCount = 0;
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// Traverse the list to count each symbol type
for ( int iCurrSymbolIndex = 0;

iCurrSymbolIndex < g_SymbolTable.iNodeCount;
++ iCurrSymbolIndex )

{
// Create a pointer to the current symbol structure

SymbolNode * pCurrSymbol = GetSymbolByIndex ( iCurrSymbolIndex );

// It's an array if the size is greater than 1
if ( pCurrSymbol->iSize > 1 )

++ iArrayCount;

// It's a variable otherwise
else

++ iVarCount;

// It's a global if it's stack index is nonnegative
if ( pCurrSymbol->iScope == 0 )

++ iGlobalCount;
}

// Instructions
int iInstrCount = 0;

// Host API Calls
int iHostAPICallCount = 0;

// Traverse the list to count each symbol type
for ( int iCurrFuncIndex = 1;

iCurrFuncIndex <= g_FuncTable.iNodeCount;
++ iCurrFuncIndex )

{
// Create a pointer to the current function structure

FuncNode * pCurrFunc = GetFuncByIndex ( iCurrFuncIndex );

// Determine if the function is part of the host API
++ iHostAPICallCount;

// Add the function's I-code instructions to the running total
iInstrCount += pCurrFunc->ICodeStream.iNodeCount;

}
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// Print out final calculations
printf ( "%s created successfully!\n\n", g_pstrOutputFilename );
printf ( "Source Lines Processed: %d\n", g_SourceCode.iNodeCount );
printf ( "            Stack Size: " );
if ( g_ScriptHeader.iStackSize )

printf ( "%d", g_ScriptHeader.iStackSize );
else

printf ( "Default" );

printf ( "\n" );
printf ( "              Priority: " );
switch ( g_ScriptHeader.iPriorityType )
{

case PRIORITY_USER:
printf ( "%dms Timeslice", g_ScriptHeader.iUserPriority );
break;

case PRIORITY_LOW:
printf ( PRIORITY_LOW_KEYWORD );
break;

case PRIORITY_MED:
printf ( PRIORITY_MED_KEYWORD );
break;

case PRIORITY_HIGH:
printf ( PRIORITY_HIGH_KEYWORD );
break;

default:
printf ( "Default" );
break;

}
printf ( "\n" );
printf ( "  Instructions Emitted: %d\n", iInstrCount );
printf ( "             Variables: %d\n", iVarCount );
printf ( "                Arrays: %d\n", iArrayCount );
printf ( "               Globals: %d\n", iGlobalCount);
printf ( "       String Literals: %d\n", g_StringTable.iNodeCount );
printf ( "        Host API Calls: %d\n", iHostAPICallCount );
printf ( "             Functions: %d\n", g_FuncTable.iNodeCount );
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printf ( "      _Main () Present: " );
if ( g_ScriptHeader.iIsMainFuncPresent )

printf ( "Yes (Index %d)\n", g_ScriptHeader.iMainFuncIndex );
else

printf ( "No\n" );
printf ( "\n" );

}

It should all be pretty self-explanatory. A number of variables are created to hold various totals
that are either read directly from the iNodeCount of tables or calculated by other means. After all
the data is collected, it’s printed to the screen in an aligned list.

Hard-coding a Test Script
This chapter’s been pretty rough, and it would be a bit of a let down if there wasn’t a demo or
example of the compiler’s capabilities to cap it all off. I must admit, you’re at a pretty serious dis-
advantage without the help of the parser, because you have no real capability to translate code
into I-code, which would ultimately become a pair of .XASM and .XSE files. That would be the
best way to demonstrate the compiler’s power, but you can’t do anything like that until the next
chapter.

So, in the meantime, we’ll just have to make do with what we have and hard-code a script directly
into the I-code module and the compiler’s tables. You can then let it run as normal, and watch it
convert it all into a fully formatted XVM assembly file and ultimately into an .XSE executable.

Because hard-coding the data directly into the compiler’s structures is going to be a bit tedious,
let’s keep things extremely simple. You can start off by “hand-compiling” the following high-level
code fragment, written in actual XtremeScript:

// Declare a global
var MyGlobal;

// Declare a main function
func _Main ()
{

// Declare some locals
var X;
var Y [ 4 ];

// Perform some basic arithmetic
MyGlobal = 2;
X = 8;

WRAPPING IT ALL UP
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// Calculate 2^8 and put the result in Y [ 1 ]
Y [ 1 ] = MyGlobal ^ X;

}

By hand-compiling this code, meaning to compile it manually without the aid of an actual com-
piler, you can see pretty easily that the script should compile down to something along these
lines:

Var MyGlobal

Func _Main
{

Var X
Var Y [ 4 ]

Mov    MyGlobal, 2
Mov    X, 8
Exp    MyGlobal, X
Mov    Y, MyGlobal

}

Now that you know what the assembly version of this script fragment should look like, you can
hard-code the instructions, operands, functions, and symbols directly into the compiler and see
what it spits out. Because CompileSourceFile () isn’t really being used for anything just yet, you
can put all of our hard-coded logic there.

The Function
This hand-compiled script has only one function, _Main (). The first order of business is hard-
coding this function into the function table, like so:

// Hard-code a _Main () function into the table and save its index
int iMainIndex = AddFunc ( "_Main", FALSE );

Notice that the index returned by AddFunc () is saved in iMainIndex. You’ll need this later.

The Symbols
This script defines three variables—a global called MyGlobal, a local variable called X, and a 
local array of four elements called Y []. You can therefore break down the symbols according 
to Table 14.4.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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These can be hard-coded into the table with repeated calls to AddSymbol (). Once again, it’s
important to save their indexes for later use:

// Hard-code symbols into the table and save their indexes
int iMyGlobalIndex = AddSymbol ( "MyGlobal", 1, SCOPE_GLOBAL,

SYMBOL_TYPE_VAR );
int iXIndex = AddSymbol ( "X", 1, iMainIndex, SYMBOL_TYPE_VAR );
int iYIndex = AddSymbol ( "Y", 4, iMainIndex, SYMBOL_TYPE_VAR );

The symbol table is now populated with two variables, one of which is global, and a four-element
array.

The Code
You have a function to write your code in, as well as variables for it to work with, so you’re ready
to hard-code the most important part. Before doing so, however, you need to allocate a few
strings to hold the original high-level script discussed earlier. You can then add these to the I-
code as annotations, and test the source code annotating functions of the code emitter:

// Allocate strings to hold each line of the high-level script
char * pstrLine0 = ( char * ) malloc ( MAX_SOURCE_LINE_SIZE );
strcpy ( pstrLine0, "MyGlobal = 2;" );

char * pstrLine1 = ( char * ) malloc ( MAX_SOURCE_LINE_SIZE );
strcpy ( pstrLine1, "X = 8;" );

char * pstrLine2 = ( char * ) malloc ( MAX_SOURCE_LINE_SIZE );
strcpy ( pstrLine2, "Y [ 1 ] = MyGlobal ^ X;" );

WRAPPING IT ALL UP
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Identifier Size Scope Type

MyGlobal 1 Global Variable

X 1 _Main () Variable

Y 4 _Main () Variable (array)
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These three string buffers now contain the three lines of executable, non-declaration code from
the original high-level script we hand-compiled. With these ready to go, let’s add them, along
with the instructions, to the I-code module.

The First Instruction
Here’s the first instruction:

Mov    MyGlobal, 2

And this is the line of high-level code it was hand-compiled from:

MyGlobal = 2;

Here are the calls to the I-code module to add both the high-level source code annotation and
the low-level instructions:

// Hard-code the instructions and source annotation into the I-code module
int iInstrIndex;

// MyGlobal = 2;
AddICodeSourceLine ( iMainIndex, pstrLine0 );
iInstrIndex = AddICodeInstr ( iMainIndex, INSTR_MOV );
AddVarICodeOp ( iMainIndex, iInstrIndex, iMyGlobalIndex );
AddIntICodeOp ( iMainIndex, iInstrIndex, 2 );

The first call is made to AddICodeSourceLine (), to add the first source line annotation to the I-
code module. This will be displayed directly above the instruction nodes that follow it. So, you
call AddICodeInstr () to add a Mov instruction to the _Main () function, making sure to save the
index. You then follow up with two operands. The first is the MyGlobal variable, which you add
using AddVarICodeOp (). The second is the integer literal 2, which you add using AddIntICodeOp ().
Notice also that you only need one copy of iInstrIndex, because once an instruction is added,
you never need to mess with it again and can reuse the same index variable.

The Second Instruction
This is the second instruction:

Mov    X, 8

This is the source line from which it was hand-compiled:

X = 8;

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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Here’s the code used to hard-code it into the I-code module:

// X = 8;
AddICodeSourceLine ( iMainIndex, pstrLine1 );
iInstrIndex = AddICodeInstr ( iMainIndex, INSTR_MOV );
AddVarICodeOp ( iMainIndex, iInstrIndex, iXIndex );
AddIntICodeOp ( iMainIndex, iInstrIndex, 8 );

Once again, AddICodeSourceLine () is called first to add the source line annotation. This is fol-
lowed by the addition of a second Mov instruction with AddICodeInstr (). The instruction is then
fleshed out with two operands, the X variable and the integer literal 8.

The Third and Fourth Instructions
Finally, here is the last line of the high-level script:

Y [ 1 ] = MyGlobal ^ X;

This statement, unlike the last two, hand-compiles down to two instructions rather than one:

Exp    MyGlobal, X
Mov    Y, MyGlobal

You therefore have to make more calls to the I-code module, but there’s still only one source line
annotation to add:

// Y [ 1 ] = MyGlobal ^ X;
AddICodeSourceLine ( iMainIndex, pstrLine2 );

iInstrIndex = AddICodeInstr ( iMainIndex, INSTR_EXP );
AddVarICodeOp ( iMainIndex, iInstrIndex, iMyGlobalIndex );
AddVarICodeOp ( iMainIndex, iInstrIndex, iXIndex );

iInstrIndex = AddICodeInstr ( iMainIndex, INSTR_MOV );
AddArrayIndexAbsICodeOp ( iMainIndex, iInstrIndex, iYIndex, 1 );
AddVarICodeOp ( iMainIndex, iInstrIndex, iMyGlobalIndex );

You have now added an Exp instruction for calculating the exponent, as well as a Mov for moving
the final value from Y to MyGlobal. This completes the hard-coded I-code module, so you’re ready
to see what the compiler does with it!

WRAPPING IT ALL UP
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The Results
When the compiler runs, the CompileSourceFile () function will hard-code the data covered pre-
viously into the function table, symbol table, and I-code stream. From that point on, it will be as if
that was read directly from the source file and converted by the parser. The rest of the compiler
has no idea where any of it came from, and doesn’t care. Because of this, you can test your com-
piler framework by examining the output it produces to ensure everything is correct. Make sure
you run the compiler with the -A command-line option so it doesn’t delete the .XASM file it pro-
duces.

When all is said and done, the framework should produce this:

; TEST.XASM

; Source File: TEST.XSS
; XSC Version: 0.8
;   Timestamp: Tue Sep 10 21:58:53 2002

; ---- Directives -----------------------------------------------------------
; ---- Global Variables -----------------------------------------------------

Var MyGlobal

; ---- Functions ------------------------------------------------------------
; ---- Main -----------------------------------------------------------------

Func _Main
{

Var X
Var Y [ 4 ]

; MyGlobal = 2;
Mov      MyGlobal, 2

; X = 8;
Mov      X, 8

; Y [ 1 ] = MyGlobal ^ X;
Exp      MyGlobal, X
Mov      Y [ 1 ], MyGlobal

}

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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How cool is this? You’ve created a perfectly valid, XASM-ready assembly file with full source code
annotation. You now know the framework for the ever-evolving compiler works (at least, with as
much certainty as you can derive from a single, simplistic test). With everything working so far,
you can plow through the parser in the next chapter and create a finished, working compiler
that’s ready for full-on game scripting.

SUMMARY
The clock is ticking, and with every new chapter you plow your way through, you get ever closer
to the attainment of scripting mastery. At this point, you have a well-structured and thorough
compiler framework that can already generate complete .XSE executables from hard-coded I-
code data. The best part is, if you’ve followed this chapter entirely, you understand all of it. Go
ahead and check the source—everything has been explained in complete detail. The parser
implemented in the next chapter may be the real star of the show here, but what you’ve done
here is a hugely important job that shouldn’t be understated. All the parser theory in the world
won’t mean a thing if you don’t have a sturdy foundation upon which to apply it, and that’s exact-
ly what you’ve built in this chapter.

The exciting thing is that, by the end of the next chapter, XtremeScript will be done. All that will
be left after that is to apply it to a fully operational game demo, which is icing on the cake. For
now, you’re encouraged to perhaps take one more quick glance over everything covered here,
because it was a decent sized chapter that covered a lot of ground. And of course, even more
importantly, check out the source! Even though I went to great lengths to make sure that virtually
all of the source this chapter covered was actually printed in the book, there’s still no substitute
for seeing how it all fits together in the final program.

Now, if you think you’re ready, the real trials await you in the next chapter…

ON THE CD
There isn’t much in the way of demos for this chapter, but I’ve included the source to the fin-
ished XtremeScript compiler framework in the Programs/Chapter 14/XtremeScript Compiler/ direc-
tory. Remember, without the parser, it’s capable of very little. Because of this, the hard-coded
script I talked about earlier is included in the source, so you can play around with that and make
it compile small chunks of code.

As you might imagine, this is still just a console application, so you won’t have much trouble get-
ting it to compile. And, as usual, it comes with Microsoft Visual C++ project and workspace files
that’ll immediately organize the source files for you. Try hard-coding your own script and see
what it produces!

ON THE CD
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CHALLENGES
Being that this chapter was mostly about preparation for the parser you’ll build in the next, there
isn’t much room for improvement or enhancement just yet. As a result, there’s just one challenge
for this chapter:

■ Intermediate: Implement the missing #include and #define preprocessor directives
discussed earlier.

14. BUILDING THE XTREMESCRIPT COMPILER FRAMEWORK
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This is the last of this book’s three chapters on the construction of the XtremeScript compil-
er. You started in Chapter 13 with the development of a complete lexical analyzer module,

and integrated it with a full compiler framework in Chapter 14. You now have a compiler that,
with the exception of a parser, is finished.

Along the path from the source code to the final output, a number of modules are invoked in a
more or less sequential manner. The loader initially reads the source code from its file and stores
it in an internal format. The preprocessor then scans through the freshly loaded source and con-
verts it to a more “correct” format. The parser, with help from the lexer, then makes sense of the
source code and converts it to its intermediate code format. Lastly, the code emitter converts the
I-code into the target format and the process is complete.

The problem is, you have a rather large hole in the otherwise pristine compiler pipeline. In
between the lexer and the I-code module, the parser is nowhere to be found. The reason this
hole exists is that I find it easier to understand how a parser works when I don’t have anything
else to worry about. In other words, the considerable complexity of a parser is much less of a
challenge when you already have an otherwise complete compiler to test it with. Because you
took the time to create everything else the compiler needs in the last chapter, you now have the
luxury of passing the results of even the very first parser experiments through the complete com-
piler pipeline. This means that from the ground up, you’ll see immediate results as the parser is
incrementally constructed. I hope this gives you some perspective on the otherwise monotonous
laundry list of tasks performed in the last chapter; it may have seemed like a lot of useless work,
but you’ll clearly reap the rewards as you make your way through this chapter. Because of this,
however, it’s important that you read and fully understand all of Chapter 14 before proceeding.

In this chapter, you’re going to

■ Learn more about what parsing is, why it’s necessary, and how it’s done.
■ Learn specifically how recursive descent parsing works.
■ Complete the XtremeScript compiler you’ve been developing for the last two chapters

by embedding a fully functional parser module between the lexical analyzer and I-code
module.

In short, this chapter provides everything you need to complete this ever-evolving scripting system
by bridging the gap between high-level and low-level code once and for all.

15. PARSING AND SEMANTIC ANALYSIS
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WHAT IS PARSING?
In almost oversimplified terms, a script’s code can be said to exist in three primary forms as it
passes through the compiler, and you’ve studied them exhaustively throughout this book’s recent
chapters. The code begins as a raw stream of characters presented by the loader and preproces-
sor modules. The lexical analyzer module then “elevates” this raw stream to a higher level of
coherence by grouping related characters into lexemes, which are like the words of a sentence.
Finally, as you’ll see in this chapter, the parser groups the lexemes into the fundamental building
blocks of the source language—statements, declarations, and so on. At this point, the source
code can be fully understood. This is demonstrated in Figure 15.1.

WHAT IS PARSING?

Figure 15.1

The three simplified

forms of code as they

pass through the 

compiler.

Specifically, parsing is the process of determining patterns in the token stream that correspond to
the source language’s constructs like statements and declarations. Because the compiler is
designed such that the parser module reads from the lexical analyzer module and writes to the I-
code module, it will be the final step toward understanding and translating the source code.

Syntactic versus Semantic Analysis
Parsing is also known as syntactic analysis, because its primary job is to ensure that the syntax of
the source code is correct. The syntax of a language refers to the set of legal patterns and
sequences its tokens can form to express that language’s constructs. For example, the following
line of code is syntactically valid:

X = Y * 2;

Although this is not:

* = Y X 2;

Note that all I’ve done in the second line is swap the * and X lexemes. However, assuming this lan-
guage is C/C++ or some derivative thereof, the language syntax specifies that an operator (such as
*) is not a valid L-value; in other words, it can’t appear on the left side of an assignment operator.
Furthermore, Y X 2 is not a syntactically valid expression, because the Y and X operands (as well as
the X and 2 operands) are not separated by a binary operator (or any operator at all in this case).
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Syntax goes a long way towards helping you understand both what a language is saying, as well as
whether it’s valid. Speaking in terms of syntax alone, you can determine that the two lines of code
listed previously are expressions, and, furthermore, that they’re valid ones. To understand the
shortcomings of syntactic analysis, however, you need to understand exactly how a parser would
identify the previous expressions. Here’s the valid expression, listed once again:

X = Y * 2;

In order for the parser to determine that this is an expression, it noted that the line token pat-
tern consisted of an identifier (X), the binary assignment operator, a second identifier (Y), the
binary multiplication operator, and an integer literal (2). Based on this information, you might
be quick to assume that there’s nothing more to say—it’s definitely an expression, and it’s defi-
nitely valid.

There’s no arguing that even based on syntax alone, the previous line of code is an expression.
You cannot, however, be absolutely positive that it’s a valid expression. The reason for this is that
the identifiers being referenced are more complex than they seem. In addition to being simply
an identifier, for example, X has a number of other attributes. It can be an array, a parameter, a
local variable, or even a class or function. You may have assumed that the expression was valid
upon first glance, but what was the block of code in which it appeared?

func X ()
{

var Y [ 16 ];
X = Y * 2;

}

Not quite what you expected, is it? Now, it’s clear that you’re attempting to “assign” an array (Y
[]) to a function (X ()) after multiplying it by 2. Naturally, this doesn’t make any sense. This is
where semantic analysis comes into play.

The semantics of a language go beyond mere syntax to explain not what a language must look like,
but the context in which it can be considered valid. To return to the example, the expression is
perfectly valid as long as X and Y are single variables. When X is defined as a function and Y is an
array, however, the expression’s validity is lost. Notice that in both situations, the token stream is
identical—the expression itself doesn’t change—all that’s different is the context in which the
expression appears. Because of this, the parser is not usually the final step in the front end’s
pipeline—the semantic analyzer is. Of course, I did mention earlier that the parser module would
be the final addition to the XtremeScript compiler, so I’ll be sure to clarify what I mean by this
momentarily.

If the parser is the syntactic analyzer, it ensures that the tokens form valid language constructs
such as expressions, statements, and declarations. The semantic analyzer is responsible for validat-

15. PARSING AND SEMANTIC ANALYSIS
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ing the context in which these constructs appear. It can perform tasks such as ensuring that an
identifier is valid in an expression, like you saw previously, as well as preventing identifier redefin-
ition, ensuring that the value returned from an expression is valid for its destination, and so on.

Expressing Syntax
Semantics are important, but I’m going to start with the basics and focus exclusively on syntactic
analysis for the moment. The first step in building a parser of any kind is formally deciding on a
language’s syntax. Chapter 7 was spent laying out and designing the XtremeScript language,
which was an important step, but it didn’t go very far to give you a strict, formal description of
what is and isn’t valid syntax when writing scripts.

This is done by literally laying out the token sequence behind every type of statement, declara-
tion, and expression the language supports. The resulting rules and descriptions of this process
are collectively known as a grammar. There are a number of official formats for expressing gram-
mars, but I’ll focus only on two of the most prominent—syntax diagrams and Backus-Naur Form.

Syntax Diagrams
A syntax diagram, also known as a flow diagram, is very similar to a standard flowchart or even a
state diagram. It visually describes the sequence in which tokens will be encountered as specific
types of statements are parsed in a language. Rather than blabber on endlessly about the what’s,
why’s, and how’s, however, let’s just check out Figure 15.2, which depicts a syntax diagram for an
XtremeScript variable declaration.

Even without an explanation, this should make some level of intuitive sense right off the bat.
What this diagram is saying specifically is that a variable is declared as the var keyword, followed
by an identifier, followed by an optional array size enclosed in braces. The beauty of a state dia-
gram is its simple, straightforward nature; it spells out what it’s trying to say using the source lan-
guage itself. Beyond the boxes, however, the arrows provide significant insight into the flow of the
diagram as well, by allowing you to follow all of the possible paths from the first token to the last.

WHAT IS PARSING?

Figure 15.2

The syntax diagram for an XtremeScript variable declaration.
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Notice that until the optional array notation is reached, there’s only one arrow to follow from
one token to the next. Once the identifier is passed, however, the path forks to allow one of two
possibilities. Lastly, note the difference between the rectangular and rounded nodes. Tokens
enclosed in a rectangle refer to literal strings that must appear as-is, exactly, such as var (a
reserved word), and the [] braces (delimiters). Rounded token boxes refer to user-defined lex-
emes such as identifiers and integer literals.

Backus-Naur Form
Backus-Naur Form, or BNF, is a more text-oriented way to specify the grammar of a language. As I
did with syntax diagrams, I’ll start things off with an example and save the discussion for after-
wards. Here’s the same variable declaration from the previous syntax diagram, expressed in BNF:

VarDecl ::= 'var' Ident | 'var' Ident '[' Int ']'

Compared to its equivalent syntax diagram, this may require a bit more explanation. As you can
see, the BNF version almost looks like code of its own—in fact, BNF is indeed its own language.
Specifically, it belongs to a class of languages called metalanguages—languages used to define
other languages.

To understand BNF, it’s crucial to understand its two most fundamental elements—terminals and
non-terminals. A terminal (short for terminal symbol) is an element of the language that is irre-
ducible—because of this, terminals usually correspond directly to tokens. A non-terminal (short
for non-terminal symbol), on the other hand, is an element of the language that is composed of
some sequence or pattern of terminals. In the previous example, VarDecl is a non-terminal
defined by the pattern of terminals on the right side of the ::= operator. Of course, non-termi-
nals don’t have to be defined simply by terminals; in fact, the most common definitions in a BNF
grammar will involve defining non-terminals by other non-terminals, or even recursively with
alternative forms of themselves.

To explain the example in more detail, VarDecl is a non-terminal because it can be reduced to
the constituent parts listed on the right side of the ::= operator. In this example, it just so hap-
pens that each of these constituent parts is a terminal, and is thus irreducible, although this is not
often the case. For example, 'var' corresponds to the literal string var, as in the reserved word
var token. Ident, on the other hand, refers to any valid identifier, and is therefore not a literal
string but a user-defined lexeme. The difference between these two types of terminals is analo-
gous to the rectangular and rounded nodes in Figure 15.2.

Also important is the use of logical operators to denote alternative forms of the same non-termi-
nal. Because, as you know, a var declaration can be either a single variable or an array, you use
the logical or | operator to denote two separate possibilities. This grammar states that VarDecl can
be defined as either of those two sequences (although they’re entirely mutually exclusive—it’s
strictly one or the other).

15. PARSING AND SEMANTIC ANALYSIS
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To wrap this section up, let’s look quickly at what the grammar might look like if you threw some
extra non-terminals in. Although these additions aren’t necessary in this specific example, they
help demonstrate the flexibility of BNF more clearly. In this example, you’ll take the ‘[' Int ']'
a non-terminal of its own, so it can be nested in the VarDecl definition:

ArraySize ::= '[' Int ']'
VarDecl ::= 'var' Ident | 'var' Ident ArraySize

ArraySize is defined as an integer literal value enclosed in braces, just as is required by array decla-
ration notation, and VarDecl has been redefined more concisely as either the var keyword followed
by an identifier, or the var keyword followed by an identifier and the ArraySize non-terminal.

Although BNF is indeed a structured and readable method of defining a grammar, its real attrac-
tion is the fact that parser-generating programs usually use text files containing BNF grammar
definitions as their input. In other words, by deriving your language’s BNF grammar, you can use
a parser-generation program like yacc or Bison to actually create a fully functional parser for that
language in minutes.

Choosing a Method of Grammar Expression
For the purpose of XtremeScript, to keep consistent with the continuing trend of simplicity and
straightforward solutions, I’ve decided to go with syntax diagrams as the method of expressing
the language’s formal syntax. This allows me to keep the discussion visual, lets you clearly see the
physical flow of the syntax, and just makes things cleaner and easier to follow. Furthermore,
because you’ll be writing the parser by hand, rather than automatically generating it, there’s no
practical reason to favor BNF over its alternatives.

Parse Trees
One thing that will become more and more clear as you formally define the syntax of the lan-
guage is that its definition is strongly hierarchical. Non-terminals are based on terminals and non-
terminals, many of which are based on terminals and non-terminals of their own. Because of this,
a tree is implicitly formed by the syntax of the language.

To understand this better, let’s temporarily add a simple keyword to the language for defining
integer constants. It will be called const, and its syntax diagram is depicted in Figure 15.3. An
example of its syntax looks like this:

const MyAge = 20;

Although the syntax diagram illustrates the flow of a const declaration in a linear fashion, it can
also be converted to a simple tree structure, as demonstrated in Figure 15.4.

WHAT IS PARSING?
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The general constant declaration is the somewhat abstract root of the tree, whereas its child
nodes are each of the terminal symbols—const, an identifier, =, and an integer literal. This partic-
ular tree is a bit messy, however; it’s bogged down by useless nodes that only serve to get in the
way. You can prune the tree a bit to remove the implicit and therefore needless const and =
nodes, leaving only those nodes that contain real information. A new, more concise syntax tree
for the const definition is found in Figure 15.5.

This new tree describes only what you need, and does its job well. By virtue of the Constant
Declaration node alone, you know it must contain identifier and integer literal nodes, so the
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The syntax diagram for a hypothetical integer constant-defining keyword.

Figure 15.4
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A new, more concise
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const and = nodes are therefore implied. To make this example a bit more interesting, however,
let’s expand the const keyword to define entire arrays of integer constants. The syntax diagram
for this new version appears in Figure 15.6. Here’s an example of its usage:

const MyArray [ 4 ] = { 0, 16, -4, 8192 };

WHAT IS PARSING?

Figure 15.6

The syntax diagram for the array-based version of const.

For simplicity’s sake, notice that the new version of const isn’t optional in its support for array
constants, so you don’t have to worry about including the previous definition as an alternative
path. This new version is a much clearer example of the tree-like structure of a language’s gram-
mar; check out what const’s syntax tree looks like now (note that I’ve already pruned the useless
nodes this time).

Figure 15.7

The pruned syntax

tree of the new const

keyword.
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Note that now, due to their respective added complexity, I’ve abstracted the identifier and array
size to an “L-Value,” and the array of values to an “R-Value”. Within the syntax tree, the Ident
node under L-Value corresponds to the constant’s identifier, and the Int corresponds to its size.
Under the R-Value, I simply filled in three values; there could actually be any number of leaf
nodes here, each corresponding to one of the constant’s values. Although the trees you’ve seen
so far have specifically related to the static syntax of this non-terminal symbol, a parse tree is the
representation of the actual source code. For example, consider the following instance of the
const keyword:

const MyArray [ 4 ] = { 0, 16, -4, 8192 };

Just as the syntax tree is a hierarchical view of an otherwise linear syntax diagram, the parse tree
is the hierarchical version of a linear statement in the source code. This declaration might be rep-
resented in the form of the parse tree shown in Figure 15.8.

15. PARSING AND SEMANTIC ANALYSIS

Figure 15.8

The parse tree for an

instance of the const

keyword.

In a traditional compiler, the parser is responsible for generating a parse tree similar to this one
by scanning through the token stream and picking up the patterns defined by the grammar’s
non-terminal symbols. The result is a highly structured, easily-traversable tree that represents 
the program in a purely hierarchical manner. At the root node is the program itself, which
branches off into its highest level statements—probably declarations of functions, globals, and
constants. A global or constant definition will most likely be a leaf node, whereas function decla-
rations will branch off into a number of child nodes, each of which will contain statements and
declarations in the least-nested scope. An example of a simplified but complete parse tree
appears in Figure 15.9.
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Once a program or script has been converted into a parse tree, it can be easily scanned and ana-
lyzed by other modules, such as the semantic analyzer. Semantics are easy to verify in a parse tree,
because the analyzer can rest assured that the tree is free of syntax errors, and can focus entirely
on traversing the nodes and ensuring that they can legally appear in their specific context.

The XtremeScript compiler will not create a parse tree, however. Although it certainly has its
uses, the language is just simple enough to be translated to XVM assembly without the use of
such a tree. Rather, the parser will directly generate I-code based on the token stream it reads
and perform on-the-fly semantic analysis that combines the roles of both a syntactic and semantic
analyzer into a single module. In the case of a simple script compiler, I personally find this
approach to be adequately structured and readable, while maintaining simplicity on all levels.

How Parsing Works
Despite the sheer volume of compiler-related algorithms, data structures, and formalisms dis-
cussed so far, the parsing of a high-level language like C or XtremeScript may still seem like a
mysterious and insurmountable task. After all, it’s one thing to parse the simple and predictable
format of an assembly language like XVM assembly, but how can you apply these principals to
something as complicated as this?

func FuncX ( U, V )
{

var Z [ 8 ];

WHAT IS PARSING?
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if ( U > V )
{

Z [ 0 ] = FuncX ( U / 2, V / 2 );
Z [ 1 ] = 0;

}
else
{

Z [ 0 ] = 0;
Z [ 1 ] = FuncY ( U * V );

}
return U * ( V << 8 ) + ( Z [ 0 ] + 3.14159 * FuncY ( Z [ 1 ] / V ) );

}

It looks like a formidable challenge, and indeed it is, but the key is to approach it in an incre-
mental manner that slowly builds the parser up by adding support for more and more of the lan-
guage. This task will be made easier by the fact that you’ll be designing the parser with the recur-
sive descent algorithm, which is an intuitive and straightforward parsing method.

Recursive Descent Parsing
A recursive descent parser is so named because it constructs the parse tree by recursively descending
from the root node to the leaf nodes. However, because you won’t be explicitly building a parse
tree in the compiler, you can forget about that part of the definition and instead focus exclusively
on the apparently recursive nature of this algorithm.

Non-Terminal Symbol Parsing Functions
The key to the recursive descent parser is assigning separate functions to parse each of its non-
terminals. For example, the parsing of the while statement generally involves three things—pars-
ing the while keyword, parsing the expression that determines under what conditions the loop
will execute, and finally, parsing the block of code within the loop. You can wrap all of this into a
single function called ParseWhile ().

One thing you’ll quickly realize, however, is that only the while keyword can be parsed easily. The
parsing of expressions and blocks of statements is rather complex. Furthermore, expressions and
statement blocks are hardly specific to the while loop—in fact, most other language constructs
involve them in some way. For example, the if structure uses an expression to determine whether
to execute its true block, and the true block is a code block onto itself. Furthermore, code blocks
can appear anywhere—with or without a loop or other block construct. For example, the follow-
ing code is perfectly legal:

15. PARSING AND SEMANTIC ANALYSIS
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func X ()
{

{
DoStuff ();

}
return DoEvenMoreStuff ();

}

So, it’s clear that while loops aren’t the only places you’ll need the ability to parse expressions and
code blocks. And because it’s obvious that both of these operations will be complex, it’s a good
idea to abstract them into their own functions anyway. So, you’ll add the ParseExpr () and
ParseBlock () functions to perform these tasks. Now, ParseWhile () will simply call these two func-
tions when it reaches their respective segments of the source code, and the while loop will be
parsed. Right off the bat, you can already see that nested function calls to specialized parsing
functions will play a big role in the recursive descent algorithm. What happens, however, if anoth-
er while loop appears in the first while loop’s block? Naturally, something like this is legal:

while ( X > 0 )
{

while ( Y > 0 )
{
}

}

How is ParseStatement () going to handle it, though? Simple—by calling ParseWhile (). However,
because ParseStatement () was originally called the first instance of ParseWhile (), the second call
is now recursive. Because these parse functions can call themselves (or in this case, indirectly call
themselves), the language can support any arbitrary level of nesting. As you can probably imag-
ine, this recursive approach will lend itself well to expression parsing, which quickly becomes a
convoluted affair when operator precedence and nested parentheses join the fray. To wrap this
all up, check out Figure 15.10, which depicts the path of execution in a recursive descent parser
as it parses the nested while loops listed previously.

Of course, I still haven’t discussed exactly what these parsing functions will do internally, or what
sort of output they’ll produce and where they’ll put it. For now, you’re just getting a feel for the
general process, which will help you understand the details and code presented later in this chap-
ter more easily. The coverage of the XtremeScript parser will be slow-paced and incremental,
however—I’ll intentionally start the discussion with the easiest parts of the module, which you’ll
have no trouble understanding. From there, I’ll move on to elementary expressions, after which
you’ll have the prerequisite knowledge to understand virtually everything else.

WHAT IS PARSING?
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THE XTREMESCRIPT PARSER MODULE
The XtremeScript parser module will be implemented in parser.cpp|h, and will consist primarily
of functions for parsing specific non-terminals of the XtremeScript grammar as expressed by the
syntax diagrams. By putting all of these together, you’ll have a complete parser that understands
the entire language and can translate token and lexeme streams into I-code that the code emitter
can convert to XVM assembly. Sound good? Then let’s get started.

The Basics
Before you can get into the parser’s code, you need to get a few miscellaneous details in place.

Tracking Scope
Just like XASM, the XtremeScript parser will need the capability to track the script’s scope. For
example, when a function declaration is being parsed, it’s important to know whether the scope
is currently global, because that’s the only time a function declaration is valid. Within a function,
it’s important to know which index into the function table it’s associated with so that its local sym-
bol declarations can be properly bound to it. For this, you’ll declare a global called g_iCurrScope:

int g_iCurrScope;              // The current scope

15. PARSING AND SEMANTIC ANALYSIS
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As you might have already guessed, this variable will work just like the iScope field of the
SymbolNode structure discussed in the last chapter—a value of zero means the scope is currently
global, whereas any positive, nonzero value is interpreted as an index into the function table cor-
responding to the current function. Check out Figure 15.11.

THE XTREMESCRIPT PARSER MODULE

Figure 15.11

The values of

g_iCurrPath as the

source code is parsed.

It’s also important to notice that tracking the scope of the script is the current brush with semantic
analysis; the scope in which a token is encountered is one important aspect of the token’s context.

Reading Specific Tokens
GetNextToken () is designed to be an easy and fast way to read the next token, but there will be
many times when it’s not quite enough. In addition to reading tokens, you’d like to read specific
tokens. For example, when parsing a function declaration, the token that comes after the func
token must be an identifier. Anything else is invalid, and should cause an appropriate error to be
displayed. Rather than constantly calling GetNextToken (), comparing it to the desired token, and
displaying an error, it would be nice to be able to call another function that does all of this for
you. The ReadToken () function solves this problem.

ReadToken () is really just a wrapper for GetNextToken (). However, unlike GetNextToken (), it
accepts a Token parameter specifying which token should appear next. It then reads the token,
and compares the two. If they don’t match, it means the token was erroneous and automatically
displays an appropriate error message. Let’s check it out:
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void ReadToken ( Token ReqToken )
{

// Determine if the next token is the required one
if ( GetNextToken () != ReqToken )
{

// If not, exit on a specific error
char pstrErrorMssg [ 256 ];
switch ( ReqToken )
{

case TOKEN_TYPE_INT:
strcpy ( pstrErrorMssg, "Integer" );
break;

case TOKEN_TYPE_FLOAT:
strcpy ( pstrErrorMssg, "Float" );
break;

case TOKEN_TYPE_IDENT:
strcpy ( pstrErrorMssg, "Identifier" );
break;

case TOKEN_TYPE_RSRVD_VAR:
strcpy ( pstrErrorMssg, "var" );
break;

case TOKEN_TYPE_RSRVD_TRUE:
strcpy ( pstrErrorMssg, "true" );
break;

case TOKEN_TYPE_RSRVD_FALSE:
strcpy ( pstrErrorMssg, "false" );
break;

case TOKEN_TYPE_RSRVD_IF:
strcpy ( pstrErrorMssg, "if" );
break;

case TOKEN_TYPE_RSRVD_ELSE:
strcpy ( pstrErrorMssg, "else" );
break;

case TOKEN_TYPE_RSRVD_BREAK:
strcpy ( pstrErrorMssg, "break" );
break;

case TOKEN_TYPE_RSRVD_CONTINUE:
strcpy ( pstrErrorMssg, "continue" );
break;

case TOKEN_TYPE_RSRVD_FOR:
strcpy ( pstrErrorMssg, "for" );
break;

15. PARSING AND SEMANTIC ANALYSIS
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case TOKEN_TYPE_RSRVD_WHILE:
strcpy ( pstrErrorMssg, "while" );
break;

case TOKEN_TYPE_RSRVD_FUNC:
strcpy ( pstrErrorMssg, "func" );
break;

case TOKEN_TYPE_RSRVD_RETURN:
strcpy ( pstrErrorMssg, "return" );
break;

case TOKEN_TYPE_OP:
strcpy ( pstrErrorMssg, "Operator" );
break;

case TOKEN_TYPE_DELIM_COMMA:
strcpy ( pstrErrorMssg, "," );
break;

case TOKEN_TYPE_DELIM_OPEN_PAREN:
strcpy ( pstrErrorMssg, "(" );
break;

case TOKEN_TYPE_DELIM_CLOSE_PAREN:
strcpy ( pstrErrorMssg, ")" );
break;

case TOKEN_TYPE_DELIM_OPEN_BRACE:
strcpy ( pstrErrorMssg, "[" );
break;

case TOKEN_TYPE_DELIM_CLOSE_BRACE:
strcpy ( pstrErrorMssg, "]" );
break;

case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:
strcpy ( pstrErrorMssg, "{" );
break;

case TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE:
strcpy ( pstrErrorMssg, "}" );
break;

case TOKEN_TYPE_DELIM_SEMICOLON:
strcpy ( pstrErrorMssg, ";" );
break;

case TOKEN_TYPE_STRING:
strcpy ( pstrErrorMssg, "String" );
break;

}

THE XTREMESCRIPT PARSER MODULE
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// Finish the message
strcat ( pstrErrorMssg, " expected" );
// Display the error
ExitOnCodeError ( pstrErrorMssg );

}
}

The function is long, but simple. As I mentioned, it reads the token, compares it to the token
specified by ReqToken, and formulates the proper error message if they don’t match. For each
token type, it creates a string that mentions the token by name, and appends " expected" on the
end. It then passes it to ExitOnCodeError (). As can be seen in Table 15.1, this is an easy and quick
way to read tokens and ensure that a verbose error message will be presented automatically if
they are not found.

As you’ll soon see, ReadToken () will be an invaluable and frequently used addition to the parser.

15. PARSING AND SEMANTIC ANALYSIS

Table 15.1  Sample ReadToken () Error Messages
ReqTokenValue Error Message

TOKEN_TYPE_RSRVD_VAR "var expected"

TOKEN_TYPE_STRING "String expected"

TOKEN_TYPE_INT "Integer expected"

TOKEN_TYPE_DELIM_COMMA ", expected"

The Parsing Strategy
The strategy from here on out is twofold: first, you need to formally map out the exact grammar
of XtremeScript with syntax diagrams. Then, armed with this specification to work from, you’ll
code a number of parsing functions that can parse each of the grammar’s non-terminal symbols.
Most of the calls between these functions will be nested, and many will be fully recursive. Because
of this, the syntax flow and layout of these functions may be a bit hard to follow at first. Just go
slowly, maintain your focus, and it will all make sense eventually.

As far as actually coding the parser module, you’re going to do it in a number of incremental
steps. You’ll soon find that XtremeScript declarations are the easiest part of the parser, so that’s
where you’ll start. Using the compiler framework from the last chapter, you’ll build progressively
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more sophisticated parser modules that can handle more and more of the language. After mas-
tering declarations, you’ll start with simple expressions, and then move on to the entire expres-
sion vocabulary of the language, and finally wrap it all up with general statements like loops,
branching, and assignments. The result will be a finished parser module that completes the
XtremeScript compiler, and with it, the entire XtremeScript system. Each separate parser module
will be available on the accompanying CD as well (along with its own copy of the compiler frame-
work, so they’ll run right away).

Each of these parsing functions will be responsible for three major tasks (although this will vary
slightly from function to function). They’ll each start by parsing the incoming token and lexeme
streams to determine which language construct is forming. Once this is identified, they’ll per-
form on-the-fly, somewhat ad hoc semantic analysis by ensuring that the context in which the
construct appears is valid. Lastly, they’ll convert the construct directly to its I-code equivalent. By
performing each of these three steps, the parser will single-handedly bridge the gap between the
lexical analyzer module and the I-code module. Check out Figure 15.12.

PARSING STATEMENTS AND CODE BLOCKS

Figure 15.12

The three major

aspects of a parse

function’s logic.

You’ll hopefully see, as this chapter progresses, why it was so important to build a sturdy and com-
plete compiler framework before diving into the parser. Developing even a recursive descent
parser is hard work that can seem extremely complex at first to a beginner. Having to deal with
both the parser’s intrinsic complexity, as well as endless details of a complete compiler at the
same time is a recipe for disaster. By getting all of the bookkeeping and grunt work out of the way
ahead of time, however, you can now devote 100 percent of your brainpower to solving this final
problem. Well, not exactly 100 percent—chances are if you could do that you’d be destroying
major landmarks and shooting lasers out of your eyes. But it will be close enough.

PARSING STATEMENTS AND CODE BLOCKS
Although declarations will be the first major parsing task, you’ll actually start with something a bit
subtler to get the juices flowing—basic statements and code blocks. What’s great about these two
elements of the language is that they’re almost nonexistent; they bring with them almost no real
substance, and are thus easy ways to get the first fragments of the parser in place.

For now, you can specifically limit yourself to empty statements; obviously, any non-empty state-
ment will bring with it considerable extra complexity. For now, you just want a “boiler plate” upon
which the rest of the language’s statement types can be implemented.
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Syntax Diagrams
The first thing to do is devise an initial syntax diagram that lays out the exact syntax for empty
statements and code blocks. Figure 15.13 contains this diagram.

15. PARSING AND SEMANTIC ANALYSIS

Figure 15.13

The syntax diagrams

for empty statements

and code blocks.

This is an understandably simple diagram, but it’s still very effective in its description. A Statement
is currently defined as an empty statement, which consists solely as a semicolon. Note that I didn’t
explicitly define a non-terminal called an Empty Statement anywhere; rather empty statements are
part of an overall Statement non-terminal. In the future, you’ll add more statement types to
Statement.

The next noteworthy point is the arrows. Notice that even in the case of the single-terminal state-
ment diagram, an arrow comes in from the left and exits to the right. This represents the fact
that the diagram can “fit in” to any preexisting flow of syntax; without the arrow on the right side,
you’d be stating that a Statement can only occur at the very beginning of a program; without the
arrow on the left, you’d be stating that it can only occur at the very end.

Lastly, and most importantly, notice that this is your first encounter with recursion in this lan-
guage’s syntax. What this diagram says is that a Statement can consist of either a single semicolon
or a Block, and that a Block can consist of one or more Statements enclosed in curly braces.
Because both of these non-terminals include each other, a parser that implements them will sup-
port infinite levels of repetition and recursion. For example, these diagrams alone support the
following blocks of code:
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;

{
}

;
{

;
}

{;} ;;; {}{}{} ;;; {;}

{
;
{

{
;

}
;

}
}

In contrast, the following code blocks are illegal:

{
;

{
{

{{
}

}

It can be tricky to grasp at first, but the basic summary is this—Blocks are types of Statements, but
they can also contain Statements. This recursive relationship gives the compiler the flexibility to
parse arbitrary levels of nesting. Let’s take a look at some code.

PARSING STATEMENTS AND CODE BLOCKS
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The Implementation
Remember, the next step after creating syntax diagrams is committing them to code by imple-
menting a parsing function for each non-terminal. The grammar so far has two non-terminals—
Statement and Code Block. These will map directly to the two parsing functions you’ll write in
this section, ParseStatement () and ParseBlock ().

It’s also important to remember that these particular functions won’t produce I-code of any sort.
As you can imagine, code blocks and statements that don’t actually do anything have no I-code
equivalent; much like comments and whitespace, semicolons and curly braces exist primarily for
delimiting purposes and can thusly be discarded as they’re parsed.

ParseSourceCode ()
If you remember from the last chapter, there was a function defined in xsc.cpp called
CompileSourceFile () that was responsible for initiating the compilation process. Its sole purpose
at the time was to call ParseSourceCode (), which generated the script’s I-code equivalent by pars-
ing its token stream. Before you can go any farther, you have to implement this function, because
it’s ultimately what will manage the parsing process.

On the subject of terminology, it’s important to note before you go any further that a statement is
defined in the XtremeScript language as virtually every language construct it supports. For exam-
ple, a function or variable declaration is a type of statement (regardless of scope), an assignment
is a statement, and for and while loops are statements as well. Because of this, the real job of the
parser is to simply loop through each statement in the script and parse it depending on its type.
For this reason, ParseSourceCode () can manage the entire parsing process simply by repeatedly
calling ParseStatement () until the end of the token stream is reached. With that in mind, here’s
the code:

void ParseSourceCode ()
{

// Reset the lexer
ResetLexer ();

// Set the current scope to global
g_iCurrScope = SCOPE_GLOBAL;

// Parse each line of code
while ( TRUE )
{

// Parse the next statement and ignore an end of file marker
ParseStatement ();

15. PARSING AND SEMANTIC ANALYSIS
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// If we're at the end of the token stream, break the parsing loop
if ( GetNextToken () == TOKEN_TYPE_END_OF_STREAM )

break;
else

RewindTokenStream ();
}

}

That wasn’t so bad, huh? The function starts with a call to ResetLexer () to prep the lexical ana-
lyzer module before everything begins. It then sets the current scope to SCOPE_GLOBAL, which
makes sense because a script never starts out inside a function. It then enters a loop that parses
statements with a call to ParseStatement () until the next token read is TOKEN_TYPE_END_OF_STREAM.
At this point, the function knows that the end of the source file is reached, and exits.

Statements
ParseStatement () is the only function called by ParseSourceCode (), because when you really get
down to it, every line of code in the script is technically a statement of some sort. Because of this,
it’s in charge of all subsequent branches to other parse functions; ParseSourceCode () may be the
overall parsing process manager, but ParseStatement () is really the one calling the shots.

Currently, all the statement parser does is consume semicolons and call ParseBlock () when an
opening curly brace is encountered. Anything else is considered invalid input and flags the
appropriate error. It also checks for the TOKEN_TYPE_END_OF_STREAM token, which would flag an
unexpected end-of-file. As you’ll see, this logic alone is enough to fully implement the first two
syntax diagrams, simple as they may be. Here’s the code:

void ParseStatement ()
{

// If the next token is a semicolon, the statement is empty so return
if ( GetLookAheadChar () == ';' )
{

ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );
return;

}

// Determine the initial token of the statement
Token InitToken = GetNextToken ();

// Branch to a parse function based on the token
switch ( InitToken )

PARSING STATEMENTS AND CODE BLOCKS
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{
// Unexpected end of file
case TOKEN_TYPE_END_OF_STREAM:

ExitOnCodeError ( "Unexpected end of file" );
break;

// Block
case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:

ParseBlock ();
break;

// Anything else is invalid
default:

ExitOnCodeError ( "Unexpected input" );
break;

}
}

The logic here is simple. The first thing the function does is use the look-ahead to 
determine whether a semicolon appears to be the next token. If so, it makes sure with a 
call to ReadToken () and returns immediately. This is how empty statements are supported. 
If the look-ahead isn’t a semicolon, you know you aren’t dealing with an empty statement and
read the statement’s first token. This token is used as the criteria for determining which type of
statement is up next, but because you currently just parse blocks, the only token you worry about
is TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE. Anything other than the curly brace is considered invalid
and flags an "Unexpected input" error, with the exception of the end-of-stream flag, which flags an
"Unexpected end of file" error.

Note that even though you check for the end-of-stream flag in ParseSourceCode (), it’s important
to check for it in ParseStatement () as well. If an end-of-stream occurs during ParseSourceCode ()’s
main loop, it represents a valid ending to the file because, for reasons you’ll see more clearly later
on, ParseSourceCode () only handles statements in the global scope. Other functions in the parser
will make calls to ParseStatement (), however, and when they do, it’s important that you be on the
lookout for the end-of-stream flag. Once you’re actually within a specific statement parsing func-
tion, however, you can rest assured that all instances of TOKEN_TYPE_END_OF_STREAM will simply regis-
ter as an invalid token, and cause an error as well. Because of this, you can be sure that at no
point in the parser’s lifespan will an end-of-stream go unhandled.

15. PARSING AND SEMANTIC ANALYSIS
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Blocks
Blocks are handled by the ParseBlock () function, which performs the simple task of parsing
every statement within a pair of curly braces. The great thing about this function is that even
when the parser reaches its final, most sophisticated state, this will still be a profoundly simple
function that’s little more than a single loop. Let’s look at the code first, and discuss it afterwards:

void ParseBlock ()
{

// Read each statement until the end of the block
while ( GetLookAheadChar () != '}' )

ParseStatement ();

// Read the closing curly brace
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE );

}

You might be wondering why this function doesn’t start by reading the opening curly brace. After
all, that’s the first token of a block’s syntax, right? Rememeber, however, that ParseStatement ()
has already consumed this token. The opening curly brace is how it knew to call ParseBlock () in
the first place, so it’s already been read from the stream. This will be a continuing trend with all
parsing functions—by the time the function is active, the first token of the syntax diagram it
implements has been read. All this function does is repeatedly call ParseStatement () until the
look-ahead character reveals that a } token might be on the horizon. At this point, it terminates
the loop and validates the presence of the token with a call to ReadToken (). That’s it!

Going back to the previously mentioned issue of unexpected end-of-file encounters, this is a per-
fect example of why ParseStatement () needs to keep watch for the END_OF_STREAM token. In the
event that an EOF occurs during one of the ParseStatement () calls made by ParseBlock (), it
means that the file ended before the block was closed with a closing curly brace. Because this is
syntactically invalid, you need to make sure to alert the users.

Lastly, stop for a moment and think about the implications of this function calling ParseStatement
(), which is the very function that called it. Remember, the recursive nature of this relationship
allows statements and blocks to be infinitely nested in any order.

At this point, you have enough code to properly parse and understand the basic structure of the
language—semicolon-terminated statements and code blocks. Even if the statements were empty,
it’s still a start, and will provide a solid footing for the remainder of the chapter. Of course, the
parser still doesn’t produce anything—it consumes and even understands its input, but simply
isn’t capable of interpreting anything complex enough to warrant the generation of I-code or
table entries. Fortunately, the next section will rectify this.

PARSING STATEMENTS AND CODE BLOCKS
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PARSING DECLARATIONS
Taking a small step up from the decidedly dull world of empty statements and code blocks brings
you to the language’s declarations. XtremeScript currently supports two fundamental types of
declarations (although you’ll be adding a third before this section is over), variables and arrays
(data declarations), and functions (logic/code declarations). Variables are declared with the var
keyword, and can be optionally followed by an integer array size enclosed in curly braces.
Functions are declared with the func keyword, and consist of an identifier, a parentheses-enclosed
parameter list containing zero or more parameters, and a code block. Thanks to the last section,
you’re now capable of parsing code blocks, which means you’re already part of the way there.

Function Declarations
You can start with function declarations first, because the parser currently has no notion of
scope—something you need to fix immediately. Even variables, which I’ll cover in this section,
need some form of scope in order to be properly added to the symbol table, and without an
understanding of function declarations, you can’t do that.

The syntax for XtremeScript functions is presented in Figure 15.14.
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Figure 15.14

The syntax diagram for function declarations.

What this diagram is saying is that a function declaration starts with the func keyword, is followed
by an identifier, and ends with a parameter list and a code block. The parameter list is enclosed
by parentheses, within which zero or more parameters are housed, each of which is followed by a
comma, except for the last one.

Before a function can be parsed, however, ParseStatement () needs to be updated to acknowl-
edge its existence. Remember, the current statement parser only understands empty statements,
blocks, and the end-of-stream flag. Anything else is considered invalid and causes an error, which
currently includes the func keyword. So, the first step in handling functions is adding an extra
case to the switch block used to branch to the proper parsing function:
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void ParseStatement ()
{

// If the next token is a semicolon, the statement
// is empty so return
if ( GetLookAheadChar () == ';' )
{

ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );
return;

}

// Determine the initial token of the statement
Token InitToken = GetNextToken ();

// Branch to a parse function based on the token
switch ( InitToken )
{

// Unexpected end of file
case TOKEN_TYPE_END_OF_STREAM:

ExitOnCodeError ( "Unexpected end of file" );
break;

// Block
case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:

ParseBlock ();
break;

// Function definition
case TOKEN_TYPE_RSRVD_FUNC:

ParseFunc ();
break;

// Anything else is invalid
default:

ExitOnCodeError ( "Unexpected input" );
break;

}
}

This alters the syntax diagram for the Statement non-terminal, so let’s have a look at the updated
version, shown in Figure 15.15.

PARSING DECLARATIONS
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As you can see, the parsing function you’ll use to handle function declarations is called ParseFunc
(). It should be pretty clear that you’ll be continually updating the Statement non-terminal as
each new statement type is added. With that out of the way, let’s talk about what this new function
will do. Parsing the func token is obviously easy, as is the identifier. And the code block parsing
logic is already done—all you have to do is make a call to ParseBlock (). The only tricky part here
will be parsing the parameter list, but it’s nothing particularly difficult when you get right down
to it.

Overall, however, functions do bring with them a reasonable level of complexity, so let’s take it
one step at a time. Rather than dump the entire ParseFunc () function on you at once, you can
step through it gradually. There are really three major aspects to parsing a function—the name,
the parameter list, and the code block that comprises the function’s body. I’ll now discuss each of
these three components separately.

Parsing and Verifying the Function Name
The first task in parsing a function is verifying its name and using it to add the function to the
function table. Not surprisingly, this comprises the first chunk of code in the ParseFunc () func-
tion. Let’s have a look:

void ParseFunc ()
{

// Make sure we're not already in a function
if ( g_iCurrScope != SCOPE_GLOBAL )

ExitOnCodeError ( "Nested functions illegal" );

// Read the function name
ReadToken ( TOKEN_TYPE_IDENT );

15. PARSING AND SEMANTIC ANALYSIS
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// Add the non-host API function to the function
// table and get its index
int iFuncIndex = AddFunc ( GetCurrLexeme (), FALSE );

// Check for a function redefinition
if ( iFuncIndex == -1 )

ExitOnCodeError ( "Function redefinition" );

// Set the scope to the function
g_iCurrScope = iFuncIndex;

By the time ParseFunc () is called, the func keyword has already been read by ParseStatement ().
After all, that’s how it knew to call this function in the first place, right? Because of this, the first
thing it does is attempt to read an identifier token. Before doing so, however, it makes sure that
the current scope is SCOPE_GLOBAL; if you aren’t in the global scope, it can only mean you’re in a
function. And because XtremeScript doesn’t support nested functions, this results in an error.

Once the scope has been verified as global, the function’s identifier is read and a new entry in
the function table is immediately created with a call to AddFunc (). You tell AddFunc () the name
of the new function by passing it the current lexeme with a call to GetCurrLexeme (), which of
course returns the identifier. You also pass it FALSE for the iIsHostAPI parameter, to let it know
that this is a script-defined function, not a host API function.

AddFunc () returns an index to the newly created function, which you store in iFuncIndex. The
first thing to do at this point is find out if the index is -1; if so, it’s a flag that a function with the
specified name already exists in the table. Because this means a function redefinition has
occurred, an error is presented to the users. If the index is valid, however, you know the function
was added properly, and immediately assign it to g_iCurrScope to ensure that all subsequent state-
ments, including function declarations, will be aware that you’re currently inside a function.

Parsing the Parameter List
This takes care of the function name, so the first component of a function declaration is behind
us. Next up is the parameter list. Although this is mostly a straightforward affair, there is one
caveat that you can’t forget to address. As you learned in Chapters 8 and 9, parameters can be
passed using two distinct conventions: right-to-left, and left-to-right. Generally, because (Western)
people read from left-to-right, parameters are defined in that order and it makes the most intu-
itive sense to push them onto the stack that way as well. However, from the function’s perspective,
this results in a reversed parameter list, because the last parameter in the list is the first one avail-
able relative to the top of the stack (which is a result of the stack’s last in, first out nature). Because
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of this, a specific convention must be agreed upon beforehand; once a language has defined
such a convention, parameters are pushed onto the stack using the chosen order, and are
popped off within the function’s code in the reverse order.

XtremeScript will pass parameters in the left-to-right order, which means functions will have to
read them from right to left. What this means is that the parser, I-code module, and code emitter
must all make sure that parameters are read within the function from right to left. The solution
here is to add the parameters to the symbol table in the reverse order. If you recall the last chap-
ter, you’ll remember that the code emitter’s EmitScopeSymbols () function reads from the symbol
table in a sequential manner; it moves from the first node to the last, which means that parame-
ter declarations are emitted in the same order in which they’re added to the table. This means
that if you want those declarations to appear in the right-to-left order, it’s necessary to add them
to the symbol table backwards.

The problem with this is that the lexer module will pass you the lexemes for each parameter’s
identifier in a rigid left-to-right order, as it’s read from the source code. There’s no way to make
the lexer “jump around” within the source, so there’s no way to start with the last parameter and
lex your way back to the first. Instead, you have to buffer the parameters locally as they’re read, so
they’re kept in an array in left-to-right order. Then, after reading them, you can cycle through the
array backwards and add the resulting sequence of identifiers produced in this second loop to
the symbol table.

Here’s the next segment of ParseFunc (), which parses and processes the parameter list:

// Read the opening parenthesis
ReadToken ( TOKEN_TYPE_DELIM_OPEN_PAREN );

// Use the look-ahead character to determine if the
// function takes parameters
if ( GetLookAheadChar () != ')' )
{

// If the function being defined is _Main (), flag an error since
// _Main () cannot accept paraemters
if ( g_ScriptHeader.iIsMainFuncPresent &&

g_ScriptHeader.iMainFuncIndex == iFuncIndex )
{

ExitOnCodeError ( "_Main () cannot accept parameters" );
}

// Start the parameter count at zero
int iParamCount = 0;
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// Create an array to store the parameter list locally
char ppstrParamList [ MAX_FUNC_DECLARE_PARAM_COUNT ][ MAX_IDENT_SIZE ];

// Read the parameters
while ( TRUE )
{

// Read the identifier
ReadToken ( TOKEN_TYPE_IDENT );

// Copy the current lexeme to the parameter list array
CopyCurrLexeme ( ppstrParamList [ iParamCount ] );

// Increment the parameter count
++ iParamCount;

// Check again for the closing parenthesis to see
//  if the parameter list is done
if ( GetLookAheadChar () == ')' )

break;

// Otherwise read a comma and move to the next parameter
ReadToken ( TOKEN_TYPE_DELIM_COMMA );

}

// Write the parameters to the function's symbol table in
// reverse order, so they'll be emitted from right-to-left
while ( iParamCount > 0 )
{

-- iParamCount;
// Add the parameter to the symbol table
AddSymbol ( ppstrParamList [ iParamCount ], 1, g_iCurrScope,

SYMBOL_TYPE_PARAM );
}

// Set the final parameter count
SetFuncParamCount ( g_iCurrScope, iParamCount );

}

// Read the closing parenthesis
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );
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You can begin by attempting to read an opening parenthesis token. If it’s found, you immediately
use the look-ahead to determine whether a closing parenthesis follows it. If so, the parameter list
is empty and you can skip past the parameter parsing logic entirely. If not, you have to make sure
the current function isn’t _Main (), because _Main () can’t legally accept parameters. Otherwise,
you create a local variable called iParamCount, which tracks the number of parameters the func-
tion accepts, sets it to zero, and begins a parameter-parsing loop. You also declare a local array
called ppstrParamList [], which will store the identifier strings of each parameter you parse. To
dimension this array, you create a new constant called MAX_FUNC_DECLARE_PARAM_COUNT, which sets a
maximum number of parameters that a function declaration can contain:

#define MAX_FUNC_DECLARE_PARAM_COUNT        32

As you can see, I have mine set to 32. This is yet another case of overkill, because it’s unlikely that
a function (especially in the context of scripting) will ever need more than six to eight parame-
ters at most.

At each iteration of the loop, you attempt to read an identifier, which is always the first (and
sometimes only) token of a parameter. If it’s found, you add it to the ppstrParamList [] array with
CopyCurrLexeme () and increment the parameter count.

You can once again consult with the look-ahead to find out whether a closing parenthesis appears
to be the next token. If not, you read a comma token and the loop completes the iteration. If so,
however, you break the loop and make a call to SetFuncParamCount () in order to update the func-
tion’s entry in the table to reflect the parameter count you gathered during the loop and saved in
iParamCount.

You now have the parameter list in the local array, so it’s time to move backwards through its ele-
ments and add them in reverse order to the symbol table. This is done with a while loop, which
decrements iParamCount at each iteration and uses it as an index into the array. The string at that
index is the identifier of the parameter you’re adding, so you pass it to AddSymbol (). You must set
the symbol size to 1 (because there’s no such thing as a parameter array), pass the scope you set
earlier in g_iCurrScope so the symbol table knows the parameter is local to this function, and fin-
ish the call with the SYMBOL_TYPE_PARAM flag so the symbol is recorded specifically as a parameter.

The parameter list parsing-process is complete, so you should finish up by validating the closing
parenthesis with ReadToken ().

At this point, the function’s parameter count has been stored along with the name in the func-
tion table, and each of its parameters have been stored in the symbol table in right-to-left order as
local variables within the function’s scope. In other words, the parameter list has been fully
parsed and processed.

15. PARSING AND SEMANTIC ANALYSIS
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Parsing the Function’s Body
The last order of business is parsing the function’s body. Fortunately, function bodies are really
just code blocks, and because you’ve already written ParseBlock (), all you need to do is call it. Of
course, before doing so, you need to use ReadToken () to ensure that an opening curly brace is
next in the token stream. If so, ParseBlock () handles the rest. Here’s the code:

// Read the opening curly brace
ReadToken ( TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE );

// Parse the function's body
ParseBlock ();

// Return to the global scope
g_iCurrScope = SCOPE_GLOBAL;

}

At this point, it’s important to understand what’s going on. You’re currently in a statement pars-
ing loop run by ParseSourceCode (), which is continually calling ParseStatement () until the end
of the file is reached. During one of the invocations of ParseStatement (), a func token was found,
which caused ParseFunc () to be called, which brings you to the present moment. Now, however,
you’re calling ParseBlock () from within ParseFunc (), which means that the overall statement
parsing loop managed by ParseSourceCode () is halted until the block is fully parsed. When
ParseBlock () returns, it will return to ParseFunc (), which will return to ParseStatement (), which
will return to ParseSourceCode (). In addition to simply reinforcing both the highly nested and
recursive nature of this parsing method, it also demonstrates that the parsing of the function’s
block takes place entirely within the confines of ParseFunc (). Because this is such a visual
process, refer to Figure 15.16 for a better idea of what’s happening.
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The parsing of a func-

tion’s block takes place

within ParseFunc (),

which takes place with-

in ParseStatement (),

which takes place with-

in ParseSourceCode ().

Whew!
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Once ParseBlock () returns, you
know the entire function body
has been handled. Of course, at
this point, all it can contain are
empty statements and nested
blocks, but even after the rest of
the statement types are added,
ParseFunc () will remain the
same. Because you’re now back
outside the function’s body, you
can set the scope back to
SCOPE_GLOBAL. Remember, if the
user attempts to nest a function
call, the offending func token
will be found inside the nested
call to ParseBlock (), which is
why you never have to make any
permanent changes to the
g_iCurrScope variable. You
should only change it once
before making the call, and imme-
diately change it back afterwards.

As a final note, now that the parser has a notion of scope, you need to make a change to
ParseBlock (). Because code blocks can only appear within functions (including blocks that are
the function), you need to ensure that they never appear in the global scope. ParseBlock () now
looks like this:

void ParseBlock ()
{

// Make sure we're not in the global scope
if ( g_iCurrScope == SCOPE_GLOBAL )

ExitOnCodeError ( "Code blocks illegal in global scope" );

// Read each statement until the end of the block
while ( GetLookAheadChar () != '}' )

ParseStatement ();

// Read the closing curly brace
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_CURLY_BRACE );

}

15. PARSING AND SEMANTIC ANALYSIS

NOTE
One extremely important note to remember about
the XtremeScript compiler is that it does not allow
the forward referencing of functions like XASM did.
ParseSourceCode () is called only once, which means
only a single pass is made over the source code.
Because of this, it’s inconvenient to anticipate and
retroactively verify forward referencing, and I left it
out entirely to keep things clean and simple.This
does go to show, however, that single-pass compilers
have their weaknesses. Many languages suffer from
this same setback, which means that functions must
be declared in order of their usage; a function call
can only be made below that function’s definition in
the source code. C++ eliminates this problem with-
out a second pass by requiring any forward-refer-
enced functions to be declared above the program’s
main source code with function prototypes. You may
want to try adding such a feature on your own.
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Nothing’s changed except the initial g_iCurrScope check. If the scope is currently global, an error
is presented to alert the users that the block is illegal.

Variable and Array Declarations
Now that you can determine whether you’re inside a function, and get a hold of current func-
tion’s index at any time, you’re ready to tackle variable declarations. Figure 15.17 depicts the now
familiar syntax diagram for the declaration of variables and arrays.
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The syntax diagram for variable and array declarations.

As you should know well at this point, the diagram tells you that a variable is declared with a var
token followed by an identifier. If the variable is intended to be an array, an optional integer
index follows the identifier, enclosed in brackets. Regardless of which path is taken, however,
both end with a semicolon.

You may be wondering why you need to explicitly mention the semicolon in the declaration.
Because all statements end with it, why not just automatically check for it after calling the proper
Parse* () function in ParseStatement ()? The reason for this is that only some statements end in a
semicolon. Remember, function declarations are statements too, and the parser you just finished
didn’t check for a semicolon because the syntax doesn’t require it to do so. Because of this, the
check for the terminating token is done on an individual statement basis.

As was the case with functions, however, and as will be the case for all subsequent statement types,
the first stop in the implementation process is ParseStatement (), where the new statement type
will be recognized by its switch block with the addition of a new case for the var token. As you
might imagine, variable declarations are parsed with ParseVar (), so let’s add it:

void ParseStatement ()
{

// If the next token is a semicolon, the statement
// is empty so return
if ( GetLookAheadChar () == ';' )
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{
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );
return;

}

// Determine the initial token of the statement
Token InitToken = GetNextToken ();

// Branch to a parse function based on the token
switch ( InitToken )
{

// Unexpected end of file
case TOKEN_TYPE_END_OF_STREAM:

ExitOnCodeError ( "Unexpected end of file" );
break;

// Block
case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:

ParseBlock ();
break;

// Function definition
case TOKEN_TYPE_RSRVD_FUNC:

ParseFunc ();
break;

// Variable/array declaration
case TOKEN_TYPE_RSRVD_VAR:

ParseVar ();
break;

// Anything else is invalid
default:

ExitOnCodeError ( "Unexpected input" );
break;

}
}

Figure 15.18 depicts the latest version of the Statement non-terminal, now with support for vari-
able/array declarations. With ParseStatement () updated to understand the initial token of vari-
able declarations, you can add the declaration-parsing function.

15. PARSING AND SEMANTIC ANALYSIS
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Here’s the code to do so:

void ParseVar ()
{

// Read an identifier token
ReadToken ( TOKEN_TYPE_IDENT );

// Copy the current lexeme into a local string buffer
// to save the variable's identifier
char pstrIdent [ MAX_LEXEME_SIZE ];
CopyCurrLexeme ( pstrIdent );

// Set the size to 1 for a variable (an array will
// update this value)
int iSize = 1;

// Is the look-ahead character an open brace?
if ( GetLookAheadChar () == '[' )
{

// Verify the open brace
ReadToken ( TOKEN_TYPE_DELIM_OPEN_BRACE );

// If so, read an integer token
ReadToken ( TOKEN_TYPE_INT );

// Convert the current lexeme to an integer to get the size
iSize = atoi ( GetCurrLexeme () );

PARSING DECLARATIONS
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// Read the closing brace
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_BRACE );

}

// Add the identifier and size to the symbol table
if ( AddSymbol ( pstrIdent, iSize, g_iCurrScope, SYMBOL_TYPE_VAR ) == -1 )

ExitOnCodeError ( "Identifier redefinition" );

// Read the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

}

As you can see, it’s a pretty simple process, and definitely easier than function declaration pars-
ing. Because ParseStatement () already consumed the var token, the identifier is up next. You
must verify its presence with ReadToken (), use CopyCurrLexeme () to make a physical copy of the
identifier string, and save the string in the locally declared pstrIdent string buffer.

This finishes the parsing of a single variable’s declaration, but because you have to be ready for
arrays as well, your job isn’t done. A local flag called iSize is declared and set to one, represent-
ing the fact that you’re still assuming the declaration is for a single variable. You then once again
read the handy look-ahead character to determine whether an opening brace token is up next,
verifying it with ReadToken () if so. ReadToken () is then called again to read the integer array size,
which is converted to a real integer value with atoi () and saved in iSize. The closing brace is
then verified with a third call to ReadToken () and the parsing is complete.

At this point, you have all the information you need to register the symbol with the symbol table.
To do this, AddSymbol () is called, along with the variable’s identifier (stored in pstrIdent), size
(stored in iSize), scope, and the SYMBOL_TYPE_VAR flag. You should now understand why you had
to make a physical copy of the identifier—if an array was found, the next call to ReadToken (),
which would have verified the opening curly brace, would’ve overwritten the current lexeme
string with [ and, in turn, deprived you of a copy of the variable’s identifier. By copying it locally
first, you’re free to call the lexer as much as you want without disturbing any important data.

AddSymbol () returns an index to the newly created symbol, but if that index is -1, it’s a sign that a
symbol with the specified name already exists within the same scope, or an overlapping scope in
the case of globals. When this occurs, an error must be flagged that lets the users know that the
identifier was redefined. To complete the process, the semicolon is read with ReadToken ().

As variable declarations are parsed, the symbol table is populated with information regarding
both global and local data. Remember, ParseVar () can be called in any scope, so you don’t need
to write any extra code to handle global or local variables specifically. By the time the compiler
reaches the end of the source file, a record of the script’s entire collection of variables will have
been assembled.

15. PARSING AND SEMANTIC ANALYSIS
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Host API Function Declarations
The last type of declaration to cover might not seem immediately obvious. What’s a host API dec-
laration? If you recall the development of XASM in Chapter 9, you’ll remember that host API
function calls were obvious to the assembler because they were also used in the context of a
CallHost instruction. As a result, their differentiation from script-defined functions was obvious,
because script functions were called with the Call instruction.

You don’t use any “instructions” to call functions in a high-level language such as XtremeScript,
however. Function calls simply consist of the function’s name and parameter list. Because of this,
there’s no easy way to know whether a given function belongs to the host API. For example, con-
sider the following code:

func Square ( X )
{

return X * X;
}

func _Main ()
{

var U;
var V;

U = Square ( 64 );
V = SomeOtherFunc ( U );

}

Although you can easily determine that Square () is a script-defined function due to its preceding
declaration, you have no way of telling what SomeOtherFunc () is. From the perspective of the com-
piler, it could be anything—a misspelled version of a real function, a completely non-existent
function, or a host API function that is indeed real, but not within the script. The problem is, the
parser will have no choice but to assume that the function call is invalid. This cuts you off from
the host API entirely, and renders the entire scripting system useless.

One way to solve the problem is simply to consider all function calls valid, regardless of whether
the name is found in the function table. This way, you can assume that any unknown functions
are defined by the host API, and everything will work out. The downside here, however, is that
this allows completely nonexistent functions to be called without the compiler issuing an error.
This means that simple misspellings on behalf of the user, such as Squsre () instead of Square (),
will go unnoticed and lead to enigmatic logic errors.

The only safe way to resolve this situation is to give the script writer some way to formally declare
a host API function ahead of time. Although it’s still possible to define a function that the host
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application never defines, at least this rules out the possibilities of accidental misspellings that the
compiler doesn’t flag. To do this, you need to make a small addition to the XtremeScript lan-
guage by adding the host keyword.

The host Keyword
The purpose of host is to allow the script writer to declare a host API function before its subse-
quent use. Functions declared by host, even though they don’t have a body or even a parameter
list, are added to the function table. This allows the parser to verify that a call is indeed valid,
whether it’s to a script-defined or host-defined function.

The syntax of the host keyword is simple. Here’s an example:

host MyHostAPIFunc ();

From this point onward, the function table will have a record of a host API function called
MyHostAPIFunc (). Notice that I also enforce the () notation at the end of the declaration; even
though this isn’t necessary, I think it makes the whole thing more readable. Figure 15.19 contains
the host keyword’s syntax diagram.
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Figure 15.19

The syntax diagram for the host keyword.

This directive would have been added to the language along with the rest of the specification in
Chapter 7, but I felt that the perspective gained in Chapters 9 through 11 in regards to the host
API and its inner workings were necessary first. So, I deferred its introduction until now. What
this does mean, however, is that the lexer needs to understand a new reserved word.

Upgrading the Lexer
The current lexical analyzer module has no idea that the host keyword has been added to the lan-
guage, and will end up thinking it’s an identifier. To alleviate this, you just need to make a few super-
ficial changes. Start by adding the TOKEN_TYPE_RSRVD_HOST constant to the token type constant list:

#define TOKEN_TYPE_RSRVD_HOST           16
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Then, under the LEX_STATE_IDENT case in the switch block that GetNextToken () uses to convert the
terminal lexer state to a token type, you simply add this small block of code:

// host
if ( stricmp ( g_CurrLexerState.pstrCurrLexeme, "host" ) == 0 )

TokenType = TOKEN_TYPE_RSRVD_HOST;

That’s all it takes. The lexer now understands the new keyword, and you’re ready to implement
it. You’re encouraged to check out the source, however, to see it in the context of the rest of the
lexer’s code.

Parsing and Processing the host Keyword
All that’s left at this point is to add a ParseHost () function that will parse and process the host
keyword and add its function to the function table. Of course, the first step in doing this is once
again making changes to ParseStatement (), so that it will understand the initial host token:

void ParseStatement ()
{

// If the next token is a semicolon, the statement
// is empty so return
if ( GetLookAheadChar () == ';' )
{

ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );
return;

}

// Determine the initial token of the statement
Token InitToken = GetNextToken ();

// Branch to a parse function based on the token
switch ( InitToken )
{

// Unexpected end of file
case TOKEN_TYPE_END_OF_STREAM:

ExitOnCodeError ( "Unexpected end of file" );
break;

// Block
case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:

ParseBlock ();
break;
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// Function definition
case TOKEN_TYPE_RSRVD_FUNC:

ParseFunc ();
break;

// Host API function import
case TOKEN_TYPE_RSRVD_HOST:

ParseHost ();
break;

// Variable/array declaration
case TOKEN_TYPE_RSRVD_VAR:

ParseVar ();
break;

// Anything else is invalid
default:

ExitOnCodeError ( "Unexpected input" );
break;

}
}

Figure 15.20 is a more recent version of the ever-evolving Statement non-terminal syntax diagram.
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Note that I refer to it as a “host API function import”. If you recall from Chapter 11, the process of
exposing a function on behalf of the host application is called exporting. This means that from the
script’s perspective, the function is being imported. Anyway, whenever the host token appears as the
initial token of a new statement, ParseHost () is called to parse the declaration. Let’s take a look:

void ParseHost ()
{

// Read the host API function name
ReadToken ( TOKEN_TYPE_IDENT );

// Add the function to the function table with the host API flag set
if ( AddFunc ( GetCurrLexeme (), TRUE ) == -1 )

ExitOnCodeError ( "Function redefinition" );

// Make sure the function name is followed with ()
ReadToken ( TOKEN_TYPE_DELIM_OPEN_PAREN );
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );

// Read the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

}

This is probably the simplest of all the declaration
parsing functions. It begins by reading the iden-
tifier token, which comes directly after the host
token. This token’s corresponding lexeme is
the function name, which is passed to AddFunc
() to create the function. Note that now, you
pass TRUE as the iIsHostAPI parameter so it’s
known that this function is not script-defined.
Remember, however, that you’re storing host
API functions and script-defined functions in
the same table. Because of this, name clashes
cannot exist—if a script function called MyFunc
() is entered into the table, and a host API
function is declared with the same name, a
function redefinition error will result. This is a
good thing—because host API and script-
defined function calls look identical, there was
no way to tell which function was being called.
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NOTE
Of course, function overloading would
allow you to differentiate between two
functions of the same name, which
would be one way to allow host API
and script-defined functions to share
identifiers.The problem with this, how-
ever, is determining which function is
being called based on the parameter
list alone. Remember, XtremeScript is
a completely typeless language, which
means that unless the parameter lists
were different sizes, it would be impos-
sible to tell one function from the
other based on the data types alone.
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Once the function name has been parsed and added to the function table with the host API flag,
two more tokens are read to ensure that the statement ends with a (). Finally, a semicolon is read,
and the declaration is fully parsed.

Testing Code Emitter Module
So far, the parser is shaping up quite nicely. It understands the fundamental structure of a script
through its support for code blocks and [empty] statements, and can now both parse and process
the full set of XtremeScript declarations. This includes both local and global variables and arrays,
functions with parameter lists, and host API function import declarations with the newly added
host keyword. At this point, even though you still aren’t generating I-code of any sort, a script
written using only the statements the parser currently understands will produce visible output.

To test this, check out the following script. Although it consists only of declarations and empty
code blocks, you can actually see its output in the form of an equivalent XVM assembly file:

/*
XtremeScript declaration test.

*/

// Import a host API function
host MyHostAPIFunc ();

// Declare some globals
var GlobalX;
var GlobalY;

// Create a simple test function
func MyFunc ( X, Y )
{

// Declare some locals
var U;
var V;

}

// Declare a _Main () function
func _Main ()
{

// Declare some locals
var LocalX;
var LocalY;

}

15. PARSING AND SEMANTIC ANALYSIS
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By saving this file as declare.xss and running it through the Programs/Chapter 15/15-01/ version
of the compiler on the CD with the -A switch, you’ll get the following output:

; DECLARE.XASM

; Source File: TEST.XSS
; XSC Version: 0.8
;   Timestamp: Fri Sep 13 14:53:08 2002

; ---- Directives -------------------------------------------
; ---- Global Variables -------------------------------------

Var GlobalX
Var GlobalY

; ---- Functions --------------------------------------------

Func MyFunc
{

Param X
Param Y

Var U
Var V

; (No code)
}

; ---- Main -------------------------------------------------

Func _Main
{

Var LocalX
Var LocalY

; (No code)
}

Is that cool or what? The high-level language is now officially being translated to low-level code
(in the form of directives, at least)! Note how the parameter list is automatically translated to
Param declarations, and how the functions and scope levels were faithfully translated as well.
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Notice also that the host declaration seems to have disappeared. This is because such declarations
only exist for the compiler’s benefit, not the assembler’s. However, by giving the compiler a
record of which functions are which, it will know whether to ultimately emit the function call with
the Call instruction or the CallHost instruction.

PARSING SIMPLE EXPRESSIONS
Everything you’ve done so far has been reasonably static, and the things that aren’t have been most-
ly non-recursive. For example, a var declaration is simply the var keyword, followed by an identifi-
er, followed by a semicolon. Array notation notwithstanding, that’s the exact form in which all var
declarations will appear. host declarations are even simpler; there aren’t any alternative forms of
any kind to worry about there. Even function declarations are pretty straightforward, even if their
arbitrarily sized parameter lists are more “dynamic” than the other declarations of the language.

Expressions, on the other hand, are quite a bit different than anything you’ve encountered so far.
In addition to being arbitrarily long, they’re highly recursive; there are operator precedence lev-
els to deal with, nested sub-expressions within parentheses, and non-arithmetic operators like
relational and logical operators. All of these factors mean one thing—your first encounter with
significantly complex parsing logic.

Because of the obvious complexity in parsing expressions, you may be wondering why I am hav-
ing you tackle the problem now. After all, wouldn’t it make more sense to get loops, branching,
and other such language features out of the way first? Unfortunately, this is more or less impossi-
ble; after all, loops, branches, assignments, function calls, and almost every other aspect of
XtremeScript require the capability to parse expressions in some capacity. Because of this, you’ll
do well to get them out of the way now.

An Expression Parsing Strategy
So how does one go about parsing an expression? For example, imagine the following:

X = Y * ( Z / 3.14159 + MyFunc ( U, V ) ^ Theta ) - Phi % Gamma;

Looks pretty intimidating, doesn’t it? I mean it’s like a train wreck of operators, parentheses, and
even function calls. Somehow, despite the nesting and recursion, you need to parse this thing in
purely sequential order, from left to right. This can be a considerable challenge when you’re new
at this stuff, so you can start small and work your way up incrementally.

Parsing Addition and Subtraction
Let’s start at the very bottom. Specifically, with this:

16 + 32

15. PARSING AND SEMANTIC ANALYSIS
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Here you have two operands, separated by the + operator. You know, as a well-trained, arithmetic-
loving human, that this expression is saying “add 16 to 32.” You also know, thanks to the human
brain’s modest computation facilities, that the sum is 48. But how can you get the parser to do
the same thing?

You can start by applying the same approach used for the rest of the parsing tasks. For example,
in terms the compiler can understand, the previous expression is actually just three tokens:

TOKEN_TYPE_INT
TOKEN_TYPE_OP
TOKEN_TYPE_INT

So, a simple parsing strategy for a two-operand expression would be to read the first token, which
corresponds to the first operand, read the second token, which corresponds to the operator, and
read the third token, which corresponds to the second operand. Once you’ve read these tokens
in, you can convert the first and third tokens (the operands) to integers, and use the second
token (the operator) to determine which operation should be performed with these two values.
You can call GetCurrOp () after reading the second token, and because it will return OP_TYPE_ADD,
you’ll know to add the two integer values. That wasn’t so bad, right? Check out Figure 15.21.

In fact, you can even apply this to entire chains of addition and subtraction operators, like so:

16 + 32 - 4 + 256 - 72

With an only slightly modified game plan, you can handle this new, obviously more complex
expression. The secret is realizing that it really isn’t more complex—aside from the repetition, it’s

PARSING SIMPLE EXPRESSIONS
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the same thing. The parsing process would begin just as it did in the last example—16, +, and 32
would be read from the token stream, and after the integer lexemes were converted to their actu-
al values, the addition operator would be applied to them. This would yield 48. From here, you
can simply continue the process, by conceptually “collapsing” 16 + 32 into 48. In other words, you
can now think of the expression like this:

48 - 4 + 256 - 72

Only the bold part represents a change; the rest of the expression remains unchanged. If you
repeat the process, you’ll read the lexemes 48, -, and 4. You now have 44, which once again
prompts you to collapse two operands and an operator into a single operand. 48 - 4 is now 44,
which leaves you with yet another, more compact, version of the expression:

44 + 256 - 72

Again, you repeat the process, and perform the 44 + 256 operation, yielding a sum of 300:

300 - 72

At this point, you’re back to an instance of the first example—two operands separated by a single
operator. By subtracting 72 from 300, you get the result:

228

Presto! Check out Figure 15.22 for a more visual idea of how this process of incrementally “col-
lapsing” the expression works.

15. PARSING AND SEMANTIC ANALYSIS

Figure 15.22

Parsing an expression

with repetitious 

collapsing.

Multiplication, Division, and Operator Precedence
The straight left-to-right approach has served you well so far, allowing you to easily chomp your
way from one end of the expression to the other, while keeping a constantly updated result value
handy until you reach the last operation. This simple method breaks down, however, when the
multiplication and division operators are thrown into the mix. This is because operators of the
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same precedence levels are meant to be handled in a sequential, left-to-right order. Imagine if
you tried parsing the following expression using the current technique:

16 + 32 * 2

You’d first add 16 to 32, and then multiply the resulting 48 by 2. The “result” would be 96, even
though the real result is 80. The pure left-to-right method doesn’t take operator precedence into
account, which results in the operators being applied in the wrong order. What’s worse is that you
couldn’t change this if you wanted to. Even with the look-ahead and the capability to read and
subsequently rewind the token stream, there’s no way to know enough about the rest of the
expression to make educated decisions at each step of the way.

What you need is a way to put certain operands on the “back burner,” so to speak, until you can
be sure that there isn’t an operator of higher precedence that needs to be dealt with first. In
purely conceptual terms, what you need to do is read 16, 32, and the addition operator, but hold
off on the operation for a moment. Instead, you’ll move on the next operator, which is multipli-
cation, and perform the 32 * 2 operation. Then, with the result of 64 already calculated, you’ll
move back to 16 and perform the addition. This will of course yield a sum of 80, which is the cor-
rect result.

So how is this done in practice? One way is to create a temporary register variable that will store the
operand associated with the lower-precedence operator until the appropriate time. You could thus
save 16 in this register, perform the multiplication of 32 and 2, and then refer back to the register
to complete the expression. Unfortunately, this doesn’t help you much in a situation like this:

16 + 32 * 4 / 256 - 72 * 65536 + 2 * 4

You’re going to need quite a few extra registers to handle this situation. What you need instead is
a structure that will automatically grow to accommodate new operands as they’re parsed, allowing
you to store an arbitrary amount of such values until the proper time. If you haven’t noticed
already, this situation sounds suspiciously similar to a problem you had with the stack frames and
return addresses associated with function calls. And if you recall, as I certainly hope you do, you’ll
remember that the solution came in the form of a stack.

Stack-Based Expression Parsing
As an expression is being parsed, you’ve already seen that you’ll run into the problem of operator
precedence quickly. In such a situation, operands associated with lower-precedence operators
must be stored for later use, in a specific order, so they can be dealt with at the proper time.
Fortunately, the stack provides an elegant, flexible, and straightforward way to do exactly this.

Let’s go back to the original example, and see how it can be solved using stacks:

16 + 32 * 2

PARSING SIMPLE EXPRESSIONS
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For the purpose of this example, you’ll use two separate stacks. One will store the operands, and
the other will store the operators. The following is a walk-through of the process of parsing the
previous expression with these stacks.

16 is read as the first token, and is pushed onto the operand stack. The next token is +, which is
pushed onto the operator stack. Up next is 32, which is pushed onto the operand stack. Figure
15.23 demonstrates the current state of the stacks at this point.

15. PARSING AND SEMANTIC ANALYSIS

Figure 15.23

The operand and 

operator stacks after

parsing 16 + 32.

Figure 15.24

The operand and 

operator stacks after

parsing 16 + 32 * 2.

Next you read the * token, which is pushed onto the operator stack. Finally, 2 is read, which is
pushed onto the operand stack. You now have the situation shown in Figure 15.24.

When the multiplication operator is encountered, you’ve reached the highest precedence level
and can perform the operation. This is done by popping the top element off the operator stack,
as well as popping the top two elements off the operand stack. This gives you 32, 2, and the *
operator. The operation is performed, and the resulting value is pushed onto the operand stack.
This leaves the stacks in the form depicted by Figure 15.25.

One operation remains, so you pop the next value off the top of the operator stack (which emp-
ties it), as well as the next two values off the operand stack. This gives you 64, 16, and +. You add
64 and 16, yielding a sum of 80, and the expression is complete.
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This section covers the theory and code behind parsing expressions supporting:

■ Integer and floating-point literal values.
■ Basic arithmetic operators with the proper precedence rules: +, -, *, /.
■ The unary negation and plus operator.
■ Nesting with parentheses.
■ Variable and array references.

This initial version of the expression parser doesn’t support the assignment operator, so expres-
sions won’t “go anywhere”. Rather, an expression on its own will be considered a valid statement
by the parser. For example, the following statement:

4 + 2;

will be reduced to the following XVM assembly fragment:

Push    4
Push    2
Pop     _T0
Pop     _T1
Add     _T0, _T1
Push    _T0

Although the code might not make too much sense yet, you get the picture (right?).

Understanding the Expression Parser
The expression parser in the XtremeScript compiler is quite simple if you understand how it
works, but therein lies the challenge. The recursive nature of expression parsing is such that if
you don’t understand what’s going on, you’ll be utterly lost; if you do understand, however, it’s
like second nature. So, to help make things a bit easier to swallow, you should start by breaking
up the expressions you want to parse into a number of separate, recursively related entities:

■ Expressions. An expression is the highest-level abstraction, and represents all expressions
the parser can handle.

PARSING SIMPLE EXPRESSIONS
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■ Sub-expressions. Sub-expressions, in the context of this first parser, are synonymous with
expressions. The next version of the parser will differentiate between the two, but for
now, they’re identical. A sub-expression is composed of a number of terms, each separat-
ed by + or - operators. For example, X + Y - Z is an example of a sub-expression. X, Y,
and Z are the terms.

■ Terms. Terms are the constituents of sub-expression, lying between the plus and minus
operators. A term itself is composed of a number of factors, each of which is separated by
* and / operators. Therefore, U * V / W is an example of a term, and U, V and W are the
factors.

■ Factors. A factor is the lowest-level entity in an XtremeScript expression, representing a
single value and an optional unary operator. 16, -7, MyVar, and -MyArray [ 0 ] are exam-
ples of factors. The real kicker, however, is that a factor can start with an opening paren-
thesis. In such a case, the factor is actually a complete nested expression. I’ll talk more
about this in a second.

Breaking expressions into the entities listed previously isn’t simply a way to make things easier to
grasp. The real reason you make these separations is that it gives you a way to take the recursive
nature of expressions into account, with operator precedence. Now that you have at least some
idea of the terms used to describe these entities (even if you don’t quite understand what’s going
on just yet), you’re ready to learn about how they relate to each other. For the purpose of the fol-
lowing examples, consider the following expression:

-X + Y / ( 2 * MyVar - MyArray [ 2 + 4 / Z ] ) + 17;

An expression, as you saw, represents an entire expression. In this case, it represents the entire
expression listed here. A sub-expression is currently just a synonym for an expression, so there-
fore, the expression listed here is also a sub-expression.

In simplistic terms, you can describe the sub-expression as three terms:

-X
Y / ( 2 * MyVar - MyArray [ 2 + 4 / Z ] )
17

You can make this distinction by grouping each element of the expression separated by either a +
or - operator, and not nested within parentheses. Even though the nested expression contains a
number of + and -’s of its own, don’t count those just yet. Lump them together into a single
term.

Within the second term, there are two factors:

Y
( 2 * MyVar - MyArray [ 2 + 4 / Z ] )

15. PARSING AND SEMANTIC ANALYSIS
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The same rule applies here; any element of the expression separated by the / or * operator that’s
not nested within parentheses is considered a separate factor. Because factors are the lowest-level
entities within this expression, you can evaluate them. The first is Y, which is simply a variable.
The second is a nested expression within parentheses.

What I’m driving at here is the basis for the expression-parsing method. Using the entities you’ve
defined, you can split expressions up into increasingly low-level components. Starting from
expressions at the top, and working your way down to factors at the bottom, you can recursively
evaluate expressions (or more specifically, generate expression evaluating code). The beauty of
this approach, however, is that a factor can contain a top-level expression within it. Because of
this, the lowest-level entity can “wrap around” back to the highest-level, thus creating a circular
relationship. To understand this better, think back to the description of statements and blocks of
code; a block of code consists of statements, but statements can also be blocks of code. This cre-
ates a circular relationship that allows infinite nesting of blocks and statements. Because an
expression is ultimately just a series of factors, and because a factor can also be an expression, it
means that expressions can contain nested expressions to any arbitrary depth.

If you understood how statements and blocks relate to one another circularly, the recursion
behind expression nesting should make perfect sense. The other aspect of this approach to pars-
ing, however, is respecting operator precedence levels. This is the reason for the multiple layers
of generality that separate high-level expressions from low-level factors. In between you have sub-
expressions and terms. It’s no coincidence that a sub-expression is composed of terms separated
by plus and minus operators, nor is it by chance that terms consist of factors separated by multi-
plication and division operators. This is done specifically to follow the precedence of operators.

As an expression is being analyzed, the parser will begin at the topmost level—the expression. It
then works its way down to the sub-expression level, which currently involves no work because
you consider the two entities to be the same thing. From here, its job is to add or subtract each
term. It moves from left to right, performing addition and subtraction as it encounters each oper-
ator. For example, in the following expression:

10 + 27 - 16 + 2

The parser will consider 10 to be the first term and 27 to be the second. It will add them together,
and subtract the third term, 16. The final step is adding the last term 2. However, not all terms are
simple integers. Specifically, a term can be any number of factors, separated by multiplication
and division operators. So, as another example, consider the following term:

128 * 4 / 3

The parser will handle this by multiplying the first two factors, 128 and 4, and dividing the result
by the third factor, 3. The upshot to all of this is that sub-expressions are parsed first. This is done

PARSING SIMPLE EXPRESSIONS



1036

by parsing each term and adding or subtracting it. Terms are parsed by multiplying or dividing
each of the factors they contain. Let’s apply this to an example that combines the previous two.
Consider the following expression:

10 + 128 * 4 - 16 + 10 / 2

Here you see multiple levels of operator precedence, which means things will be more complicat-
ed this time around. Or will they? You can solve this expression quite easily using only the tech-
niques you’ve seen so far. The key is understanding when these techniques are to be used. You
can step through the parser’s attack on this expression to understand exactly what needs to take
place.

The parser starts with the token 10. It starts at the expression level, which is currently treated as a
sub-expression. Because you’re at the sub-expression level, you’re looking for terms to add and
subtract. This means you need to parse 10 as a term. To do this, you need to shift to the term
level. At the term level, you’re looking for factors to multiply and divide by one another. You
therefore need to parse 10 as a factor.

Parsing factors is simple. In this case, it’s the integer literal value 10, so you push it onto the stack.
Because the factor is the lowest level of the expression, you’re done with 10 and can begin
unwinding back to the higher levels. This means initially moving back to the term level, where
you’re multiplying and dividing factors. You look ahead to see whether a * or / operator is next.
It isn’t—the + operator is next—so you know you’re done with the term. This takes you back to
the sub-expression level, which involves adding and subtracting terms. 10 was the first term, which
is now fully parsed, so the next move is determining whether a + or - operator follows. It does, so
you move on to the next term with the intent of adding it to the last. 128 is the next token, so you
parse it as a term. Parsing a term means parsing a number of factors separated by * and / opera-
tors. You parse the factor, 128, and push its value onto the stack. You then return to the term
level, where you look for a multiplication or division operator. You find one, so you parse the
next factor, which is 4. This is another integer value, so you push it onto the stack as well. The
stack now consists of 10, 128, and 4. You pop the two top elements and multiply them, and then
push them back onto the stack.

This initial fragment of the parser’s approach to evaluating the expression hopefully gets the
main point across—that you work from the top down, starting with the expression and parsing
your way to each individual factor. Along the way, you subsequently process terms and sub-expres-
sions in reverse order, preserving operator precedence. Multiplication and division are always
evaluated first, followed by addition and subtraction. This is because a sub-expression contains
terms, which in turn contains factors. Because you first work your way to the lowest level, and 
execute operators on the way back to the higher levels, the precedence levels are not violated.
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Coding the Expression Parser
As you might have guessed, you can code an expression parser by creating Parse* () functions for
each of the expression entities covered in the last section. Specifically, you need ParseExpr () for
parsing expressions, which calls ParseSubExpr () for parsing sub-expressions, which subsequently
calls ParseTerm () for parsing terms, which finally calls ParseFactor () for parsing factors.

A quick summary of each function is as follows: ParseExpr () is called whenever an expression
needs to be parsed. Currently, its only job is to call ParseSubExpr (). ParseSubExpr () is responsible
for parsing terms and the addition and subtraction operators between them. It parses each term
with a call to ParseTerm (), looks for an appropriate operator following it, and calls ParseTerm ()
for the second operand if it finds one. ParseTerm () is very similar to ParseSubExpr (), except that
it parses factors and the multiplicative operators. The process is the same, however; ParseFactor
() is called for each factor. ParseFactor () is perhaps the most interesting of all. It’s in charge of
parsing the current factor.

This factor may be a literal integer or floating-point value, in which case it’s directly pushed onto
the stack. It may also be a variable, which is pushed onto the stack as well. If it’s an array index,
however, the process is slightly more complex. First, the array’s base index is pushed onto the
stack (in other words, the zero index—Array [ 0 ]). Then, ParseExpr () is recursively called from
within ParseFactor () to parse the expression in between the [] braces. This allows entire expres-
sions to be embedded within array references. The last type of factor the current parser can han-
dle is the nested expression. If the ( token is detected, ParseExpr () is called, which starts the
whole process over again.

To put it simply, the expression parser will interact heavily with the stack. For example, when
parsing the binary * operator, two operands are pushed onto the stack. They’re then popped off,
multiplied together, and pushed back on. Why the seemingly redundant pushing and popping?
The reason is that it gives the parser a chance to push entire expressions onto the stack before
popping the two operands off. The result of any expression is always stored in the top element of
the stack, which means that if two expressions are parsed in succession, the top two elements are
each of their results. You can then pop them off, perform whatever operation is necessary, and
push the result.

One important question that hasn’t been resolved yet, however, is what exactly these top two ele-
ments will be popped into. If you were coding for a real processor, you’d simply pick two hard-
ware registers and use them as the destination for each pop. You would then perform the neces-
sary operation using these two registers as the operands. Unfortunately, the XVM only has the
_RetVal register. Aside from being one register short of the two you’d need to support binary
operations, _RetVal may be in use at the time of the expression’s evaluation, and you certainly
wouldn’t want to corrupt its value by overwriting it with your own data.
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I solved this problem by “simulating” a pair of general-purpose registers called _T0 and _T1 (T
standing for “temporary”). This is accomplished by forcing the declaration of _T0 and _T1 as glob-
als in every script. In other words, all XVM assembly scripts produced by the XSC compiler con-
tain this at the top of their global definitions:

Var _T0
Var _T1

Now, after pushing two operands onto the stack, you can pop them into _T0 and _T1 and have
them readily available for whatever binary operation you need to perform. To create these vari-
ables in the first place, however, I’ve chosen to hard-code them in CompileSourceFile (), found in
xsc.cpp:

void CompileSourceFile ()
{

// Add two temporary variables for evaluating expressions
g_iTempVar0SymbolIndex = AddSymbol ( TEMP_VAR_0, 1, SCOPE_GLOBAL,

SYMBOL_TYPE_VAR );
g_iTempVar1SymbolIndex = AddSymbol ( TEMP_VAR_1, 1, SCOPE_GLOBAL,

SYMBOL_TYPE_VAR );

// Parse the source file to create an I-code representation
ParseSourceCode ();

}

Here you’re manually adding two entries to the symbol table, using TEMP_VAR_0 and TEMP_VAR_1 as
the identifiers. These are string constants defined in xsc.h:

#define TEMP_VAR_0                  "_T0"       // Temporary variable 0
#define TEMP_VAR_1                  "_T1"       // Temporary variable 1

The indexes into the table returned by these two calls are stored in the globals
g_iTempVar0SymbolIndex and g_iTempVar1SymbolIndex, which allows you to refer to them anywhere
in the program.

With the simulated temporary registers in hand, you’re ready to code the expression parser. This
of course begins with ParseExpr (), a function that’s called whenever an expression needs to be
parsed. By calling this function, code for evaluating the expression will be generated. The code is
specifically designed to always leave the expression’s result on the top of the stack. So, for exam-
ple, if you’re handling the binary division operator, the general structure would be:

Expr0 / Expr1
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Where Expr0 is the first operand and Expr1 is the second. This would be parsed by calling
ParseExpr () to parse the first operand. The top element of the stack now contains the result of
this expression (or at least, it will at runtime). The division operator would then be parsed and
saved in a local variable. A second call would be made to ParseExpr (), and the new top of the
stack contains the value of the second operand. The top two elements are popped into _T0 and
_T1, and the division is performed. The result of this division is pushed onto the stack, and that’s
it. Here’s the code for ParseExpr ():

void ParseExpr ()
{

// Parse the subexpression
ParseSubExpr ();

}

Of course, for all it does, its job is pretty simple. It really just defers its workload to ParseSubExpr
(), whose code is listed here:

void ParseSubExpr ()
{

int iInstrIndex;

// The current operator type
int iOpType;

// Parse the first term
ParseTerm ();

// Parse any subsequent + or - operators
while ( TRUE )
{

// Get the next token
if ( GetNextToken () != TOKEN_TYPE_OP ||

( GetCurrOp () != OP_TYPE_ADD &&
GetCurrOp () != OP_TYPE_SUB ) )

{
RewindTokenStream ();
break;

}

// Save the operator
iOpType = GetCurrOp ();
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// Parse the second term
ParseTerm ();

// Pop the first operand into _T1
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

// Pop the second operand into _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// Perform the binary operation associated with the specified operator
int iOpInstr;
switch ( iOpType )
{

// Binary addition
case OP_TYPE_ADD:

iOpInstr = INSTR_ADD;
break;

// Binary subtraction
case OP_TYPE_SUB:

iOpInstr = INSTR_SUB;
break;

}
iInstrIndex = AddICodeInstr ( g_iCurrScope, iOpInstr );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

// Push the result (stored in _T0)
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

}
}

Aside from some declarations, this function starts by calling ParseTerm () to parse the first
operand. After this call, code has been generated that will place the value of this operand on the
top of the stack. The function then enters a loop that parses any subsequent + or - operators, as
well as each operand along the way. If such an operator isn’t found, the token stream is rewound
and the loop breaks. Otherwise, the two operands are popped into _T0 and _T1, and code is gen-
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erated to perform either an addition or subtraction based on the operator token. After the oper-
ation is performed, the value is pushed back onto the stack.

ParseTerm () was called by ParseSubExpr () to handle each operand in between its additive opera-
tors, so let’s take a look at it now:

void ParseTerm ()
{

int iInstrIndex;

// The current operator type
int iOpType;

// Parse the first factor
ParseFactor ();

// Parse any subsequent * or / operators
while ( TRUE )
{

// Get the next token
if ( GetNextToken () != TOKEN_TYPE_OP ||

( GetCurrOp () != OP_TYPE_MUL &&
GetCurrOp () != OP_TYPE_DIV ) )

{
RewindTokenStream ();
break;

}

// Save the operator
iOpType = GetCurrOp ();

// Parse the second factor
ParseFactor ();

// Pop the first operand into _T1
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

// Pop the second operand into _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
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// Perform the binary operation associated with the specified operator
int iOpInstr;
switch ( iOpType )
{

// Binary multiplication
case OP_TYPE_MUL:

iOpInstr = INSTR_MUL;
break;

// Binary division
case OP_TYPE_DIV:

iOpInstr = INSTR_DIV;
break;

}
iInstrIndex = AddICodeInstr ( g_iCurrScope, iOpInstr );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

// Push the result (stored in _T0)
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

}
}

Everything here is more or less identical to the logic behind ParseSubExpr (); the only differences
of course are that different instructions are generated for the operators (Mul and Div instead of
Add and Sub), and that ParseFactor () is called for each operand instead of ParseTerm ().
Speaking of which, check out ParseFactor () now.

ParseFactor () is a particularly large function, so rather than dump the whole thing out and let
you wade through it alone, we can step through it piece by piece together. Starting from the top:

void ParseFactor ()
{

int iInstrIndex;
int iUnaryOpPending = FALSE;
int iOpType;

// First check for a unary operator
if ( GetNextToken () == TOKEN_TYPE_OP &&

( GetCurrOp () == OP_TYPE_ADD ||
GetCurrOp () == OP_TYPE_SUB ) )
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{
// If it was found, save it and set the unary operator flag
iUnaryOpPending = TRUE;
iOpType = GetCurrOp ();

}
else
{

// Otherwise rewind the token stream
RewindTokenStream ();

}

Factors can be preceded by unary operators, so the first thing the function does is check for one.
You’re currently just supporting the unary + and -, so those are the only checks that are made.
The result is saved in iOpType, and the iUnaryOpPending flag is set. If an operator wasn’t found, the
token stream is rewound. This next block is pretty big, so bear with me:

// Determine which type of factor we're dealing with based on the next token
switch ( GetNextToken () )
{

// It's an integer literal, so push it onto the stack
case TOKEN_TYPE_INT:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, atoi ( GetCurrLexeme () ) );
break;

// It's a float literal, so push it onto the stack
case TOKEN_TYPE_FLOAT:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddFloatICodeOp ( g_iCurrScope, iInstrIndex,

( float ) atof ( GetCurrLexeme () ) );
break;

// It's an identifier
case TOKEN_TYPE_IDENT:
{

// First find out if the identifier is a variable or array
SymbolNode * pSymbol = GetSymbolByIdent ( GetCurrLexeme (),

g_iCurrScope );
if ( pSymbol )
{
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// Does an array index follow the identifier?
if ( GetLookAheadChar () == '[' )
{

// Ensure the variable is an array
if ( pSymbol->iSize == 1 )

ExitOnCodeError ( "Invalid array" );

// Verify the opening brace
ReadToken ( TOKEN_TYPE_DELIM_OPEN_BRACE );

// Make sure an expression is present
if ( GetLookAheadChar () == ']' )

ExitOnCodeError ( "Invalid expression" );

// Parse the index as an expression recursively
ParseExpr ();

// Make sure the index is closed
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_BRACE );

// Pop the resulting value into _T0 and use it as the index
// variable

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex,

g_iTempVar0SymbolIndex );

// Push the original identifier onto the stack as an array,
// indexed with _T0

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddArrayIndexVarICodeOp ( g_iCurrScope, iInstrIndex,

pSymbol->iIndex, g_iTempVar0SymbolIndex );
}
else
{

// If not, make sure the identifier is not an array, and push
// it onto the stack
if ( pSymbol->iSize == 1 )
{
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iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddVarICodeOp ( g_iCurrScope, iInstrIndex,

pSymbol->iIndex );
}
else
{

ExitOnCodeError ( "Arrays must be indexed" );
}

}
}
else
{

// It's not a variable or array
ExitOnCodeError ( "Unknown identifier" );

}

break;
}

// It's a nested expression, so call ParseExpr () recursively and validate
// the presence of the closing parenthesis

case TOKEN_TYPE_DELIM_OPEN_PAREN:
ParseExpr ();
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );
break;

// Anything else is invalid

default:
ExitOnCodeError ( "Invalid input" );

}

Phew! As you can probably tell, this is the part of the function that parses each individual factor
type and emits the code for representing it within the assembly script. A switch block is used with
GetNextToken () as the criteria to determine what sort of factor is being parsed. In the case of
TOKEN_TYPE_INT and TOKEN_TYPE_FLOAT, the job is easy; the literal value is simply pushed onto the
stack. Identifiers are a bit trickier though, because, as usual, they can be either variables or arrays.
Once again, the look-ahead comes to the rescue.
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If an open bracket is found, the identifier is probably an array. The first check here is to make
sure that the identifier’s symbol table record is indeed of the array type; otherwise, an error is
flagged. If the symbol is a valid array, ParseExpr () is called again to parse the expression that lies
in between the braces. The closing brace is then validated. The array index specified by the
expression is then pushed onto the stack.

In the case of single variables, a similar initial check is made to ensure that the variable isn’t actu-
ally an array. If not, the variable is simply pushed onto the stack, and the job is done.

The last factor type to consider is that of the nested expression, denoted by an opening parenthe-
sis. This is a simple case to handle; ParseExpr () is called to handle the expression, and ReadToken
() is used to make sure the expression’s closing parenthesis is present.

This brings you to the last section of the code, responsible for handling any pending unary oper-
ators:

// Is a unary operator pending?
if ( iUnaryOpPending )
{

// If so, pop the result of the factor off the top of the stack
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// Perform the unary operation
int iOpIndex;
switch ( iOpType )
{

// Negation
case OP_TYPE_SUB:

iOpIndex = INSTR_NEG;
break;

}

// Add the instruction's operand
iInstrIndex = AddICodeInstr ( g_iCurrScope, iOpIndex );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// Push the result onto the stack
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

}
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If a negation operator is present, the value on top of the stack (the value of the factor) is popped
into _T0, negated with a Neg instruction, and pushed back on. For simplicity’s sake, I’ve left out
the unary + operator; I hardly consider it common enough to worry about here, even though it’s
accepted by the syntax.

That’s all the code you need to parse simple expressions, but as usual, you need to update
ParseStatement () to recognize them:

// Expression
case TOKEN_TYPE_INT:
case TOKEN_TYPE_FLOAT:
case TOKEN_TYPE_OP:
case TOKEN_TYPE_DELIM_OPEN_PAREN:
case TOKEN_TYPE_IDENT:
{

// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// Rewind the token stream so the first token of the expression becomes
// available again
RewindTokenStream ();

// Parse the expression and put its result on the stack
ParseExpr ();

break;
}

I just took the brute force approach and caused a whole group of initial tokens to invoke the
expression parser. Let’s finish things up with a simple example. Imagine that the following line of
code is encountered by the expression parser:

2 * 2 + 4 * 4;

Here you have two multiplications nested within a single addition. Because you know the multi-
plicative factors will be parsed before the additive terms, the output shouldn’t be too surprising:

; 2 * 2 + 4 * 4;
Push    2
Push    2
Pop     _T0
Pop     _T1
Mul     _T0, _T1
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Push    _T0
Push    4
Push    4
Pop     _T0
Pop     _T1
Mul     _T0, _T1
Push    _T0
Pop     _T0
Pop     _T1
Add     _T0, _T1
Push    _T0

Quite a bit of code for such a simple statement, eh? Unfortunately, such is the nature of a non-
optimizing compiler. Fortunately, the code it does emit is quite easy to read, allowing you to fol-
low its output easily. As you can see, the 2s are pushed, popped and multiplied, followed by the
4s. At this point, 2 * 2 and 4 * 4 reside on the stack in the top and second-to-the-top positions, at
which point they’re popped into the temporary registers, added together, and pushed back in the
form of the sum. As expected, the result of this expression lies on the top of the stack, ready for
use by a larger piece of code.

PARSING FULL EXPRESSIONS
This section completes the expression parser you started in the last section, resulting in a new ver-
sion of the parser with the following features:

■ Integer, floating-point, and string literal values.
■ The full set of arithmetic and bitwise operators with parenthetic nesting.
■ Logical and relational operators.
■ The built-in TRUE and FALSE constants.
■ Variable and array references, as well as function calls.
■ Unary negation, plus, logical not, and bitwise not.

Parsing expressions that support the full set of XtremeScript operators isn’t a trivial task, but a lot
of it builds on what you learned in the last section. Let’s step through the major changes and
additions, step by step.

New Factor Types
The current set of factors supported by the parser is somewhat lacking; it takes more than inte-
gers, floats, and variables to get the job done in a real-world scripting project. Fortunately,

15. PARSING AND SEMANTIC ANALYSIS



1049

expanding the ParseFactor () function is perhaps the easiest way to expand the parser, because
factors lie at the bottom of the expression entity hierarchy and therefore don’t require any fur-
ther parsing. All you need to do is determine the factor type’s value, and push it onto the stack.

The new factor types are: string literal values, function calls, and the TRUE and FALSE constants that
are directly supported by the XtremeScript language. Let’s start by looking at the new code that’s
been inserted into ParseFactor ()’s main switch block:

// It's a true or false constant, so push either 0 and 1 onto the stack
case TOKEN_TYPE_RSRVD_TRUE:
case TOKEN_TYPE_RSRVD_FALSE:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex,

GetCurrToken () == TOKEN_TYPE_RSRVD_TRUE ? 1 : 0 );
break;

// It's a string literal, so add it to the string table and push the resulting
// string index onto the stack
case TOKEN_TYPE_STRING:
{

int iStringIndex = AddString ( & g_StringTable, GetCurrLexeme () );
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddStringICodeOp ( g_iCurrScope, iInstrIndex, iStringIndex );
break;

}

// It's an identifier
case TOKEN_TYPE_IDENT:
{

// First find out if the identifier is a variable or array
SymbolNode * pSymbol = GetSymbolByIdent ( GetCurrLexeme (), g_iCurrScope );
if ( pSymbol )
{

// Does an array index follow the identifier?
if ( GetLookAheadChar () == '[' )
{

// Ensure the variable is an array
if ( pSymbol->iSize == 1 )

ExitOnCodeError ( "Invalid array" );

// Verify the opening brace
ReadToken ( TOKEN_TYPE_DELIM_OPEN_BRACE );
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// Make sure an expression is present
if ( GetLookAheadChar () == ']' )

ExitOnCodeError ( "Invalid expression" );

// Parse the index as an expression recursively
ParseExpr ();

// Make sure the index is closed
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_BRACE );

// Pop the resulting value into _T0 and use it as the index
// variable
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex,

g_iTempVar0SymbolIndex );

// Push the original identifier onto the stack as an array, indexed
// with _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddArrayIndexVarICodeOp ( g_iCurrScope, iInstrIndex,

pSymbol->iIndex, g_iTempVar0SymbolIndex );
}
else
{

// If not, make sure the identifier is not an array, and push it
// onto the stack
if ( pSymbol->iSize == 1 )
{

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, pSymbol->iIndex );

}
else
{

ExitOnCodeError ( "Arrays must be indexed" );
}

}
}
else
{

// The identifier wasn't a variable or array, so find out if it's a
// function

15. PARSING AND SEMANTIC ANALYSIS

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



1051

if ( GetFuncByName ( GetCurrLexeme () ) )
{

// It is, so parse the call
ParseFuncCall ();

// Push the return value
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddRegICodeOp ( g_iCurrScope, iInstrIndex, REG_CODE_RETVAL );

}
}

break;
}

The TRUE and FALSE comments are the first newcomers, and are handled easily thanks to the
lexer’s capability to directly return the TOKEN_TYPE_RSRVD_TRUE and TOKEN_TYPE_RSRVD_FALSE tokens.
Because these constants directly correspond to one and zero, the values are immediately convert-
ed as they’re parsed, and the proper integer value is pushed onto the stack.

Strings are the next addition, and are rather easy to parse. The lexer directly returns strings and
automatically trims their double quotes, so all you have to do is add the string to the table and
push it onto the stack.

The real changes are in the TOKEN_TYPE_IDENT clause. If the identifier doesn’t turn out to be an
integer, the parser concludes that it must be a function name and attempts to call it with a new
function called ParseFuncCall (). You’ll see how this function is implemented in just a moment,
but for now, all you need to know is that it fully parses function calls and stores the value in
_RetVal (not on the stack, like other parse functions have thus far). That’s why the call is followed
by code for pushing _RetVal onto the stack.

Parsing Function Calls
Function calls are parsed in a manner somewhat similar to function declarations, with the major
difference being that each parameter is treated as an expression, rather than a solitary identifier.
Because of this, the parsing process is fairly straightforward, and is contained in a function called
ParseFuncCall () that you saw in the last section. Here’s the code:

void ParseFuncCall ()
{

// Get the function by its identifier
FuncNode * pFunc = GetFuncByName ( GetCurrLexeme () );
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// It is, so start the parameter count at zero
int iParamCount = 0;

// Attempt to read the opening parenthesis
ReadToken ( TOKEN_TYPE_DELIM_OPEN_PAREN );

// Parse each parameter and push it onto the stack
while ( TRUE )
{

// Find out if there's another parameter to push
if ( GetLookAheadChar () != ')' )
{

// There is, so parse it as an expression
ParseExpr ();

// Increment the parameter count and make sure it's not
// greater than the amount accepted by the function (unless it's
// a host API function
++ iParamCount;
if ( ! pFunc->iIsHostAPI && iParamCount > pFunc->iParamCount )

ExitOnCodeError ( "Too many parameters" );

// Unless this is the final parameter, attempt to read a comma
if ( GetLookAheadChar () != ')' )

ReadToken ( TOKEN_TYPE_DELIM_COMMA );
}
else
{

// There isn't, so break the loop and complete the call
break;

}
}

// Attempt to read the closing parenthesis
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );

// Make sure the parameter wasn't passed too few parameters (unless
// it's a host API function)
if ( ! pFunc->iIsHostAPI && iParamCount < pFunc->iParamCount )

ExitOnCodeError ( "Too few parameters" );

15. PARSING AND SEMANTIC ANALYSIS



1053

// Call the function, but make sure the right call instruction is used
int iCallInstr = INSTR_CALL;
if ( pFunc->iIsHostAPI )

iCallInstr = INSTR_CALLHOST;

int iInstrIndex = AddICodeInstr ( g_iCurrScope, iCallInstr );
AddFuncICodeOp ( g_iCurrScope, iInstrIndex, pFunc->iIndex );

}

In a nutshell, the logic simply scans through each parameter and calls ParseExpr () to parse it. It
also continually checks the current number of parameters parsed in order to make sure that
more parameters than the function accepts aren’t found. When it’s done, it compares the two val-
ues again to make sure that the function wasn’t passed too few parameters, either. The function
finishes by inserting a Call instruction to complete the process.

New Unary Operators
Rounding out the additions to ParseFactor () are the new unary operators. In addition to the
unary negation - operator of the last expression parser, the new version includes both logical and
bitwise not. Bitwise not is a snap to implement—the code is the same as negation, except you use
the Not instruction instead of Neg. The real challenge is adding logical not. The reason for this is
actually self-explanatory; because a “logical not” involves actual logic, you need to add jumps and
labels to route the flow of execution to the right place based on the value of the factor.

To implement this operator, the parser uses GetNextJumpTargetIndex () (a function described in
the last chapter) to get the next two jump target indexes. Using these indexes, a small system of
jumps is set up that will cause the script to push zero onto the stack if the factor is nonzero, and
one if it isn’t. Simply put, the following example line of XtremeScript:

! X;    // Logical not X

should be compiled down to:

Push    X
Pop     _T0, X
JE      _T0, 0, True
Push    0
Jmp     Exit

True:
Push    1

Exit:
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What you’ve seen here will play a large role in the logical operators you’ll develop in the next sec-
tion, so make sure you understand what’s going on. Just to reiterate, the idea here is to generate
code that implements the logic behind the operator. In this case, because you want to push the
logical not of the factor onto the stack, you want to push zero when the factor is nonzero, and
one otherwise. Think of it as a “logical opposite”.

New Binary Operators
XtremeScript’s binary operator set is also filled out in the new expression parser. The remaining
arithmetic operators like negation and exponentiation are added, as well as the full array of bit-
wise operators. Fortunately, the new code isn’t really new at all. Because XVM assembly offers
such a rich assortment of binary operation instructions, every XtremeScript operator maps direct-
ly to one such instruction. You’re already doing this with the basic arithmetic supported in the
last parser, so the new operators are simply a rehash of the logic behind the old ones. Rather
than waste the paper space here with redundant information, you can see the additional opera-
tors for yourself in the source code on the companion CD. Check out this second version of the
expression parser in the Programs/Chapter 15/15_03/ folder.

Logical and Relational Operators
Logical and relational operators are a definite departure from the implementation of the binary
operators you’ve seen so far. Just like the logical not unary operator I recently covered, logical and
relational operators require actual logic to
be inserted into the compiled assembly
script in order to push the proper val-
ues onto the stack. The key to remem-
ber is that all logical and relational
operators produce one of two values
and two values only—true and false, or,
more specifically, one and zero.

This is why actual logic must be coded
into the executable script. Because
there’s no purely mathematical way to
filter all input values into either true or
false (at least, not a particularly conven-
ient one), you have to use conditional
logic based on labels and jumps to
allow the flow of the script itself to do it
for you.
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NOTE
Before going any farther, it’s important to note
that for simplicity’s sake, I’m compressing
XtremeScript’s operator precedence levels
into four tiers.There’s the level of lowest prece-
dence, wherein relational and logical operators
reside. Right above them are the addition, sub-
traction, and string concatenation operators.
Up next are the remaining binary operators.
Finally, the unary operators maintain the high-
est precedence.Although this does mean that
certain C and C++ operator practices can’t be
reliably translated to XtremeScript, everything
will still work out fine as long as you use paren-
theses to manually resolve any ambiguities.
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The Logical And Operator
As an example of a logical operator, let’s look at logical and. Due to the compression of the
XtremeScript operator precedence levels, you’re going to handle this operator in ParseExpr (),
where the lowest-precedence level operators are handled. Here’s the code for converting a binary
and operator expression into assembly:

case OP_TYPE_LOGICAL_AND:
{

// Get a pair of free jump target indexes
int iFalseJumpTargetIndex = GetNextJumpTargetIndex (),

iExitJumpTargetIndex = GetNextJumpTargetIndex ();

// JE _T0, 0, False
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JE );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iFalseJumpTargetIndex );

// JE _T1, 0, False
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JE );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iFalseJumpTargetIndex );

// Push 1
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 1 );

// Jmp Exit
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iExitJumpTargetIndex );

// L0: (False)
AddICodeJumpTarget ( g_iCurrScope, iFalseJumpTargetIndex );

// Push 0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );
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// L1: (Exit)
AddICodeJumpTarget ( g_iCurrScope, iExitJumpTargetIndex );

break;
}

The basic logic here is as follows. Given an example line of XtremeScript like the following:

X && Y;    // Logical X and Y

Assembly code should be generated that adheres to the following format:

JE    _T0, 0, False
JE    _T1, 0, False
Push  1
Jmp   Exit

True:
Push   0

Exit:

Simply put, if either operand is zero, the overall operation must be false. Otherwise, it’s true.

Relational Greater Than or Equal
Moving right along, let’s check in on the relational operators and see how >= works. First off,
here’s the code:

// Pop the first operand into _T1
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

// Pop the second operand into _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// Get a pair of free jump target indexes
int iTrueJumpTargetIndex = GetNextJumpTargetIndex (),

iExitJumpTargetIndex = GetNextJumpTargetIndex ();

// Generate a JGE instruction
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JGE );
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// Add the jump instruction's operands (_T0 and _T1)
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iTrueJumpTargetIndex );

// Generate the outcome for falsehood
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );

// Generate a jump past the true outcome
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iExitJumpTargetIndex );

// Set the jump target for the true outcome
AddICodeJumpTarget ( g_iCurrScope, iTrueJumpTargetIndex );

// Generate the outcome for truth
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_PUSH );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 1 );

// Set the jump target for exiting the operand evaluation
AddICodeJumpTarget ( g_iCurrScope, iExitJumpTargetIndex );

Once again, you start off by getting two free jump target indexes. One is jumped to in the case of
a true outcome, and the other marks the end of the operator’s assembly representation. Now,
assuming that both operand expressions have been parsed and pushed onto the stack, the
operands are popped into the temporary registers. These registers are then used as the criteria
for a JGE instruction, which jumps to the true label if the first operand is greater or equal to the
second, which in turn pushes 1 onto the stack. It jumps to the exit operand otherwise, but not
before pushing zero onto the stack.

In short, the following XtremeScript expression:

X >= Y;    // Is X greater than or equal to Y?

should become the following XVM assembly fragment:

Push    X
Push    Y
Pop     _T1
Pop     _T0
JGE     _T0, _T1, True
Push    0
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Jmp     Exit
True:

Push    1
Exit:

Presto!

The Rest
You’ve seen an example of logical operators, and one of the relationals. Once you understand
how these two work, you’re definitely prepared to understand the rest. Again, to save space in an
already rather large chapter, I’ve omitted the remaining operators in print and instead encourage
you to check them out yourself in the source code on the companion CD.

L-Values and R-Values
You will read about the assignment statement in an upcoming section, but before you get there,
let’s briefly discuss the concept of L-values and R-values. The L and R in the terms refer to left and
right, and thus correspond to which side of the assignment operator a value is found. In order
for a value to be a valid L-value, it must not be a constant. Because it’s impossible to “assign a
value” to the number five, for example, it’s vital that all values on the left side of the operator,
meaning, the values that are being “assigned,” are variables and can thus be altered. R-values, on
the other hand, can be virtually anything, because the value itself is all you’re worried about in
their case. Figure 15.26 shows the syntax diagram for an XtremeScript L-value.
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Figure 15.26

The syntax diagram for

an L-value.

A STANDALONE RUNTIME ENVIRONMENT
So far, despite the considerable capabilities you’ve built into the evolving parser module, you
haven’t yet generated anything that’s visibly executable. Sure, you could call a host API function
that prints a string from within an expression, but you haven’t really dealt with any code that’s
truly “alive”. Without looping, branching, or even just the capability to assign values and expres-
sions to variables, the code really doesn’t do much yet.



1059

The next section will change all that, with the implementation of all the missing features I men-
tioned previously. Before you go ahead and do that, however, it’s important to note that you
don’t have a particularly convenient or readily available venue for testing the output of the 
compiler. Although the XVM is indeed finished, it’s not much good without a host application 
to support it. What you need is a standalone runtime environment that will execute the code
quickly and easily and provide just enough output functionality to let you watch the scripts as 
they execute.

Fortunately, this will be easy to set up. All you need to do is create a simple program that “wraps”
the virtual machine. By exposing a basic, bare-bones host API that gives you just enough power to
output text to a console, you can write scripts of all kinds and watch them run. The effort and
attention to detail you put into the development of the XVM and its integration interface is
about to pay off—as you’ll soon see, creating this standalone VM will be trivial at best. The next
two sections will cover the development of this program, but you can check it out now if you’re
interested on the accompanying CD in the Programs/Chapter 15/XVM Console/ directory.

The Host Application
All you really need is a simple command-line program that can load a single script into memory,
execute it until a key is pressed, and provide that script with a simple console output API so it can
display text as it runs.

As I’m sure you’d agree, there’s nothing particularly daunting about writing this program. In fact,
all you need is a single main () function for its entire core logic. The real work goes on within the
XVM, which is of course already finished and ready to go. You’ll create the following host applica-
tion program in the source file console.cpp. Figure 15.27 depicts the file layout of the XVM console.

A STANDALONE RUNTIME ENVIRONMENT

Figure 15.27

The file layout of the

XVM console.
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Of course, in order to use the XVM, you’ll need to link console.cpp with xvm.cpp and include
xvm.h. This is done easily in Visual C++ by simply loading both console.cpp and xvm.cpp into the
same Console Application project. Both the project and workspace files for accomplishing this
are located in the Programs/Chapter 15/XVM Console/Source/ directory.

The rest of this section outlines the decidedly simple process of building the standalone runtime
environment. Everything here will be a cake walk, so feel free to skim it if you’d just like to get
back to the development of the parser module. Just make sure you’re familiar with how it works,
because you’ll be using the finished product for the rest of the chapter.

Reading the Command Line
This runtime environment will be simple and concise, but there’s no need to make it crude.
Because of this, it allows the user to input the script filename through the command line, and
prints usage information in the event that a filename was not found. This all takes place in the
first segment of the program’s main () function:

main ( int argc, char * argv [] )
{

// Make sure a filename was passed
if ( argc < 2 )
{

// Print the logo and usage info
printf ( "XVM Console\n" );
printf ( "Stand-Alone Console-Based Runtime Environment\n" );
printf ( "Written by Alex Varanese\n" );
printf ( "\n" );
printf ( "Usage:\tXVMCONSOLE Script.XSE\n" );
printf ( "\n" );
printf ( "Notes:\n" );
printf ( "\t- A file extension is required.\n" );
printf ( "\t- Scripts without a _Main () function will not

execute.\n" );
printf ( "\n" );

// Exit the program
return 0;

}
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Loading the Script
Once you know a filename is present on the command line, you can start the XVM with a call to
XS_Init () and load the script. Remember, it’s important to save the script’s index, and for the
sake of completeness, you need to check for load errors as well:

// Initialize the runtime environment
XS_Init ();

// Declare the thread indexes
int iThreadIndex;

// An error code
int iErrorCode;

// Load the specified script
iErrorCode = XS_LoadScript ( argv [ 1 ], iThreadIndex,

XS_THREAD_PRIORITY_USER );

// Check for an error
if ( iErrorCode != XS_LOAD_OK )
{

// Print the error based on the code
printf ( "Error: " );
switch ( iErrorCode )
{

case XS_LOAD_ERROR_FILE_IO:
printf ( "File I/O error" );
break;

case XS_LOAD_ERROR_INVALID_XSE:
printf ( "Invalid .XSE file" );
break;

case XS_LOAD_ERROR_UNSUPPORTED_VERS:
printf ( "Unsupported .XSE version" );
break;

case XS_LOAD_ERROR_OUT_OF_MEMORY:
printf ( "Out of memory" );
break;

case XS_LOAD_ERROR_OUT_OF_THREADS:
printf ( "Out of threads" );
break;

A STANDALONE RUNTIME ENVIRONMENT
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}
printf ( ".\n" );
return 0;

}

Running the Script
Once the thread is in memory, it’s time to run it. The script is initially started with a call to
XS_StartScript (), and kept in motion with repeated calls to XS_RunScripts (). You call
XS_RunScripts () repeatedly in a while loop that runs until a key is pressed. This way, any scripts
that involve infinite loops (intentionally or otherwise) can be kept under control by the user but
left to run as long as desired. Once you’re done, you make a single call to XS_ShutDown (), and
everything packs up and goes home. Here’s the final block of the core application:

// Start up the script
XS_StartScript ( iThreadIndex );

// Run the script until a key is pressed
while ( ! kbhit () )

XS_RunScripts ( 200 );

// Free resources and perform general cleanup
XS_ShutDown ();

return 0;
}

The Host API
So you can load programs into memory and run them until a key is pressed, but they still can’t
talk to you. To do this, you need a function for printing text strings. Unfortunately, the XASM
assembler only understands escape sequences for double-quotes, and because printf () expects
newlines and tabs to appear as \n and \t, you can’t directly print such characters with a general
string printing function. You therefore need to write two others for doing exactly that. Overall,
this means you need three functions: PrintString () for printing strings, and PrintNewline () and
PrintTab () for printing their respective control characters.

15. PARSING AND SEMANTIC ANALYSIS
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PrintString ()
As mentioned previously, you’ll wrap printf () to do the printing:

void HAPI_PrintString ( int iThreadIndex )
{

// Read in the parameters
char * pstrString = XS_GetParamAsString ( iThreadIndex, 0 );

// Print the string
printf ( "%s", pstrString );

// Return to the XVM
XS_Return ( iThreadIndex, 1 );

}

This simple function operates in three steps. First, it reads
a single string parameter with XS_GetParamAsString (),
which it then prints with printf (). Lastly, it uses the
XS_Return () macro to terminate the function. Remember,
the function itself has to clean up the parameters on the
stack, so you pass 1 to the macro to tell it that the function
takes one parameter.

PrintNewline () and PrintTab ()
The last two functions are even simpler. Because these don’t accept any parameters, they’re prac-
tically empty:

void HAPI_PrintNewline ( int iThreadIndex )
{

// Print the newline
printf ( "\n" );

// Return to the XVM
XS_Return ( iThreadIndex, 0 );

}

void HAPI_PrintTab ( int iThreadIndex )
{

// Print the tab
printf ( "\t" );

A STANDALONE RUNTIME ENVIRONMENT
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// Return to the XVM
XS_Return ( iThreadIndex, 0 );

}

Remember, however, that even without parameters it’s vital to return from the function with
XS_Return (). Forgetting to do so will lead to a corrupted stack and most likely crash the machine.

Registering the API
The last step is of course to register the three functions you just created. As you should remem-
ber from Chapter 11, this is done with the XS_RegisterHostAPIFunc () function; you pass it the
function pointer, the desired function name, and the scope among the currently active threads,
and it will add the function to its internal host API table:

// Register the console output API
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "PrintString", HAPI_PrintString );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "PrintNewline", HAPI_PrintNewline );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "PrintTab", HAPI_PrintTab );

I made the functions global with the XS_GLOBAL_FUNC flag, but this was an arbitrary decision. I
could’ve passed it the script’s thread index instead, and the result would’ve been the same. A host
API function’s scope really doesn’t matter when there’s only one thread running.

That takes care of it—you’ve created a simple, but complete, runtime environment that’s ready to
use. In the coming sections, as you add increasingly sophisticated features to the parser module,
you’ll be able to use this program to get immediate feedback. Once again, for future reference,
the XVM console is located on the companion CD under Programs/Chapter 15/XVM Console/.

PARSING ADVANCED STATEMENTS
AND CONSTRUCTS
With expressions out of the way, along with the basic stuff like code blocks, statements, and decla-
rations, you’re ready to deliver the coup de grace and knock the parser out once and for all. This
final section will actually be surprisingly straightforward, at least for the most part, when com-
pared to the complexities of full expression parsing.

You’re going to round out the language implementation here by adding loops, branching, and
assignment statements. Remember, because assignments, loops, and branching constructs all
require either an arithmetic, logical, or relational expression to function properly (or a combina-
tion of the three), you had to make sure the parser is capable of understanding them first.

15. PARSING AND SEMANTIC ANALYSIS
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Assignment Statements
I intentionally decided not to support C/C++-style assignments, as they can appear anywhere in
an expression and often lead to confusion. Rather, you’re taking a simpler route and making
assignments their own specific type of statement. This lends itself to a cleaner language that’s eas-
ier to parse. Of course, you’ll still support the full range of assignment shorthand operators sup-
ported by languages like C and C++, such as += and &=.

The syntax of an assignment is quite simple. It’s really just an identifier of some sort, be it a vari-
able or array, followed by one of the XtremeScript assignment operators, followed by an expres-
sion. The variable or array on the left-hand side of the assignment operator is the L-value, and the
expression on the right-hand side is the R-value. Although an R-value can be virtually anything, an
L-value must always be either a variable or array; obviously it doesn’t make sense to “assign” one
literal value to another.

Figure 15.28 depicts the assignment statement’s syntax diagram.

PARSING ADVANCED STATEMENTS AND CONSTRUCTS

Figure 15.28

The syntax diagram 

for an assignment

statement.

The parsing strategy for such a diagram is clearly simple. The L-value is parsed using the same
logic used to parse variables and arrays in the last sections. The assignment operator is then read
and verified, and finally, the expression is parsed using the now-complete expression-parsing
functions.

The assembly representation of an assignment is even simpler. It really just boils down to code
that evaluates the expression and pushes it onto the stack, followed by another piece of code that
pops it off the stack and copies it into the destination. If the = operator is used, the Mov instruc-
tion can implement it in assembly. If += is used, Add performs the assignment, and so on.

As always, the first step in implementing a new statement type is adding a new case to
ParseStatement (). Determining whether a specific token is the initial token of an assignment is a
bit more involved than usual, however:

// Assignment
case TOKEN_TYPE_IDENT:
{

// What kind of identifier is it?
if ( GetSymbolByIdent ( GetCurrLexeme (), g_iCurrScope ) )
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{
// It's an identifier, so treat the statement as an assignment
ParseAssign ();

}
else
{

// It's invalid
ExitOnCodeError ( "Invalid identifier" );

}
break;

}

Once again the Statement syntax diagram grows, as shown in Figure 15.29.

15. PARSING AND SEMANTIC ANALYSIS

Figure 15.29

The syntax diagram for

Statements with

assignments added.

If an identifier is read, you can assume you’re dealing with an assignment expression. It’s impor-
tant to verify that it’s a variable or array first, however, so you call GetSymbolByIdent () and make
sure the pointer it returns isn’t null. ParseAssign () is then called to handle the parsing process,
which I’ll cover momentarily. If the identifier isn’t found, an invalid identifier error is flagged.
Let’s continue by breaking ParseAssign () down, piece by piece:
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void ParseAssign ()
{

// Make sure we're inside a function
if ( g_iCurrScope == SCOPE_GLOBAL )

ExitOnCodeError ( "Assignment illegal in global scope" );

int iInstrIndex;

// Assignment operator
int iAssignOp;

// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// ---- Parse the variable or array

SymbolNode * pSymbol = GetSymbolByIdent ( GetCurrLexeme (), g_iCurrScope );

// Does an array index follow the identifier?
int iIsArray = FALSE;
if ( GetLookAheadChar () == '[' )
{

// Ensure the variable is an array
if ( pSymbol->iSize == 1 )

ExitOnCodeError ( "Invalid array" );

// Verify the opening brace
ReadToken ( TOKEN_TYPE_DELIM_OPEN_BRACE );

// Make sure an expression is present
if ( GetLookAheadChar () == ']' )

ExitOnCodeError ( "Invalid expression" );

// Parse the index as an expression
ParseExpr ();

// Make sure the index is closed
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_BRACE );

// Set the array flag
iIsArray = TRUE;

}

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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else
{

// Make sure the variable isn't an array
if ( pSymbol->iSize > 1 )

ExitOnCodeError ( "Arrays must be indexed" );
}

The function begins by making sure the current scope isn’t global, and declaring a few variables.
iInstrIndex will be used when generating the statement’s I-code to keep track of the current
instruction node. iAssignOp will also be used later to keep track of which particular assignment
operator was found.

The line is then annotated, and a pointer to the symbol corresponding to the identifier is stored
locally with GetSymbolByIdent (). The L-value may be parsed at this point, but as always, there’s
the issue of array notation. To find out whether the symbol is actually an array, you use the look-
ahead to determine whether an opening brace token appears to be next. In the meantime, the
iIsArray flag is declared and set to FALSE.

If so, you first ensure that the variable in question is indeed an array by comparing pSymbol->Size
to 1. If so, an invalid array error is flagged. Otherwise, you continue by verifying that the opening
brace token is valid, and once again using the look-ahead to make sure a closing brace doesn’t
immediately follow. If it did, it would mean that the expression had been omitted, like this:

MyArray [] = 256;

which obviously doesn’t make sense. ParseExpr () is then called to parse the expression between
the braces, and ReadToken () is used to ensure that the closing brace follows. At this point, it’s a
pretty safe bet that you’re dealing with an array, so the iIsArray flag is set to TRUE.

Even if the look-ahead character doesn’t reveal an
opening brace, however, you still can’t be sure that
you’re done processing the L-value. In the absence
of a brace, you assume you’re not dealing with an
array. To make sure this is correct, you once again
compare pSymbol->iSize to 1. If it’s greater, an array
has been used as the L-value without specifying an
index. This results in the flagging of another error.

The L-value is taken care of, so you can move on to
parsing the assignment operator itself. Because
XtremeScript supports more than just the = operator
for assignment, there are a number of possibilities
here:

15. PARSING AND SEMANTIC ANALYSIS
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// ---- Parse the assignment operator
if ( GetNextToken () != TOKEN_TYPE_OP &&

( GetCurrOp () != OP_TYPE_ASSIGN &&
GetCurrOp () != OP_TYPE_ASSIGN_ADD &&
GetCurrOp () != OP_TYPE_ASSIGN_SUB &&
GetCurrOp () != OP_TYPE_ASSIGN_MUL &&
GetCurrOp () != OP_TYPE_ASSIGN_DIV &&
GetCurrOp () != OP_TYPE_ASSIGN_MOD &&
GetCurrOp () != OP_TYPE_ASSIGN_EXP &&
GetCurrOp () != OP_TYPE_ASSIGN_CONCAT &&
GetCurrOp () != OP_TYPE_ASSIGN_AND &&
GetCurrOp () != OP_TYPE_ASSIGN_OR &&
GetCurrOp () != OP_TYPE_ASSIGN_XOR &&
GetCurrOp () != OP_TYPE_ASSIGN_SHIFT_LEFT &&
GetCurrOp () != OP_TYPE_ASSIGN_SHIFT_RIGHT ) )

ExitOnCodeError ( "Illegal assignment operator" );
else

iAssignOp = GetCurrOp ();

Once you know you have a valid operator, you call GetCurrOp () to save it in iAssignOp. This allows
you to generate the proper assignment instruction later. The value expression and semicolon are
parsed next:

// ---- Parse the value expression

ParseExpr ();

// Validate the presence of the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

The last step is generating the I-code for the assignment. At this point, the item on the top of the
stack is the result of the value expression, and if the L-value was an array, the index value is direct-
ly under it. You can therefore pop the value expression into _T0 and the array index (if present)
into _T1. From there, you just need to emit the code to assign the value and you’re done:

// Pop the value into _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// If the variable was an array, pop the top of the stack into _T1 for use as
// the index

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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if ( iIsArray )
{

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar1SymbolIndex );

}

// ---- Generate the I-code for the assignment instruction

switch ( iAssignOp )
{

// =
case OP_TYPE_ASSIGN:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_MOV );
break;

// +=
case OP_TYPE_ASSIGN_ADD:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_ADD );
break;

// -=
case OP_TYPE_ASSIGN_SUB:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_SUB );
break;

// *=
case OP_TYPE_ASSIGN_MUL:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_MUL );
break;

// /=
case OP_TYPE_ASSIGN_DIV:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_DIV );
break;

// %=
case OP_TYPE_ASSIGN_MOD:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_MOD );
break;

// ^=
case OP_TYPE_ASSIGN_EXP:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_EXP );
break;

// $=
case OP_TYPE_ASSIGN_CONCAT:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_CONCAT );
break;
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// &=
case OP_TYPE_ASSIGN_AND:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_AND );
break;

// |=
case OP_TYPE_ASSIGN_OR:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_OR );
break;

// #=
case OP_TYPE_ASSIGN_XOR:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_XOR );
break;

// <<=
case OP_TYPE_ASSIGN_SHIFT_LEFT:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_SHL );
break;

// >>=
case OP_TYPE_ASSIGN_SHIFT_RIGHT:

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_SHR );
break;

}

// Generate the destination operand
if ( iIsArray )

AddArrayIndexVarICodeOp ( g_iCurrScope, iInstrIndex, pSymbol->iIndex,
g_iTempVar1SymbolIndex );

else
AddVarICodeOp ( g_iCurrScope, iInstrIndex, pSymbol->iIndex );

// Generate the source
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

With the result of the expression in _T0 and the array index in _T1, you’re ready to generate the
assignment code. The first step is generating the proper instruction, which corresponds directly
with the operator that was used. = results in a Mov, += results in Add, -= results in Sub, and so on.
Because you stored the operator in iAssignOp, you can easily make this determination using a
switch block.

The next step is generating the proper destination operand. Once again, the iIsArray flag is
checked to determine whether to generate code for a variable or code for an array. If the flag is
clear, AddVarICodeOp () is called with pSymbol->iIndex to generate a variable operand. Otherwise,

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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AddArrayIndexVarICodeOp () is called to generate an array indexed with a variable. This function is
passed pSymbol->iIndex as well as g_iTempVar1SymbolIndex.

Finally, you generate the source operand, which is just _T0. As an example, check out the follow-
ing fragment of XtremeScript code:

var MyArray [ 4 ];
var Radius;

Radius = 4;
MyArray [ 1 ] = 3.14159 * Radius ^ 2;

When compiled, XSC produces this:

Var MyArray [ 4 ]
Var Radius

;     Radius = 4;
Push        4
Pop         _T0
Mov         Radius, _T0

;     MyArray [ 1 ] = 3.14159 * Radius ^ 2;
Push        1
Push        3.141590
Push        Radius
Pop         _T1
Pop         _T0
Mul         _T0, _T1
Push        _T0
Push        2
Pop         _T1
Pop         _T0
Exp         _T0, _T1
Push        _T0
Pop         _T0
Pop         _T1
Mov         MyArray [ _T1 ], _T0

First the variables are declared, and then Radius is assigned 4, and finally, MyArray [ 1 ] is
assigned the result of the expression. As you can see, the expression ends with the result being
popped into _T0, and the array index being popped into _T1.

15. PARSING AND SEMANTIC ANALYSIS
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Function Calls
Even though you’ve already written logic to call functions from within an expression, you still
need to support statements that are themselves single function calls. Fortunately, this is extremely
simple. The ParseFuncCall () function you wrote for the expression parser already encapsulates
virtually all of the logic you need. All you need to do is update ParseStatement () a bit, and you
can leverage the existing code to do the job (as shown in Figure 15.30).

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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The syntax diagram for

Statements with func-

tion calls added.

In fact, because the initial token in a function call is the function’s name, you can add it to the
TOKEN_TYPE_IDENT case you created in the last section for handling variables and arrays in assign-
ment statements. In the event that the identifier isn’t found in the symbol table, you can look for
it in the function table and treat it like a function call. From there, all you have to do is annotate
the source line, call ParseFuncCall (), and verify the trailing semicolon. You don’t even need to
worry about return values.

Here’s the updated identifier case in ParseStatement ():

case TOKEN_TYPE_IDENT:
{

// What kind of identifier is it?
if ( GetSymbolByIdent ( GetCurrLexeme (), g_iCurrScope ) )
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{
// It's an identifier, so treat the statement as an assignment
ParseAssign ();

}
else if ( GetFuncByName ( GetCurrLexeme () ) )
{

// It's a function

// Annotate the line and parse the call
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );
ParseFuncCall ();

// Verify the presence of the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

}
else
{

// It's invalid
ExitOnCodeError ( "Invalid identifier" );

}

break;
}

And just like that, you can make function calls in the form of statements. For example, take a
look at this script fragment:

host PrintString ();

func PrintStringWrap ( String )
{

PrintString ( String );
}

func _Main ()
{

PrintStringWrap ( "This is a script-defined function." );
PrintString ( "This is a host API function." );

}

15. PARSING AND SEMANTIC ANALYSIS
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The host API function PrintString () is imported, followed by the definition of a script-defined
function called PrintStringWrap () that wraps the host API version of the function to print a
string as well. Within _Main (), both functions are called via function call statements. Here’s an
excerpt of the compiled code:

;     PrintStringWrap ( "This is a script-defined function." );
Push        "This is a script-defined function."
Call        PrintStringWrap

;     PrintString ( "This is a host API function." );
Push        "This is a host API function."
CallHost    PrintString

Cool, huh? The code emitter automatically knows to differentiate between Call and CallHost.

return
Parsing return is understandably simple. In fact, the entire statement consists solely of the return
keyword, and optional expression, and a semicolon. Check out Figure 15.31.
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The syntax diagram for

a return statement.

The assembly representation of return is extremely simple as well. If an expression is present, its
evaluation code is generated first, followed by a Pop instruction that pops the result into the
_RetVal register. The Ret instruction is then used to return from the function.

The one caveat is the _Main () function, however. Like in C, a return statement in _Main () actual-
ly has the effect of terminating the script entirely, because _Main () has no caller to return to.
Because of this, you must generate an Exit instruction instead of Ret if the return statement is
found in the _Main () function. However, in both cases, an expression can be returned; if the
function returning is _Main (), the result of the expression is the exit code and is an operand for
the Exit instruction. If not, it’s popped into _RetVal, because Ret doesn’t accept any operands.

Because of this, you need to make a number of checks throughout the function to find out of the
current function is _Main () or not (which can be easily done by comparing g_iCurrScope to the
script header’s _Main () index) and act accordingly.
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As always, let’s start by adding the proper update to ParseStatement (), as shown in the code list-
ing here and in Figure 15.32:

// return
case TOKEN_TYPE_RSRVD_RETURN:

ParseReturn ();
break;

15. PARSING AND SEMANTIC ANALYSIS
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The syntax diagram for

Statements with

return taken into

account.

With that out of the way, let’s check out ParseReturn ():

void ParseReturn ()
{

int iInstrIndex;

// Make sure we're inside a function
if ( g_iCurrScope == SCOPE_GLOBAL )

ExitOnCodeError ( "return illegal in global scope" );
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// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// If a semicolon doesn't appear to follow, parse the
// expression and place it in _RetVal
if ( GetLookAheadChar () != ';' )
{

// Parse the expression to calculate the return value and
// leave the result on the stack.
ParseExpr ();

// Determine which function we're returning from
if ( g_ScriptHeader.iIsMainFuncPresent &&

g_ScriptHeader.iMainFuncIndex == g_iCurrScope )
{

// It is _Main (), so pop the result into _T0
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex,

g_iTempVar0SymbolIndex );
}
else
{

// It's not _Main, so pop the result into the _RetVal register
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddRegICodeOp ( g_iCurrScope, iInstrIndex, REG_CODE_RETVAL );

}
}
else
{

// Clear _T0 in case we're exiting _Main ()
if ( g_ScriptHeader.iIsMainFuncPresent &&

g_ScriptHeader.iMainFuncIndex == g_iCurrScope )
{

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_MOV );
AddVarICodeOp ( g_iCurrScope, iInstrIndex,

g_iTempVar0SymbolIndex );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );

}
}

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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if ( g_ScriptHeader.iIsMainFuncPresent &&
g_ScriptHeader.iMainFuncIndex == g_iCurrScope )

{
// It's _Main, so exit the script with _T0 as the exit code
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_EXIT );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

}
else
{

// It's not _Main, so return from the function
AddICodeInstr ( g_iCurrScope, INSTR_RET );

}
}

Of course, because return is used to return from functions, it must be found within one. If not, 
an error is flagged alerting the users that return is illegal in the global scope. After annotating 
the source line, ParseExpr () is called to parse the expression, which will leave the result on the
stack. If the current function is _Main (), a Pop instruction is generated and pops that result into
_RetVal, allowing you to follow up with a Ret instruction to complete the process. Otherwise, the
value is popped into _T0 for use with Exit. If an expression didn’t follow return, and you’re cur-
rently inside _Main (), _T0 is cleared to allow the Exit instruction’s operand to default to zero.

Here’s an example of a function that uses return:

func Square ( X )
{

return X ^ 2;
}

Here’s its compiled output:

Func Square
{

Param X

;    return X ^ 2;
Push       X
Push       2
Pop        _T1
Pop        _T0
Exp        _T0, _T1
Push       _T0
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Pop        _RetVal
Ret

}

As you can see, the X ^ 2 expression is emitted first, followed by the Pop _RetVal and Ret instruc-
tions, which is everything you need.

while Loops
Expression parsing and assignment statements represented the line-by-line nature of the lan-
guage—individual statements that perform specific tasks on their own. With the exception of
function calls, which are possible at this point, the parser has no real notion of code blocks that
perform a common task or are in some way related. An implementation of the while loop will be
the first divergence from this trend.

Fortunately, by now, you’ve developed so many parsing functions that can be so easily “black
boxed,” that implementing loops and branching will more or less be a matter of snapping togeth-
er preexisting components to parse more complex structures.

Implementing constructs that are larger than a single statement, such as the while loop, is a
twofold process. The first step is understanding how the structure itself is parsed, which is more
or less trivial. Beyond that, however, is an understanding of how the I-code, and ultimately the
resulting assembly language, is arranged to represent the structure without the aid of the high-
level language. Fortunately, Chapter 8 prepared you for exactly this. You’ll want to make sure
you’ve read it by now if you haven’t already.

while Loop Assembly Representation
while loops are represented in assembly language in a fairly intuitive manner.The general assem-
bly representation of loop-like structures was covered in Chapter 8, but I’ll follow it up with a
more focused study here. while loops break down to two major structures—the conditional
expression, which is evaluated just before the execution of each iteration, and the code block
that implements the loop’s intended functionality (see Figure 15.33). A nice feature of the high-
level syntactic layout of while loops is that they more or less mirror their assembly equivalents.

Due to the sequential flow of an assembly language script (jump instructions notwithstanding), it
makes intuitive sense that the expression that determines whether the next iteration of the loop
should execute needs to appear before the loop body. An assembly-coded while loop therefore
begins with the code to implement its conditional expression, which ends by pushing the result
of the expression (an either zero or nonzero value, corresponding to false and true, respectively)
onto the stack. This value is then popped off into the _T0 register and compared to zero in a 
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conditional jump and will either fall
through into the loop if the expression eval-
uates to true, or jump to a label set beyond
the last instruction of the loop body if the
expression evaluates to false. This allows the
first iteration of the loop to execute if the
expression is true, and results in the loop
being skipped entirely otherwise. The only
problem is that only the first iteration will
execute.

To remedy this, another label must be gen-
erated just above the code that evaluates the
loop’s expression. Every time an iteration of
the loop executes, it makes an uncondition-
al jump to this label. The flow of this assem-
bly language representation of the loop is as follows:

■ When the loop initially begins executing, it will evaluate its expression and push the
result onto the stack.

■ The result will be popped off the stack into _T0 and used as the criteria for a conditional
jump that will jump to a label beyond the end of the loop in the event of a zero result.
Otherwise, if the result is nonzero, the jump does not occur and execution “falls
through” into the body of the loop.

■ The loop body executes, completing a single iteration.
■ The last instruction of the loop is an unconditional jump placed just above the loop’s

expression evaluating code, which causes the process to repeat from the first step.

To understand this more clearly, check out Figure 15.34, which illustrates this process graphically.
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The syntactic layout of

the while loop.

NOTE
I mention that true is represented with
nonzero, whereas false is represented by
zero.Although this is normally a strict def-
inition in the case of native hardware, it’s a
slightly simplified way to explain what’s
going on within the XVM. Remember, as
you saw in Chapter 10, true is actually
represented by either a numeric nonzero
value or a non-empty string.This allows
string values to be used in jumps, which is
certainly important when a while or if
block involves such data types.
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Parsing while Loops
Now that you understand the theory and assembly language representation behind the while
loop, you can write a ParseWhile () function that will parse it. To kick things off, check out the
while loop’s syntax diagram in Figure 15.35.

PARSING ADVANCED STATEMENTS AND CONSTRUCTS

Figure 15.34

The assembly-language

representation of a

while loop.

Figure 15.35

The while loop’s syntax diagram.

As always, the first step in adding any new feature to the parser is updating ParseStatement () so
that it can intercept the initial token. For the sake of brevity, I’m only going to list ParseStatement
()’s switch block:

// Branch to a parse function based on the token
switch ( InitToken )
{

// Unexpected end of file
case TOKEN_TYPE_END_OF_STREAM:

ExitOnCodeError ( "Unexpected end of file" );
break;
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// Block
case TOKEN_TYPE_DELIM_OPEN_CURLY_BRACE:

ParseBlock ();
break;

// Function definition
case TOKEN_TYPE_RSRVD_FUNC:

ParseFunc ();
break;

// Host API function import
case TOKEN_TYPE_RSRVD_HOST:

ParseHost ();
break;

// Variable/array declaration
case TOKEN_TYPE_RSRVD_VAR:

ParseVar ();
break;

// while loop block
case TOKEN_TYPE_RSRVD_WHILE:

ParseWhile ();
break;

// Anything else is invalid
default:

ExitOnCodeError ( "Unexpected input" );
break;

}

Figure 15.36 updates the Statement syntax diagram.

You can start by taking a look at ParseWhile ():

void ParseWhile ()
{

int iInstrIndex;

// Make sure we're inside a function
if ( g_iCurrScope == SCOPE_GLOBAL )

ExitOnCodeError ( "Statement illegal in global scope" );
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// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// Get two jump targets; for the top and bottom of the loop
int iStartTargetIndex = GetNextJumpTargetIndex (),

iEndTargetIndex = GetNextJumpTargetIndex ();

// Set a jump target at the top of the loop
AddICodeJumpTarget ( g_iCurrScope, iStartTargetIndex );

// Read the opening parenthesis
ReadToken ( TOKEN_TYPE_DELIM_OPEN_PAREN );

// Parse the expression and leave the result on the stack
ParseExpr ();

PARSING ADVANCED STATEMENTS AND CONSTRUCTS
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The Statement syntax

diagram, updated to

include while loops.
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// Read the closing parenthesis
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );

// Pop the result into _T0 and jump out of the loop if it's nonzero
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JE );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iEndTargetIndex );

// Parse the loop body
ParseStatement ();

// Unconditionally jump back to the start of the loop
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iStartTargetIndex );

// Set a jump target for the end of the loop
AddICodeJumpTarget ( g_iCurrScope, iEndTargetIndex );

}

The first task is to make sure you’re not in the global scope, because the while loop must appear
inside a function. You then send the I-code module the source line annotation for the first line,
which will allow the code emitter to write the loop’s expression to the file just above the code that
evaluates it. You then generate two new jump targets, and store them in iStartTargetIndex and
iEndTargetIndex. As you can probably guess, these two targets point to the top and bottom of the
loop. You make a call to AddICodeJumpTarget () immediately, because the starting jump target
must be set before any of the loop’s I-code is generated. You can hold off on setting the end tar-
get until the rest of the parsing process is complete, however, because you need to make sure it’s
the last I-code node you generate if you want it to properly represent the end of the loop.

You’re ready to generate the I-code for parsing the expression, so ReadToken () is called to verify
the presence of the opening parenthesis. The expression’s I-code is generated with a call to
ParseExpr (), and you once again use ReadToken () to ensure that the closing parenthesis is there.

It’s now time for some manual I-code generation. The first instruction you need to immediately
follow the expression evaluation is Pop _T0, because you need the _T0 register to hold the result of
the expression. This is done with a call to AddICodeInstr () to set the Pop instruction, and a follow-
up call to AddVarICodeOp () to set _T0 as the instruction’s operand.
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Once the value is in _T0, you can generate the jump instruction that will determine whether to
execute the next iteration of the loop. You therefore generate a JE instruction (jump if equal)
that essentially looks like this:

JE    _T0, 0, <Loop End Jump Target>

In other words, if the result of the loop’s expression was zero (false), exit the loop. You can now
parse the loop body, so you call ParseStatement () to generate its I-code. You then append the
loop body’s I-code with a Jmp (unconditional jump) instruction that branches to the loop’s start-
ing jump target. This wraps up the loop, so you can now safely generate the loop’s ending jump
target, because you know no more loop code will be produced. This is done by passing
iEndJumpTarget to AddICodeJumpTarget ().

You might be wondering why ParseWhile () calls ParseStatement () for the loop body instead of
ParseBlock (). The reason for this is that, like C, a single-statement loop body doesn’t have to be
enclosed in curly braces. Of course, if an opening curly brace is found, ParseStatement () knows
to call ParseBlock () anyway. This allows you to easily support true C-style loop syntax. Slick, eh?

Here’s a simple example of using while in a script:

while ( true )
{

X = Y;
}

Here’s the compiled output:

;     while ( true )
_L0:

Push       1
Pop        _T0
JE         _T0, 0, _L1

;        X = Y;
Push     Y
Pop        _T0
Mov        X, _T0
Jmp        _L0

_L1:

Notice the automatic generation of unique line labels and their placement within the code. _L0
comes before the expression is evaluated, whereas _L1 lies just outside the loop.
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break
Once inside a loop, it might become necessary to pull the panic switch and immediately termi-
nate it. Fortunately, XtremeScript supports C’s break statement for doing just this. At first glance,
break seems like it should be an easy addition—after all, it’s just an unconditional jump to the
loop’s ending jump target, right? For the most part, this is correct—break is indeed rather simple
to implement. There is one serious caveat, however. How will break’s parsing function know
which jump target to branch to?

Remember, break is a statement, just like anything else. This means that the only time you’ll parse
it is from ParseStatement (), which is called from ParseWhile (). Unfortunately, the jump targets
are stored as local variables and are inaccessible from even a nested parse function. You could
simply make them global, which would work on some levels, but that too suffers from a fatal flaw.
By making the while loop’s jump targets global, a nested loop will permanently overwrite the tar-
gets of its parent loop. This would cause a problem in the case of something like this script frag-
ment:

while ( X < Y )
{

while ( U > V )
{

break;
}
break;

}

The first while would save its jump targets in two global values and call ParseStatement () to gen-
erate the I-code for its body. Within this call, the nested while would cause another instance of
ParseWhile () to be invoked, which would end up overwriting the first while loop’s jump targets.
This is okay though, because when ParseStatement () is called, which will end up calling
ParseBreak () to handle the break statement, all you need are the jump targets of the innermost
loop, because that’s always the one you’re in. The problem occurs when the nested loop termi-
nates, leaving you once again in the outer loop. This time, when the next break is encountered,
the jump target will incorrectly point to the end of the now terminated inner loop.

The Loop Stack
At this point, it should be clear that the solution to this problem is to push loops’ jump targets
onto a global stack. This way, loops can be nested indefinitely, and each set of jump targets will
remain intact. This is analogous to the way you use the XVM’s runtime stack to track the return
addresses of functions, regardless of their nested or even recursive nature.
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The first step in implementing this solution is declaring a global instance of the Stack structure
you created in the last chapter called g_LoopStack:

Stack g_LoopStack;

This loop needs to be initialized when the parser starts, so you can add the following line of code
to ParseSourceCode (), just before it enters its statement parsing loop:

InitStack ( & g_LoopStack );

Finally, the stack needs to be freed after the loop, so ParseSourceCode () now ends with this:

FreeStack ( & g_LoopStack );

You then need to crack open ParseWhile () and make a few changes. Specifically, you need to
push the loop’s jump targets onto the stack just before parsing the body with ParseStatement ().
You then need to pop the targets off afterwards, so in case the loop is nested, the targets of its
outer loop will once again be the stack’s top element.

Because you’re tracking two values (for the two jump targets), you should create a structure to
wrap them. This will allow you to deal with single elements on the stack. It will also leave things
open ended, so you’ll have the option to add additional information somewhere down the line if
the need ever arises. The structure will simply be called Loop, and will represent a “loop instance”:

typedef struct Loop                   // Loop instance
{

int iStartTargetIndex;            // The starting jump target
int iEndTargetIndex;              // The ending jump target

}
Loop;

Of course, all you need at the moment are the two targets, so that’s all the structure contains.
With the structure ready to go, you can add the proper code to ParseWhile () so that its nested
call to ParseStatement () will have easy access to the proper jump targets in the event that a break
statement is parsed. Here’s the code:

// Create a new loop instance structure
Loop * pLoop = ( Loop * ) malloc ( sizeof ( Loop ) );

// Set the starting and ending jump target indexes
pLoop->iStartTargetIndex = iStartTargetIndex;
pLoop->iEndTargetIndex = iEndTargetIndex;

// Push the loop structure onto the stack
Push ( & g_LoopStack, pLoop );
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// Parse the loop body
ParseStatement ();

// Pop the loop instance off the stack
Pop ( & g_LoopStack );

Quite simply, the code allocates a new Loop structure to hold the loop instance, writes the jump
targets to it, and pushes onto the stack. ParseStatement () is then called, as usual, but with the
added benefit of the loop stack. When the function returns, you immediately pop the loop
instance off to allow any outer loops to regain their position at the top of the stack.

Parsing break
With the loop stack up and running, you have all the information you need to implement break.
Not surprisingly, this starts by adding its respective case to ParseStatement ()’s switch block:

// break
case TOKEN_TYPE_RSRVD_BREAK:

ParseBreak ();
break;

There’s really no need to add another update to the Statement syntax diagram for now; break is
indeed another statement type, but it’s such an obvious addition that it would just be a waste of
space. ParseBreak () is a pretty straightforward function, so the simplistic syntax diagram dis-
played in Figure 15.37 shouldn’t be a surprise. Let’s check out the code:

void ParseBreak ()
{

// Make sure we're in a loop
if ( IsStackEmpty ( & g_LoopStack ) )

ExitOnCodeError ( "break illegal outside loops" );

// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// Attempt to read the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

// Get the jump target index for the end of the loop
int iTargetIndex = ( ( Loop * )

Peek ( & g_LoopStack ) )->iEndTargetIndex;
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// Unconditionally jump to the end of the loop
int iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iTargetIndex );

}

PARSING ADVANCED STATEMENTS AND CONSTRUCTS

Figure 15.37

The syntax diagram 

for break.

You first ensure that the statement hasn’t occurred outside of a function, which is of course ille-
gal. The source code is then annotated, and the trailing semicolon is verified with ReadToken ().
You then use the Peek () function to read the top loop instance and extract the iEndTargetIndex
field. You save this locally in iTargetIndex, and use it to generate an unconditional jump to the
end of the loop.

As an example, let’s look at the script fragment again:

while ( X < Y )
{

while ( U > V )
{

break;
}
break;

}

When compiled, it will produce this. Notice that each break’s Jmp is linked to the proper label:

;      while ( X < Y )
_L0:

Push        X
Push        Y
Pop         _T1
Pop         _T0
JL          _T0, _T1, _L2
Push        0
Jmp         _L3

_L2:
Push        1

_L3:
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Pop         _T0
JE          _T0, 0, _L1

;      while ( U > V )
_L4:

Push        U
Push        V
Pop         _T1
Pop         _T0
Pop         _T0
JE          _T0, 0, _L5

;      break;
Jmp         _L5
Jmp         _L4

_L5:

;      break;
Jmp         _L1
Jmp         _L0

_L1:

continue
As you can probably imagine, continue is a snap once break has been implemented. Because it’s
virtually the same process, let’s just blaze through the code, starting with ParseStatement ()’s
obligatory addition:

// continue
case TOKEN_TYPE_RSRVD_CONTINUE:

ParseContinue ();
break;

ParseContinue () is almost ParseBreak () verbatim; the only real change is that you’re reading the
loop’s starting target index, rather than the ending index (see Figure 15.38):

void ParseContinue ()
{

// Make sure we're inside a function
if ( IsStackEmpty ( & g_LoopStack ) )

ExitOnCodeError ( "continue illegal outside loops" );
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// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

// Attempt to read the semicolon
ReadToken ( TOKEN_TYPE_DELIM_SEMICOLON );

// Get the jump target index for the start of the loop
int iTargetIndex = ( ( Loop * )

Peek ( & g_LoopStack ) )->iStartTargetIndex;

// Unconditionally jump to the end of the loop
int iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iTargetIndex );

}
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The syntax diagram 

for the continue

statement.

Pretty simple, huh? Let’s take a look at an example:

while ( true )
{

continue;
}

When compiled, the output will look like this:

;     while ( true )
_L0:

Push         1
Pop          _T0
JE           _T0, 0, _L1

;        continue;
Jmp          _L0
Jmp          _L0

_L1:
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for Loops
Although for loops were mentioned in Chapter 7’s XtremeScript language specification, I won’t
be implementing them here. Rather, they’re left as a roughly intermediate-level challenge to you.
I did this for a number of reasons. First of all, the for loop is really just a different way to package
the while loop. For example, the following for loop:

for ( X = 0; X < 16; ++ X )
{

// Loop body
}

Can be easily recoded as a while loop, like this:

X = 0;
while ( X < 16 )
{

// Loop body
++ X;

}

Because of this, there’s no particularly dire reason to implement for at all, really. Anything you
can do with for can be easily done with while, although for syntax it can be more convenient and
readable at times.

This fact leads you to my second reason, which is that for loops can be implemented entirely as a
preprocessing step. It may sound strange at first, but it’s entirely possible with only some basic lex-
ical analysis and string copying to physically convert for loops to equivalent while loops before the
parser even sees the code. If you chose to implement for, you might want to investigate this as a
possibility.

Branching with if
The second and last control structure you’ll be implementing here is if, which of course allows
you to perform conditional logic. As you did with the while loop, the first step in understanding
how if is compiled is represented in assembly language. With this in mind, developing a parsing
strategy will be trivial.

if Block Assembly Representation
The high-level syntactic order of an if block is quite simple; a conditional expression starts the
block, which is immediately followed by a true block and a false block. If the expression evaluates
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to true, the flow of execution “falls into” the true block, which resides just under the expression,
and skips the false block when it reaches the end. Otherwise, the true block is skipped and the
false block is executed. When the false block terminates, execution continues sequentially,
because the rest of the code lies directly below it. The false block is of course optional, however,
and is facilitated with the else keyword. Figure 15.39 depicts the syntactic flow of an if block.
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The if block’s syntac-

tic layout.

Chapter 8 discussed the two primary methods by which an if block can be organized in assembly,
which revolved around the placement of the true and false blocks. Although the discussion there
hinged on the fact that one method forced you to inverse the conditional expression, whereas
one didn’t, this particular point is moot in the case of the compiler, because the actual compari-
son is simply comparing the final result of the expression to zero. Because of this, you can main-
tain the conventional order of the true block coming before the false block without hassle.

Like while, the first block of code to be generated for an if block in assembly language is respon-
sible for evaluating the conditional expression that drives it, and for leaving the result on the top
of the stack. Also like while, a nonzero expression represents truth, and a zero expression results
falsehood. Because of this, the top stack element can be used as the criteria for an unconditional
jump that will allow you to route the flow of execution through and around the appropriate blocks.

Such a jump immediately follows the evaluation of the expression. Specifically, you use a JE
(Jump if Equal) instruction that compares the result of the expression to zero. Because you’re
testing for equality with zero, the instruction should jump to the false block in the event that the
operands match. Otherwise, execution can fall into the true block. Once you’re done executing
this block, however, it’s important that you make an unconditional jump over the false block,
because you certainly don’t want both blocks to execute. As stated earlier, the false block can 
terminate as-is, because execution will flow back into the otherwise sequential order of the 
script. Figure 15.40 illustrates the resulting code’s general form.
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Parsing if Blocks
Now that you understand the form the emitted code should take, you can put together a parser
rather easily. It’s primarily a matter of emitting the code blocks in the right order and keeping
track of the jump targets. Figure 15.41 presents the syntax diagram for if blocks.

Here’s the addition you make to ParseStatement () (reflected in Figure 15.42):

// if block
case TOKEN_TYPE_RSRVD_IF:

ParseIf ();
break;

Let’s step through ParseIf () section by section:

void ParseIf ()
{

int iInstrIndex;

// Make sure we're inside a function
if ( g_iCurrScope == SCOPE_GLOBAL )

ExitOnCodeError ( "if illegal in global scope" );

// Annotate the line
AddICodeSourceLine ( g_iCurrScope, GetCurrSourceLine () );

The function starts with the obligatory proceedings. First the scope is checked to make sure an if
block isn’t being used outside of a function, and the current line is added to the I-code as source
annotation.

15. PARSING AND SEMANTIC ANALYSIS
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The if block’s assem-

bly representation.
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Figure 15.41

The Statement syntax

diagram, updated to

include if blocks.

Figure 15.42

The syntax diagram for if blocks.
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// Create a jump target to mark the beginning of the false block
int iFalseJumpTargetIndex = GetNextJumpTargetIndex ();

// Read the opening parenthesis
ReadToken ( TOKEN_TYPE_DELIM_OPEN_PAREN );

// Parse the expression and leave the result on the stack
ParseExpr ();

// Read the closing parenthesis
ReadToken ( TOKEN_TYPE_DELIM_CLOSE_PAREN );

The next step is creating the jump target that will mark the beginning of the false block. You
have to do this now, because the jump instruction generated after evaluating the expression
needs a target to jump to. Remember, you can add a jump node to the I-code before you add its
target node, just like a jump instruction can appear before the definition of its label. The expres-
sion is handled next, which is simply a matter of reading both the opening and closing parenthe-
ses, and calling ParseExpr () in between.

// Pop the result into _T0 and compare it to zero
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_POP );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );

// If the result is zero, jump to the false target
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JE );
AddVarICodeOp ( g_iCurrScope, iInstrIndex, g_iTempVar0SymbolIndex );
AddIntICodeOp ( g_iCurrScope, iInstrIndex, 0 );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex, iFalseJumpTargetIndex );

At this point, the expression has been parsed, and the I-code for evaluating it has been generat-
ed. You can now generate a jump instruction to alter the flow of the script’s execution based on
the result of this evaluation. This is done by popping the stack’s top value into _T0 and jumping
to the iFalseJumpTargetIndex target you created earlier. Again, you haven’t placed this target yet;
you’re only generating code to jump to it.

// Parse the true block
ParseStatement ();

// Look for an else clause
if ( GetNextToken () == TOKEN_TYPE_RSRVD_ELSE )
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{
// If it's found, append the true block with an
// unconditional jump past the false block
int iSkipFalseJumpTargetIndex = GetNextJumpTargetIndex ();
iInstrIndex = AddICodeInstr ( g_iCurrScope, INSTR_JMP );
AddJumpTargetICodeOp ( g_iCurrScope, iInstrIndex,

iSkipFalseJumpTargetIndex );

// Place the false target just before the false block
AddICodeJumpTarget ( g_iCurrScope, iFalseJumpTargetIndex );

// Parse the false block
ParseStatement ();

// Set a jump target beyond the false block
AddICodeJumpTarget ( g_iCurrScope, iSkipFalseJumpTargetIndex );

}
else
{

// Otherwise, put the token back
RewindTokenStream ();

// Place the false target after the true block
AddICodeJumpTarget ( g_iCurrScope, iFalseJumpTargetIndex );

}

The final step is the generation of each block. You parse and generate the true block first, with a
simple call to ParseStatement (). Again, you parse it as a statement rather than a block, because
this gives the parser the capability to interpret both single-lines and full blocks.

The false block is a bit trickier, because it’s optional. To determine whether a false block is pres-
ent, you use GetNextToken () to find out if the TOKEN_TYPE_RSRVD_ELSE token is next in the stream.
If not, you’ll use RewindTokenStream () to put it back. The look-ahead won’t help you in this situa-
tion because simply reading an “e” wouldn’t be enough to determine whether else truly followed.
For example, take the following block of code:

var Exp;
if ( Exp < 16 )

TextBox ( "Your character is low on experience points." );
Exp += NewLevelExp;
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Here, the token following the true block (which is a single line in this example) is Exp, which
begins with E. Even though this doesn’t necessarily have anything to do with the if block that pre-
ceded it, the parser will interpret it as the start of an else clause going by the look-ahead alone. It
will then attempt to parse the block, resulting in confusing compile-time errors for the users.

The first step in parsing the false block is generating an unconditional jump past it. This is done
because it will immediately follow the true block, which must skip past it. The reason you do this
in the generation of the false block, rather than that of the true block, is that you only want this
particular jump instruction to appear in the event that an else clause exits. Otherwise, it’s omit-
ted entirely. The target used to jump past the false block is called iSkipFalseJumpTargetIndex, and
is only created with GetNextJumpTargetIndex (). It’s not actually placed until after the block has
been parsed and generated.

Next, the iFalseJumpTargetIndex target you created earlier is added to the I-code stream, so the
if’s original jump can reach it in the event that the conditional expression evaluates to false.
With the target in place, it’s safe to parse and generate the false block itself, which is done with
another call to ParseStatement (). Lastly, now that the false block has been generated, you gener-
ate the jump target stored in iSkipFalseJumpTargetIndex, which the true block jumps to.

As I mentioned, if the else token wasn’t found, the stream is rewound. In this case, the false jump
target is emitted by itself; this allows the if’s initial jump instruction to bypass the true block,
whether or not a false block lies beyond it.

Check out this example:

if ( X )
Y = X;

else
X = Y;

Here’s its compiled output:

;    if ( X )
Push      X
Pop       _T0
JE        _T0, 0, _L0

;    Y = X;
Push      X
Pop       _T0
Mov       Y, _T0
Jmp       _L1

_L0:
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;      X = Y;
Push      Y
Pop       _T0
Mov       X, _T0

_L1:

X is pushed onto the stack and popped into _T0. _T0 is then compared to zero, and if it’s equal, a
jump is made to _L0, which marks the top of the false block. Otherwise, the execution falls into
the true block and executes sequentially until its last line, when an unconditional jump to _L1 is
made to avoid the false block.

SYNTAX DIAGRAM SUMMARY
Syntax diagrams have served you well—they’ve provided a visual blueprint for an entire parser
module, and you’ve been able to follow them accurately. To sum things up, however, let’s take a
look at Figure 15.43, which presents a single syntax diagram that encompasses the entire
XtremeScript language. Think of this as a visual reference for the language’s syntax.

THE TEST DRIVE
You now have an entire working compiler, so it would be pretty silly not to have some fun with it.
To make sure everything is functioning properly, let’s write a few demo scripts that test various
aspects of XtremeScript. On the most obvious level, there’s the compiler itself, which must be vig-
orously tested because it’s such an error-prone component of the system. Next is the assembler,
which is being fed the compiler’s output directly. Because XASM has its own strictly imposed
rules, you can ensure that everything coming out of the compiler is correct. Lastly, the .XSE gen-
erated by XASM is put to the ultimate test by letting it run inside the XVM. In a lot of ways, the
XVM’s behavior is the easiest to debug, because you can directly watch it as it executes. If some-
thing isn’t working properly, you’ll see it immediately. Of course, there are plenty of under-the-
hood bugs that can go unnoticed by the eye, so you have to watch the step.

Hello, World!
The quintessential “Hello, world!” is probably the best way to christen a new compiler; it may be
about the simplest program imaginable, but there’s just something extremely cool about running
such an infamous beginner programming lesson in a language you designed and/or implement-
ed yourself. Ladies and gentlemen, I give you “Hello, world!”—XtremeScript style.

THE TEST DRIVE
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Figure 15.43

A syntax diagram for the entire XtremeScript language.
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/*
Hello, world!

*/

host PrintString ();

func _Main ()
{

PrintString ( "Hello, world!" );
}

Surreal, huh? Remember of course that because you’re running this on the XVM console, you
need to import the PrintString () function. By saving it as hello.xss and passing it through the
compiler like so:

XSC hello.xss -A

you can create both an .XSE and the .XASM file from which it was assembled. The XVM assem-
bly produced by the compiler looks like this:

; HELLO.XASM

; Source File: HELLO.XSS
; XSC Version: 0.8
;   Timestamp: Sat Sep 14 17:10:36 2002

; ---- Directives -------------------------------------
; ---- Global Variables -------------------------------

Var _T0
Var _T1

; ---- Functions --------------------------------------
; ---- Main -------------------------------------------

Func _Main
{

;    PrintString ( "Hello, world!" );

Push         "Hello, world!"
CallHost   PrintString
Push       _RetVal
Pop        _T0

}
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And of course, by running it in the XVM console, you’ll get the following:

Hello, world!

Drawing Rectangles
I personally find coding for the XVM console to be a fun little exercise; it reminds me of the text-
mode demo programs you find in the older books on languages such as Pascal and C. In addi-
tion to Hello, world!, however, I remember a lot of the older books presenting example programs
that drew shapes using asterisks. So, just for fun, let’s write a little script that does the same thing.

The program will of course be very simple; you’ll use two global variables to define the X and Y
dimensions of the rectangle, and then use two nested while loops to do the actual drawing. You’ll
make heavy use of the XVM’s PrintString () and PrintNewline () host API functions as well.
Here’s the high-level .XSS script:

/*
Rectangle drawing

*/

// Import the host API functions
host PrintString ();
host PrintNewline ();

// Make the size of the rectangle global
var g_XSize;
var g_YSize;

func _Main ()
{

// Create some variables for tracing the shape
var X;
var Y;

// Set the rectangle size to 32x16
g_XSize = 32;
g_YSize = 16;

// Y-loop
Y = 0;
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while ( Y < g_YSize )
{

// X-loop
X = 0;
while ( X < g_XSize )
{

// Draw the next asterisk
PrintString ( "*" );

// Move to the next column
X += 1;

}

// Move to the next row
PrintNewline ();
Y += 1;

}
}

After drawing each row of XSize asterisks, a call is made to PrintNewline () to move to the next line.
X is incremented at each iteration of the X-loop, and Y is incremented at each iteration of the Y-
loop. Both are compared to XSize and YSize, respectively, to determine when the loop should ter-
minate. This file can be saved as rectangle.xss and passed through the XSC compiler like this:

XSC rectangle.xss -A

Remember, you’re continuing to use the -A switch to preserve the assembly output so you can
examine it. The compiler will produce rectangle.xasm, which looks like this:

; RECTANGLE.XASM

; Source File: RECTANGLE.XSS
; XSC Version: 0.8
;   Timestamp: Mon Sep 16 20:59:57 2002

; ---- Directives ---------------------------------------
; ---- Global Variables ---------------------------------

Var _T0
Var _T1
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Var g_XSize
Var g_YSize

; ---- Functions -----------------------------------------
; ---- Main ----------------------------------------------

Func _Main
{

Var X
Var Y

;     g_XSize = 32;
Push       32
Pop        _T0
Mov        g_XSize, _T0

;     g_YSize = 16;
Push       16
Pop        _T0
Mov        g_YSize, _T0

;     Y = 0;
Push       0
Pop        _T0
Mov        Y, _T0

;     while ( Y < g_YSize )
_L0:

Push       Y
Push       g_YSize
Pop        _T1
Pop        _T0
JL         _T0, _T1, _L2
Push       0
Jmp        _L3

_L2:
Push       1

_L3:
Pop        _T0
JE         _T0, 0, _L1
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;         X = 0;
Push       0
Pop        _T0
Mov        X, _T0

;         while ( X < g_XSize )
_L4:

Push       X
Push       g_XSize
Pop        _T1
Pop        _T0
JL         _T0, _T1, _L6
Push       0
Jmp        _L7

_L6:
Push       1

_L7:
Pop        _T0
JE         _T0, 0, _L5

;             PrintString ( "*" );
Push       "*"
CallHost   PrintString

;             X += 1;
Push       1
Pop        _T0
Add        X, _T0
Jmp        _L4

_L5:

;         PrintNewline ();
CallHost   PrintNewline

;         Y += 1;
Push       1
Pop        _T0
Add        Y, _T0
Jmp        _L0

_L1:
}

THE TEST DRIVE
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Lastly, by running rectangle.xse in the XVM, you get this, a 32x16 rectangle of asterisks:

********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************
********************************

Text games ahoy!

The Bouncing Head Demo
Hello, world! and rectangle drawing might be a nice dose of nostalgia, but they don’t exactly put
XtremeScript through its paces. It would be nice to write a more graphical demo that actually
involves real-world examples of iteration, branching, and other staples of high-level program-
ming. By writing a script that manages a decent amount of data, has to run at a high enough
speed to keep the screen updated on a per-frame basis, and has a reasonably complex task to per-
form, you can be [almost] sure that the compiler, assembler, and virtual machine are all working
properly.

The bouncing alien head demo you created and recoded in multiple scripting languages back in
Chapter 6 is the perfect candidate. It requires you to manage the positions and frames of each
on-screen sprite, must run fast enough to update the screen on a regular basis, and is driven by
logic that’s just complicated enough to give the compiler a workout without having to spend six
months on it.

However, the less-than-glamorous reality of the compiler is that its output is unoptimized in 
every sense of the word, and the runtime performance of executables built with it will demon-
strate this fact. Although what I said in Chapter 7 is true—that the speed difference between
compiler and hand-assembly versions of the same script will be negligible—this is only the case
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when the compiler in question performs at least basic optimizations. Given the complexity of
writing an optimizing compiler, as well as the fact that XSC was only one of many components
described in this book, you’ll have to settle for a compiler whose sole goal is simply to work prop-
erly. Fortunately, XSC does that.

For an idea of what the demo will look like ahead of time, check out Figure 15.44.

THE TEST DRIVE

Figure 15.44

The bouncing head

demo, now scripted

with XtremeScript.

Anatomy of the Program
The demo you’re going to put together in this section is rather simple. Its primary job is to dis-
play a background image and a number of bouncing alien head sprites, each of which rotates in
a bitmapped animation. The movement of the sprites is simple bouncing ball logic; each sprite
has an X and Y location, as well as an X and Y velocity; when the sprite collides with one of the
screen’s boundaries, the sign of its X or Y velocity is flipped to simulate a “bounce.”

Chapter 6 covered four versions of this program. The first was entirely coded in C, and therefore
had little to do with scripting per se. The remaining demos used the Lua, Python, and Tcl script-
ing languages to rewrite the program’s core logic, thus demonstrating the process behind their
integration with the host application.
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To put it simply, this chapter’s implementation of the demo will consist of two major parts. The
first is of course the host application, whose job is to perform low-level tasks like loading graphics
and managing the program’s main loop, as well as to expose a host API. The second is the script,
which will focus on the actual functionality and logic of the demo. It will also help with the pro-
gram’s initialization.

Specifically, the script will expose two func-
tions, an Init () function that is called once,
at the start of the program, to set everything
up; and HandleFrame (), which is called once
per frame and is responsible for moving the
sprites around and drawing the new frame’s
contents.

Although I’ll cover it in a bit more detail, 
the host API will be simple as well. Its prima-
rily job is providing an abstracted interface 
to the underlying operating system’s 
relevant features—in this case, graphics, 
timing, and so on.

Simulating Structures
One important issue worth mentioning before continuing involves the structures used in the
Chapter 6 demos to track each alien sprite as the program executes. All three of the languages
you used provided some way to create and manage structures that resembled C’s struct. This was
naturally a useful feature, because each sprite maintains an X and Y location, an X and Y velocity,
and the direction in which its animation spins. Expressed with pseudo-code, this would form a
structure along these lines:

struct Alien
{

var X, Y;
var XVel, YVel;
var SpinDir;

}

Unfortunately, XtremeScript’s only notion of aggregate data structures comes in the form of sim-
ple, one-dimensional arrays. This prevents you from easily representing a group of alien sprites,
because each element of the array is larger than a single variable.
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calling the HandleFrame () function once
per frame, rather than taking advantage
of XtremeScript’s capability to run in
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fied time slice. I did this because the
demos in Chapter 6 worked this way,
and I wanted XtremeScript’s capabili-
ties to mimic their overall functionality.
This makes them easier to compare.
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Even without structures, this problem could be solved fairly easily with the help of two-dimension-
al arrays. For example, you could allocate storage for the on-screen aliens with something like this:

var Aliens [ MAX_ALIEN_COUNT ][ 5 ];

Each element of this array is actually five elements, which allows you to store X in element 0, Y in
element 1, XVel in element 2, YVel in element 3, and SpinDir in element 4. Figure 15.45 demon-
strates this idea of using an array to simulate a structure.
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Figure 15.45

A structure simulated

with an array.

Without explicit support for two-dimensional arrays, however, the end result of this approach can
be simulated. After all, any N-dimensional array is stored in memory in a purely linear fashion;
the concept of multiple dimensions is really just an abstraction supported by a language’s nota-
tion and syntax. Imagine an array like this:

var Aliens [ MAX_ALIEN_COUNT * 5 ];

Even without N-dimensional notation, you have the same number of elements to work with as
you did with the array’s two-dimensional counterpart. Now, alien 0 takes up elements 0 through 4
(the first five), alien 1 is represented by elements 5 through 9 (the second five), and so on. Each
alien then has a “base index” within the array, which corresponds to the index where its simulat-
ed structure starts. Each alien can then be accessed as ALIEN_INDEX * 5. This is the solution you’ll
take when you commit these scripts to XtremeScript and XVM assembly. Figure 15.46 illustrates
this final structure.

The Host Application
This particular demo doesn’t need much in the way of host application support. All it really
needs is a modest API for accessing graphics and other miscellaneous functions, and for the 
host to perform some basic initialization and the loading of the necessary graphics.
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Specifically, the host application will need to do the following:

■ Define the host API’s functions.
■ Initialize the XVM, register the host API, and shut everything down when the program

ends.
■ Load the necessary graphics.
■ Load the script, and call it on a regular basis within the main loop.

The Host API
The host API’s primary functions are graphical, but it also needs to perform a few non-graphical
tasks. The API will consist of five functions, which perform the following:

■ Blit a sprite to the back buffer given an X, Y coordinate and the index of the sprite into
an array of animation frames maintained by the host.

■ Blit the preloaded background image to the back buffer.
■ Blit the back buffer to the screen.
■ Get a random number between a minimum and maximum.
■ Return the state of a timer maintained by the host, based on a timer index.

15. PARSING AND SEMANTIC ANALYSIS
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An array of simulated

structures is actually

just one big array.
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Defining a Host API Function

As you learned in Chapter 11, a host API function is a typical C function that follows a specific
prototype:

void FuncName ( int iThreadIndex )

This signature allows the XVM to pass the function the index of the thread that called it, which is
used within the function for various tasks such as reading parameters and returning values.

Parameters are always read with one of the XS_GetParamAs* () functions, which returns the param-
eter at the specified index in the form of a specific C data type. These functions can return inte-
ger, floating-point, and string values. Values are returned to the caller with the XS_Return* ()
macros, which wrap similarly named functions, but also include a built-in return keyword that
allows the macro to physically return from the function. Even if a value is not returned, XS_Return
() must be used, because all of the macros accept both thread index and parameter count argu-
ments, which are used to help the XVM clear the host API function’s stack frame.

BlitSprite ()

The BlitSprite () function blits the specified sprite to the specified X, Y location in the back
buffer. This means that the function requires two parameters and returns nothing. The function
logic is just a call to W_BlitImage ():

void HAPI_BlitSprite ( int iThreadIndex )
{

// Read in parameters
int iIndex = XS_GetParamAsInt ( iThreadIndex, 2 );
int iX = XS_GetParamAsInt ( iThreadIndex, 1 );
int iY = XS_GetParamAsInt ( iThreadIndex, 0 );

// Blit sprite
W_BlitImage ( g_AlienAnim [ iIndex ], iX, iY );

// Return nothing
XS_Return ( iThreadIndex, 3 );

}

The iIndex, iX, and iY parameters are read using XS_GetParamAsInt (), because they’re all inte-
gers. The iThreadIndex parameter is passed, along with an integer index. The thread index lets
the XVM know which thread stack to read the parameter from, and the index specifies the exact
desired parameter. Notice that the functions are being read in reverse order, from index 2 to
index 0. This is because, as discussed in Chapter 9, by reading parameters from right-to-left with-
in the function, you can let the caller use the traditional left-to-right convention.
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After calling
W_BlitImage (), the
function uses
XS_Return () to
return nothing and
clean up its three
parameters.

BlitBG ()

BlitBG () is just a simple function that accepts no parameters and returns no values. Its sole con-
cern is blitting the background image to the screen with a call to W_BlitImage ():

void HAPI_BlitBG ( int iThreadIndex )
{

// Blit the background image
W_BlitImage ( g_BG, 0, 0 );

// Return nothing
XS_Return ( iThreadIndex, 0 );

}

Remember, even when returning nothing, XS_Return () should be called.

BlitFrame ()

After blitting sprites and background images with the last two functions, the back buffer will con-
tain the next frame. This can be drawn to the screen with BlitFrame (), which wraps the
Wrappuh API function of the same name:

void HAPI_BlitFrame ( int iThreadIndex )
{

// Blit the frame to the screen
W_BlitFrame ();

// Return nothing
XS_Return ( iThreadIndex, 0 );

}

GetRandomNumber ()

In order to make the aliens bounce around in reasonably interesting ways, they should be initially
placed in random locations and given random velocities. Any form of random number genera-
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tion within the script will be performed with a call to GetRandomNumber (), which returns a random
number between iMin and iMax:

void HAPI_GetRandomNumber ( int iThreadIndex )
{

// Read in parameters
int iMin = XS_GetParamAsInt ( iThreadIndex, 1 );
int iMax = XS_GetParamAsInt ( iThreadIndex, 0 );

// Return a random number between iMin and iMax
XS_ReturnInt ( iThreadIndex, 2, ( rand () % ( iMax + 1 - iMin ) ) + iMin );

}

Once again, you’re reading parameters, so XS_GetParamAsInt () is used. You’re also returning a
value this time, so XS_ReturnInt () is used instead of XS_Return (). Of course, it’s still important to
pass the parameter count. XS_ReturnInt ()’s third argument is the return value.

GetTimerState ()

The movement and animation of the alien heads will be synced up to two timers, both of which
are maintained by the host application. In order to read their states (which are 0 or 1),
GetTimerState () is used. Like GetRandomNumber (), this function returns a value as well:

void HAPI_GetTimerState ( int iThreadIndex )
{

// Read in the parameters
int iIndex = XS_GetParamAsInt ( iThreadIndex, 0 );

// Determine the timer to read based on the index
int iTimerState = 0;
switch ( iIndex )
{

case 0:
iTimerState = W_GetTimerState ( g_AnimSpeed );
break;

case 1:
iTimerState = W_GetTimerState ( g_MoveSpeed );
break;

}

// Return the state of the timer
XS_ReturnInt ( iThreadIndex, 1, iTimerState );

}
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The parameter it reads with XS_GetParamAsInt () is an index corresponding to a specific timer.
This index is then used in a switch block to read the timer’s state. The value is returned with
XS_ReturnInt (). g_AnimSpeed and g_MoveSpeed are both handles to internal Wrappuh API timers,
so check out the source on the companion CD if you want to learn more.

Initialization and Shutdown
Although the XVM’s initialization procedure is entirely contained within the XS_Init () function,
another vital aspect of initializing the runtime environment is registering the host API. Because
of this, I created a function called InitXVM () that wraps these two jobs into a single call:

void InitXVM ()
{

// Initialize the XVM
XS_Init ();

// Register the host API with the XVM
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetRandomNumber",

HAPI_GetRandomNumber );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "BlitBG", HAPI_BlitBG );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "BlitSprite", HAPI_BlitSprite );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "BlitFrame", HAPI_BlitFrame );
XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetTimerState",

HAPI_GetTimerState );
}

Because you’ll be loading only one script for the demo, there’s no need to worry about function
visibility within the host API, so I defined everything as XS_GLOBAL_FUNC. Notice also that I decided
to drop the HAPI_ extension within the script; API functions will be known to the scripts with sim-
pler names.

Shutting down the XVM is simply a matter of calling XS_ShutDown (), but because I like to be neat
and consistent about everything, I wrapped it in a corresponding ShutDownXVM () function:

void ShutDownXVM ()
{

XS_ShutDown ();
}

Loading the Necessary Graphics
The loading of the demo’s graphics is really just handled with a few calls to my wrapper API’s
W_LoadImage () function. You can check out the source on the companion CD if you want to see
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the details of how the demo deals with this, but there’s not much worth explaining here. Suffice
it to say, the host application loads the required graphics and makes them globally available to
the rest of the program.

Handling the Script
Lastly, there’s the issue of the script itself. The script is initially loaded with a call to XS_LoadScript
(), which loads the contents of the specified .XSE file into the next free thread:

int iThreadIndex;
if ( XS_LoadScript ( "script.xse", iThreadIndex, XS_THREAD_PRIORITY_USER ) )

W_ExitOnError ( "Could not load script." );

You declare iThreadIndex to store whatever thread index is used by the function. Because this will
be a single-threaded application, you just say XS_THREAD_PRIORITY_USER and forget about it.
Technically you could pass anything here, because the thread priority is irrelevant. If the function
returns a nonzero value, an error has occurred, so the Wrappuh API function W_ExitOnError () is
invoked to display an error message in a message box and terminate the program.

Notice you’re loading a script called script.xse. As you’ll see in the next section, you’ll write two
versions of the script; one in the high-level XtremeScript language, and another in the low-level
XVM assembly language. script.xse will contain the high-level script, whereas asm_script.xse will
contain its low-level counterpart.

Once the script is in memory, it must be started:

XS_StartScript ( iThreadIndex );

The thread is now active in the eyes of the XVM, which allows you to call its functions. When you
want to shut down, you can stop the script with XS_StopScript ():

XS_StopScript ( iThreadIndex );

You don’t actually have to do this, because the XVM will shut down either way, but I’ve included
it for illustrative purposes. Normally, this function only applies when a script needs to be stopped
at an arbitrary time.

The last aspect of the host’s interaction with the script will be the calling of its functions. As you’ll
see in the next section, the script will define two functions: Init (), whose job is to initialize the
script, and HandleFrame (), which is called once per frame and is responsible for drawing and
updating the contents of the screen. Init () is called once before entering the main loop, where-
as HandleFrame () is called repeatedly until the program terminates:

// Let the script initialize the rest
XS_CallScriptFunc ( iThreadIndex, "Init" );
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// Start the main loop
MainLoop
{

// Start the current loop iteration
HandleLoop
{

// Let XtremeScript handle the frame
XS_CallScriptFunc ( iThreadIndex, "HandleFrame" );

// Check for the escape key and exit if it's down
if ( W_GetKeyState ( W_KEY_ESC ) )

W_Exit ();
}

}

XS_CallScriptFunc () is used in both cases instead of XS_InvokeScriptFunc (), because you want
these functions to execute one time and immediately return. At each iteration of the loop,
HandleFrame () is given a chance to draw the next frame and move the alien sprites around. The
rest of this section focuses on how these two functions are implemented within the script.

The Low-Level XVM Assembly Script
The first version of the script will be written in XVM assembly language. Although this makes the
overall logic considerably more complex, it also yields the fastest possible results by ensuring that
nothing is being done unless it absolutely has to. As you’ve seen, this starkly contrasts with the
high-level compiler, which tends to emit far more code than is technically necessary to complete
even small tasks.

This subsection dissects the layout and functionality of the assembly language version of the
script. I’ll run through it segment by segment, so you can see not only how everything works, but
specifically how it’s implemented in XtremeScript.

Constants
There are a number of constant values that will be used throughout the script, so it’s always a
good idea to commit them to globally available constants. However, just like the languages you
learned about in Chapter 6, XtremeScript doesn’t have a const keyword or any other method for
declaring constant values. So, also like Chapter 6, you’ll simulate constants with global variables
and THIS_NAMING_CONVENTION. Unfortunately, XtremeScript imposes further limitations, which
keeps you from initializing these variables with their values in the global scope. You’ll therefore
have to offload the definition of the constants to the Init () function.
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Here are the constants the script will use, in the form of their global declarations:

Var ALIEN_COUNT    ; Number of aliens on-screen

Var MIN_VEL        ; Minimum velocity
Var MAX_VEL        ; Maximum velocity

Var ALIEN_WIDTH          ; Width of the alien sprite
Var ALIEN_HEIGHT         ; Height of the alien sprite
Var HALF_ALIEN_WIDTH     ; Half of the sprite width
Var HALF_ALIEN_HEIGHT    ; Half of the sprite height

Var ALIEN_FRAME_COUNT    ; Number of frames in the
; animation

Var ALIEN_MAX_FRAME      ; Maximum valid frame

Var ANIM_TIMER_INDEX     ; Animation timer index
Var MOVE_TIMER_INDEX     ; Movement timer index

These contents allow you to track the total number of aliens bouncing around, their minimum
and maximum velocities (which will be assigned on a per-alien basis in the Init () function), the
sprites’ dimensions, the total number of animation frames, and the indexes of the timers the host
application will provide for timing the speed of the aliens’ animation and movement.

Global Variables
The script needs a small amount of global data, declared with the following code fragment in the
global scope:

Var Aliens [ 60 ]      ; Sprites

Var CurrAnimFrame      ; Current frame in the alien
; animation

The Aliens [] array stores the 12 on-screen alien sprites. It’s declared with 60 elements so that
each of the 12 sprites can store its five fields (12 * 5 = 60). CurrAnimFrame tracks the current frame
of the animation, which continually cycles from 0 to ALIEN_MAX_FRAME to simulate a constantly spin-
ning object.

Init ()
The Init () function is responsible for initializing the rest of the script, and in the case of
XtremeScript, for defining the constants as well. Beyond this, its main job is cycling through the
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Aliens [] array and updating each sprite’s pseudo-structure. It also resets CurrAnimFrame to zero.
Remember, XtremeScript variables are not initialized and therefore contain unpredictable
garbage values until they’re explicitly defined.

The process of initializing the Aliens [] array is simple but may not appear immediately straight-
forward. Because you’re working with a one-dimensional array, each alien appears at its index
multiplied by five. Therefore, in addition to maintaining an alien counter that increments from 0
to 11 (for the 12 aliens), you also need a separate counter that is incremented by 5 at each itera-
tion of the loop, so you can keep track of the current alien’s base index. From this point, each
“field” of the alien’s simulated structure is just an offset applied to the base address. The alien’s 
X component resides at BaseIndex, the Y is stored at BaseIndex + 1, XVel is at BaseIndex + 2, and 
so on.

Let’s start at the top of the function:

Func Init
{

; ---- Declare locals
; Counters
Var CurrAlienIndex
Var CurrArrayIndex

; Alien array element fields
Var X
Var Y
Var XVel
Var YVel
Var SpinDir

This section of the code declares the local variables you’ll be using for the rest of the function.
CurrAlienIndex is used in the Aliens [] initialization loop to keep track of the current alien,
whereas CurrArrayIndex is used to point to the current element within the array. X, Y, XVel, Yvel,
and SpinDir are used to temporarily store the values of each field. You’ll see more of how these
are used as you move through the function.

The next step is defining each of the constants:

; ---- Initialize the "constants"
Mov          ALIEN_COUNT, 12
Mov          MIN_VEL, 4
Mov          MAX_VEL, 16
Mov          ALIEN_WIDTH, 128
Mov          ALIEN_HEIGHT, 128
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Mov          HALF_ALIEN_WIDTH, ALIEN_WIDTH
Div          HALF_ALIEN_WIDTH, 2
Mov          HALF_ALIEN_HEIGHT, ALIEN_HEIGHT
Div          HALF_ALIEN_HEIGHT, 2
Mov          ALIEN_FRAME_COUNT, 32
Mov          ALIEN_MAX_FRAME, ALIEN_FRAME_COUNT
Dec          ALIEN_MAX_FRAME
Mov          ANIM_TIMER_INDEX, 0
Mov          MOVE_TIMER_INDEX, 1

Next up is the definition of the globals. Aside from the Aliens [] array, which I’ll talk about next,
this just means setting CurrAnimFrame to zero:

; Set the current animation frame to zero
Mov          CurrAnimFrame, 0

The Aliens [] array is all that remains. You start by setting both CurrAlienIndex and
CurrArrayIndex to zero, and declare a label to represent the top of the loop:

; ---- Initialize the alien array
Mov          CurrAlienIndex, 0
Mov          CurrArrayIndex, 0
InitLoopStart:

You’re now inside the loop, so you can start initializing the current alien’s fields. This is done with
two calls to GetRandomNumber (), one of the host API functions defined previously. You’ll want to pass
it the dimensions of the screen, minus the halved width of the alien head, so the aliens will all
appear in valid places, so these values must be pushed onto the stack (and in the proper order):

; ---- Initialize the current alien

; Set the X, Y location
Push         0
Mov          X, 639
Sub          X, HALF_ALIEN_WIDTH
Push         X
CallHost     GetRandomNumber
Mov          X, _RetVal

Push         0
Mov          Y, 479
Sub          Y, HALF_ALIEN_HEIGHT
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Push         Y
CallHost     GetRandomNumber
Mov          Y, _RetVal

Mov          Aliens [ CurrArrayIndex ], X
Inc          CurrArrayIndex
Mov          Aliens [ CurrArrayIndex ], Y
Inc          CurrArrayIndex

The GetRandomNumber () function was specifically written to read its parameters in reverse order;
that is, Y is considered parameter 0, whereas X is considered parameter 1. This affords you, the
caller, the luxury of passing the parameters in the natural X, Y order. Notice also that you use Inc
to increment CurrArrayIndex after setting each field. This allows you to be sure that the next field
you access will be the right one. Also, by the time you’re done with all five fields, CurrArrayIndex
will be automatically positioned at the base index of the next alien. This means you don’t have to
explicitly add five after each iteration of the loop.

The X and Y velocities are then set, using the same technique described previously. The only
major difference here is that MIN_VEL and MAX_VEL are passed to GetRandomNumber ():

; Set the X and Y velocities
Push         MIN_VEL
Push         MAX_VEL
CallHost     GetRandomNumber
Mov          XVel, _RetVal

Push         MIN_VEL
Push         MAX_VEL
CallHost     GetRandomNumber
Mov          YVel, _RetVal

Mov          Aliens [ CurrArrayIndex ], XVel
Inc          CurrArrayIndex
Mov          Aliens [ CurrArrayIndex ], YVel
Inc          CurrArrayIndex

Lastly, the alien’s spin direction is set. This determines which direction he’ll spin as he bounces
around:

; Set the spin direction
Push         0
Push         2
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CallHost     GetRandomNumber
Mov          SpinDir, _RetVal

Mov          Aliens [ CurrArrayIndex ], SpinDir
Inc          CurrArrayIndex

; ---- Move to the next alien
Inc          CurrAlienIndex

; Keep looping until the last alien is reached
JL          CurrAlienIndex, ALIEN_COUNT, InitLoopStart

After the last increment of CurrArrayIndex, you’ll be at the first element of the next alien, which
means you can finish the loop by simply incrementing CurrAlienIndex. This value is then com-
pared to ALIEN_COUNT, the total number of aliens in the scene, to determine whether to jump back
to the top of the loop.

HandleFrame ()
The second and final function defined in the script is responsible for handling each frame by
drawing it to the back buffer, blitting the final result to the screen, and moving everything
around. This function can be boiled down to two main loops: the first loop draws each of the 12
sprites to the screen, whereas the second moves it along its path based on its velocity and checks
for collisions.

Drawing and Blitting the Frame

The first of the two tasks performed by HandleFrame () is drawing and blitting the frame to the
screen. This starts with a host API call to the BlitBG () function:

CallHost     BlitBG

The next step is cycling through each of the 12 alien sprites and blitting them to the screen.
Again, the traversal of the Aliens [] array is dependent on two separate indexes: one for deter-
mining the current alien, and one for tracking the current physical field. Let’s look at the first
block of the code, which starts the loop and reads the alien’s X, Y coordinates from the array:

Mov          CurrAlienIndex, 0
Mov          CurrArrayIndex, 0

DrawLoopStart:
; Get the X, Y location
Mov           X, Aliens [ CurrArrayIndex ]
Inc           CurrArrayIndex
Mov           Y, Aliens [ CurrArrayIndex ]
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Notice that the second Mov instruction isn’t followed by an Inc. This is because when drawing the
sprites, you don’t need to know their velocities. All you care about is their X, Y locations, which
reside within the pseudo-structure at offsets 0 and 1, and the direction in which they’re spinning,
which is found at offset 4. Because of this, offsets 2 and 3 are of no use and must be skipped.
Therefore, after the first Inc, you move from offset 0 to 1. Because the next offset of interest is 4,
you need to use the Add instruction to move ahead by three elements:

; Get the spin direction and determine the final frame
; for this sprite based on it
Add          CurrArrayIndex, 3
Mov          SpinDir, Aliens [ CurrArrayIndex ]
Inc          CurrArrayIndex
JE           SpinDir, 1, InvertFrame
Mov          FinalAnimFrame, CurrAnimFrame
Jmp          SkipInvertFrame

InvertFrame:
Mov          FinalAnimFrame, ALIEN_MAX_FRAME
Sub          FinalAnimFrame, CurrAnimFrame

This block of code determines which frame should be drawn for this particular sprite based on its
spin direction. The basic algorithm here is that if the spin direction is set to zero, the value of
CurrAnimFrame is used. Otherwise, the value of CurrAnimFrame is “inverted” by subtracting it from
ALIEN_MAX_FRAME, which, in effect, causes the animation to run in reverse and thus make the alien
appear as if he’s spinning in the opposite direction. The pseudo-code for this process looks like
this:

if ( CurrAnimFrame == 0 )
AnimFrame = CurrAnimFrame;

else
AnimFrame = ALIEN_MAX_FRAME - CurrAnimFrame;

Based on this, combined with your understanding of how if is represented in assembly, the previ-
ous assembly code should make sense. The last block of code blits the current sprite using the X,
Y coordinates you read from the Aliens [] array, along with the animation frame you calculated
based on CurrAnimFrame and the alien’s spin direction:

; Blit the sprite
Push          FinalAnimFrame
Push          X
Push          Y
CallHost      BlitSprite
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; Move to the next alien
Inc           CurrAlienIndex

; Keep looping until the last alien is reached
JL            CurrAlienIndex, ALIEN_COUNT, DrawLoopStart

Once the frame drawing process is complete, you can call the host API function BlitFrame () to
blit the final frame to the screen:

; ---- Blit the completed frame to the screen
CallHost   BlitFrame

Updating the Sprites and Animation

The second phase of HandleFrame () is updating the animation, moving the sprites along their
paths, and checking for collisions with the boundaries of the screen.

Push         ANIM_TIMER_INDEX
CallHost     GetTimerState
JE           _RetVal, 0, SkipIncFrame

Inc          CurrAnimFrame
JL           CurrAnimFrame, ALIEN_MAX_FRAME, SkipWrapFrame
Mov          CurrAnimFrame, 0

SkipWrapFrame:
SkipIncFrame:

Updating the animation involves
the script’s first encounter with
timers, so the first step is push-
ing ANIM_TIMER_INDEX onto the
stack and calling GetTimerState
(). This will return the status of
the animation timer, which you
can use to determine whether
the frame needs to be updated.
If not, you jump to SkipIncFrame,
which skips the frame incre-
ment. Otherwise, the frame is
incremented with an Inc instruc-
tion. However, you need to wrap
the frame increment around to
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head. For this reason, I suggest using multiple labels
to enhance readability, even in production code.
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zero once it reaches ALIEN_MAX_FRAME, so after each increment you compare the new frame to the
maximum. If it’s less, a jump is made to SkipClipFrame, which prevents the frame index from
wrapping around. Otherwise, you set it to zero.

The last major task is moving the sprites along their paths, which is done in sync with the move-
ment timer. Therefore, this code begins with another host API call to GetTimerState (), this time
with the MOVE_TIMER_INDEX:

; ---- Move the sprites along their paths
Push         MOVE_TIMER_INDEX
CallHost     GetTimerState
JE           _RetVal, 0, SkipMoveSprites

Mov          CurrAlienIndex, 0
Mov          CurrArrayIndex, 0

MoveLoopStart:

Of course, CurrAlienIndex and CurrArrayIndex are reset to zero as well, because this is a new, sepa-
rate loop. Once inside the loop, the first order of business is reading the X, Y location and X, Y
velocities of the current sprite:

; Save the base array index of the element so you can access it later
Push         CurrArrayIndex

; ---- Update the sprites

; Get the X, Y location
Mov          X, Aliens [ CurrArrayIndex ]
Inc          CurrArrayIndex
Mov          Y, Aliens [ CurrArrayIndex ]
Inc          CurrArrayIndex

; Get the X and Y velocities
Mov          XVel, Aliens [ CurrArrayIndex ]
Inc          CurrArrayIndex
Mov          YVel, Aliens [ CurrArrayIndex ]
Inc          CurrArrayIndex

Add          X, XVel
Add          Y, YVel
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Strangely, the first instruction in this block of code pushes CurrArrayIndex onto the stack. You’ll
see why this is done shortly. For now, the real purpose of this code is setting the X, Y, Xvel, and
YVel locals with the appropriate values. XVel and YVel are then added to X and Y, respectively,
which moves the sprite along its path.

Now that you’ve moved the sprite, you need to make sure it hasn’t gone past any boundaries. If it
has, you register this as a collision by inverting the velocity corresponding to the axis on which
the collision occurred. So, if the sprite’s Y coordinate is suddenly less than 0, the Y velocity’s sign
is inverted so the next frame will cause the sprite to move the opposite direction. The one extra
detail here is that the boundaries are not 0, 0, and 639, 479. Rather, half of the sprite’s width is
subtracted from zero and 639, and half of the sprite’s height is subtracted from 0 and 479. This
effectively lets the sprite’s move partially off-screen on all boundaries, which allows the moment
of impact to be centered within the sprite, rather than in one of its corners. Here’s the code:

; ---- Determine if a boundary was hit
Mov           BoundX, 0
Sub           BoundX, HALF_ALIEN_WIDTH
JG            X, BoundX, SkipX0VelFlip
Neg           XVel

SkipX0VelFlip:
Mov          BoundX, 640
Sub          BoundX, HALF_ALIEN_WIDTH
JL           X, BoundX, SkipX1VelFlip
Neg          XVel

SkipX1VelFlip:
Mov          BoundY, 0
Sub          BoundY, HALF_ALIEN_HEIGHT
JG           Y, BoundY, SkipY0VelFlip
Neg          YVel

SkipY0VelFlip:
Mov          BoundY, 480
Sub          BoundY, HALF_ALIEN_HEIGHT
JL           Y, BoundY, SkipY1VelFlip
Neg          YVel

SkipY1VelFlip:

It’s a simple matter of comparing X and Y to the values placed in BoundX and BoundY. You use the
BoundX and BoundY locals so you can perform the subtraction of HALF_ALIEN_WIDTH from each
boundary. An obvious (albeit slight) optimization is to store these values in constants, but I think
this helps to more clearly illustrate the algorithm. If sprite’s X or Y location is beyond its respec-
tive boundary, its corresponding velocity is inverted with the Neg instruction, which flips its sign.
Otherwise, the Neg is jumped past to the nearest Skip*VelFlip label.
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Now that you have the updated sprite locations and velocities calculated in the local variables,
you need to store them in the Aliens [] array so they’ll be available for the next frame. However,
after all of the array reading you’ve done, CurrArrayIndex has been incremented beyond the base
index of the alien. Because you need to write back to the X, Y, Xvel, and YVel fields, you need to
restore the base index. This is why you pushed it onto the stack originally; you can now simply
pop it off, back into CurrArrayIndex, and you’re ready to go:

; --- Restore the base index and write the updated values
Pop      CurrArrayIndex

Mov      Aliens [ CurrArrayIndex ], X
Inc      CurrArrayIndex
Mov      Aliens [ CurrArrayIndex ], Y
Inc      CurrArrayIndex

Mov      Aliens [ CurrArrayIndex ], XVel
Inc      CurrArrayIndex
Mov      Aliens [ CurrArrayIndex ], YVel
Add      CurrArrayIndex, 2

; Move to the next alien
Inc      CurrAlienIndex

; Keep looping until the last alien is reached
JL      CurrAlienIndex, ALIEN_COUNT, MoveLoopStart

And there you have it. The base index is restored, the relevant fields are written back to the array,
and the loop moves on. This wraps up HandleFrame (), and the script in general, for that matter.

Aside from walking you through the development of this script, this section was intended to show
you first hand that writing scripts in pure, hand-written assembly can be a tedious process. The
logic implemented here would be considerably more compact and concise if it was expressed in a
high-level language, which is of course such a language’s primary advantage. Scripting, by its very
nature, is usually meant to be abstract and simplified. Assembly-style scripting is therefore not
very conducive to this philosophy. As a script writer, your focus should be spent on your script’s
logic, not its implementation.

Of course, by the same token, scripting must be fast if it has any chance of keeping up with a game
engine. Because of this, being comfortable with assembly can be a valuable skill, especially in the
case of performance-critical scripts that will run on a frequent, or even frame-by-frame, basis.

The XVM assembly version of the script will be saved as asm_script.xasm and assembled by XASM
to asm_script.xse.
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The High-Level XtremeScript Script
XtremeScript is very similar to C in most respects, which means that writing the script you
labored over in the last section will be a breeze this time through. Most of C’s familiar amenities,
such as while loops, expressions, and so on, are readily at your disposal. You can capitalize on
these features thoroughly to express the script’s logic in a far more succinct manner. This section
is shorter as well; because I’ve already discussed the logic and algorithms behind the script, you
can simply focus on the code itself this time around.

Constants and Globals
The high-level version of the script uses the same constants and globals as its assembly counter-
part, and because even the syntax of such declarations is the same in both languages (minus the
addition of semicolons in XtremeScript, and the fact that keywords are written entirely in lower-
case to mimic the C convention), there’s no need to waste the space reprinting them here.

Importing the Host API
Unlike XVM assembly, which can differentiate between a script call and a host API call by simply
determining whether Call or CallHost was used, XtremeScript allows all function calls to be
expressed with the same syntax, and thus needs some explicit cues from the users to determine
which calls are which. So, the host keyword is used to import the host API’s functions:

host GetRandomNumber ();
host BlitBG ();
host BlitSprite ();
host BlitFrame ();
host GetTimerState ();

Init ()
Let’s jump right into the Init () function. As was the case last time, you begin by defining the
script’s constants, because even XtremeScript can’t do so in the global scope:

func Init ()
{

// ---- Initialize the "constants"
ALIEN_COUNT = 12;
MIN_VEL = 4;
MAX_VEL = 16;
ALIEN_WIDTH = 128;
ALIEN_HEIGHT = 128;
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HALF_ALIEN_WIDTH = ALIEN_WIDTH / 2;
HALF_ALIEN_HEIGHT = ALIEN_WIDTH / 2;
ALIEN_FRAME_COUNT = 32;
ALIEN_MAX_FRAME = ALIEN_FRAME_cOUNT - 1;
ANIM_TIMER_INDEX = 0;
MOVE_TIMER_INDEX = 1;

The first noteworthy difference between what’s going on here and what went on the assembly ver-
sion is the expressions used to define the constants. In assembly, the definition of
HALF_ALIEN_WIDTH as ALIEN_WIDTH divided by two required multiple instructions, whereas you can
do it all in a single line here.

The animation frame counter is then set to zero, which, no matter what language you’re using, is
a simple affair:

// ---- Initialize the globals
CurrAnimFrame = 0;

The Aliens [] array is initialized next, which is where XtremeScript’s high-level, C-style syntax
really gets a chance to shine. Notice how much shorter and clearer everything is, now that you’re
using a language with explicit support for loops, function calls, and expressions:

// ---- Initialize each alien

CurrAlienIndex = 0;
CurrArrayIndex = 0;
while ( CurrAlienIndex < ALIEN_COUNT )
{

// Set the X, Y location
X = GetRandomNumber ( 0, 639 - ALIEN_WIDTH );
Y = GetRandomNumber ( 0, 479 - ALIEN_HEIGHT );

// Set the X, Y velocity
XVel = GetRandomNumber ( MIN_VEL, MAX_VEL );
YVel = GetRandomNumber ( MIN_VEL, MAX_VEL );

// Set the spin direction
SpinDir = GetRandomNumber ( 0, 2 );

// Write the values to the array
Aliens [ CurrArrayIndex ] = X;
Aliens [ CurrArrayIndex + 1 ] = Y;
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Aliens [ CurrArrayIndex + 2 ] = XVel;
Aliens [ CurrArrayIndex + 3 ] = YVel;
Aliens [ CurrArrayIndex + 4 ] = SpinDir;

// Move to the next alien
CurrAlienIndex += 1;
CurrArrayIndex += 5;

}

Although the assembly version of the loop is using Inc and JL instructions to regulate iterations,
while allows you to do everything with a single conditional expression. Furthermore, you no
longer have to deal with the intricacies of pushing parameters and dealing with the _RetVal regis-
ter. Instead, everything is done with a traditional, C-style function call. Lastly, the interaction with
the Aliens [] array is far simpler and more straightforward as well. Now you can directly embed
the addition of the offset into the expression, which is not only clearer, but also temporary.
Unlike Inc, adding an offset to CurrArrayIndex only affects its value within the context of the
expression, saving you the trouble of having to incrementally step through the array after each
read and write.

HandleFrame ()
Aside from declaring the pertinent local variables and such, the first thing HandleFrame () does is
draw the next frame to the back buffer and blit it to the screen. Here’s the entire frame-drawing
process:

BlitBG ();
// ---- Blit each sprite
CurrAlienIndex = 0;
CurrArrayIndex = 0;
while ( CurrAlienIndex < ALIEN_COUNT )
{

// Get the X, Y location
X = Aliens [ CurrArrayIndex ];
Y = Aliens [ CurrArrayIndex + 1 ];

// Get the spin direction and determine the final
// frame for this sprite based on it
SpinDir = Aliens [ CurrArrayIndex + 4 ];
if ( SpinDir )

FinalAnimFrame = ALIEN_MAX_FRAME - CurrAnimFrame;
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else
FinalAnimFrame = CurrAnimFrame;

// Blit the sprite
BlitSprite ( FinalAnimFrame, X, Y );

// Move to the next alien
CurrAlienIndex += 1;
CurrArrayIndex += 5;

}

// Blit the completed frame to the screen
BlitFrame ();

Again, you can’t help but appreciate the huge gains in clarity and brevity that are attributed to
high-level code. In only a few lines, you’re expressing the exact logic necessary to draw each
sprite in the Aliens [] array and blit the results to the screen. Notice that now, the logic for calcu-
lating the final animation frame based on SpinDir is almost identical to the pseudo-code example
listed in the assembly section. Also, look at how much easier it is to access arbitrary fields of the
pseudo-structure; you can simply say Aliens [ CurrArrayIndex + 4 ] to access the fourth offset
past the base index.

And, of course, the final step is updating the animation, moving everything around, and taking
collisions into account. Because this step requires the most conditional logic out of any major
task in the script, this is where you’ll notice the biggest differences between the assembly version
and the high-level version. Here’s the code for incrementing the current animation frame and
wrapping it around to zero if necessary:

// Increment the current frame in the animation
if ( GetTimerState ( ANIM_TIMER_INDEX ) )
{

CurrAnimFrame += 1;
if ( CurrAnimFrame >= ALIEN_FRAME_COUNT )

CurrAnimFrame = 0;
}

How simple is that? Two ifs is all it takes to get the job done. And now, for the crown jewel of it
all, check out the code for moving the sprites around and handling collisions:

// Move the sprites along their paths
if ( GetTimerState ( MOVE_TIMER_INDEX ) )
{
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CurrAlienIndex = 0;
CurrArrayIndex = 0;
while ( CurrAlienIndex < ALIEN_COUNT )
{

// Get the X, Y location
X = Aliens [ CurrArrayIndex ];
Y = Aliens [ CurrArrayIndex + 1 ];

// Get the X, Y velocities
XVel = Aliens [ CurrArrayIndex + 2 ];
YVel = Aliens [ CurrArrayIndex + 3 ];

// Increment the paths of the aliens
X += XVel;
Y += YVel;
Aliens [ CurrArrayIndex ] = X;
Aliens [ CurrArrayIndex + 1 ] = Y;

// Check for wall collisions
if ( ( X > 640 - HALF_ALIEN_WIDTH ) || ( X < -HALF_ALIEN_WIDTH ) )

XVel = -XVel;
if ( ( Y > 480 - HALF_ALIEN_HEIGHT ) || ( Y < -HALF_ALIEN_HEIGHT ) )

YVel = -YVel;
Aliens [ CurrArrayIndex + 2 ] = XVel;
Aliens [ CurrArrayIndex + 3 ] = YVel;

// Move to the next alien
CurrAlienIndex += 1;
CurrArrayIndex += 5;

}
}

Pretty slick, huh? The once-lumbering conditional logic has been reduced to two ifs, whose
expressions now consist of two nested sub-expressions separated by the || operator. Remember,
because you took the simplified route and generalized the relational and logical operators into
the same level of precedence, it’s important to use parentheses to assert the proper level of priori-
ty. You want to evaluate the relational > and < operators first, and then || the results. Either way,
though, this is a huge syntactic improvement over assembly. XtremeScript is clean, clear, and easy
to use.

The XtremeScript version of the script is saved as script.xss and compiled by XSC to script.xse.
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The Results
Unfortunately, XtremeScript’s impressive usability comes at a significant price. The simple fact of
the matter is that in the absence of any form of code optimization on behalf of the compiler, the
high-level equivalent to a hand-coded assembly script will be hugely inefficient and run at a frac-
tion of the speed. You’ve seen the evidence for this throughout the chapter—the amount of stack
manipulation associated with the compilation of even the simplest expression can be staggering.

This is the reason I wanted to make sure you’ve seen and understood the coding of this simple
demo in both XtremeScript and XVM assembly. By compiling the high-level demo with the com-
piler’s -A switch, you can compare the compiler’s assembly output to your own assembly code,
and will undoubtedly notice a truly massive difference. I can’t even begin to list it here in the
book, because it would consume far too many pages. And of course, the reality of the results is
undeniable when the two demos run in succession. The assembly version is definitely fast enough
for most purposes, but the code generated by XSC will need a lot of work before it can be easily
applied to real-world game projects.

Optimization
As I’ve mentioned before, and will mention again, optimization is a hugely complex, math-heavy
topic. There are countless reasons why it’s necessarily out of this book’s league. All is not lost,
however. This section provides a brief rundown of some possible avenues to follow if you’d like to
attempt to optimize the XSC parser and code emitter.

When you really get down to it, what are the main elements of the XtremeScript language? There
are functions, variables, if and while constructs, and that sort of thing. Everything else, really, falls
into the domain of expressions. If you take the time to analyze XSC’s assembly output of this
demo, you’ll find that things like function calls and if and while are implemented in a rather
efficient manner, which shouldn’t be surprising. After all, all a function call consists of is the
pushing of values onto the stack and the execution of the Call instruction. Function calls don’t
get any simpler than that, and that’s exactly what XSC produces. if and while are also quite sim-
ple; they’re nothing but jumps and labels. Implementing an if or while loop by hand in assembly
would vary only slightly from the raw output of the compiler.

What ultimately slows everything down are the expressions that drive everything. The expressions
that represent the parameters pushed onto the stack before a function call. The expression that
defines the condition by which if will execute its true or false block, as well as the expression that
a while loop uses to determine whether to continue iterating. Expressions are unrelated to the
constructs in which they’re used, but due to their ubiquity, are unavoidable. In short, if you want
to increase the compiler’s output quality, expressions are public enemy number one.
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Fortunately, it won’t take a particularly massive amount of brainpower to determine at least basic
optimizations. Any ad hoc optimization you can notice will help, so give it a shot! To get you start-
ed, here are a few general tips to keep in mind:

■ The stack is utilized to an almost criminal degree when parsing an expression, which is
the primary reason that everything is running so slowly. Looking through the demo’s
assembly output, you’ll find that there are even times when values are pushed onto the
stack, only to be immediately popped off. This is obviously unnecessary; the trick is get-
ting the compiler to notice this fact as well.

■ The stack can often be bypassed entirely. In many cases, such as direct assignment and
other simple expressions, values can be directly loaded into _T0 and _T1, or even directly
into their destination variables themselves.

■ Different types of expressions can be parsed and converted to assembly in different ways.
For example, an expression with only two values can be parsed without the stack entirely;
the operands can instead go directly into _T0 and _T1. The negation of a value can also
be done in many cases by simply loading _T0 directly and using the Neg instruction. The
key is noticing patterns or other red flags in an expression as a whole before parsing it.
You might want to consider the idea of storing each statement in a local I-code buffer
before the parsing phase, so you can attempt to notice certain types of expressions and
take their specific forms into account.

■ I implemented XSC with _T0 and _T1 because binary operators will never require more
than two operands. Imagine, instead, however, defining a whole array of temporary regis-
ter variables, and using them instead of the stack for most operations. This would allow
operands and values to move directly into variables rather than flowing in and out of the
stack, and thus allow the execution to perform the operation faster. Ultimately, this
could result in huge speed gains. If a large expression exhausts the array, you can always
fall back on the stack, but because most expressions are rather short (using only a hand-
ful of operators), the array would handle most situations nicely.

As it stands, however, the compiler is definitely too slow for certain purposes. For example, it
wouldn’t be a good idea to run an XSC-compiled script on a per-frame basis in a high-speed first-
person shooter or racing game.

This doesn’t preclude the use of the high-level scripts in all situations, however. RPG cut scenes
and dialogue sequences are a great example of an application that isn’t speed critical and often
requires a great deal of logic to be performed. It’s often necessary to check large numbers of
game flags and their relationships when managing the flow and progression of an RPG’s more
cinematic elements, which makes them a prime candidate for XtremeScript’s graceful ability to
handle complicated logic easily. Puzzle games, adventure games, and non-real time strategy
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games can also benefit from compiled scripts in the same way. Such games often idle for 
long periods of time, waiting for the player to react, and also involve lots of complex logic.
XtremeScript would once again provide a perfectly adequate solution in these cases.

SUMMARY
This is it! After all the buildup and anticipation, you’ve finally created a real, fully working script-
ing system. The completion of this module has something of a domino effect on the system over-
all—by completing the parser module, you subsequently complete the compiler, which, being the
last component of XtremeScript, completes the entire system overall.

What you’ve done here is no trivial task. You’ve designed two complete languages from the
ground up—a low-level assembly language, and a high-level, C-style language. You’ve now imple-
mented them both as well, and created a full-featured, seamlessly embeddable runtime environ-
ment in which they can execute. A complete game-scripting toolset is now at your disposal, and
you’ve been there every step of the way (assuming you haven’t been skipping around like some
degenerate hoodlum).

With custom-built tools this powerful at your fingertips, there are no limits. XtremeScript is easily
capable of expressing virtually any form of scripting logic, allowing the characters, weapons, and
environments of your games to behave with extreme precision and total control (performance
issues notwithstanding). In fact, this is the subject of the next chapter. Now that you’re finished
with XtremeScript, it’s time to put it to use and script a real, complete game with it. You’ll see
how the scripting of a game project is approached, and learn how to intelligently use the system
you’ve spent so much time developing.

ON THE CD
This chapter saw you through the development of XtremeScript’s parser module, which evolved
over the course of four incarnations. Each of these versions is presented separately on the CD in
the Programs/Chapter 15/ folder for you to study and play around with:

■ 15_01/ contains the initial parser module, which interprets code blocks, empty state-
ments, and the full assortment of XtremeScript declarations, via the var, func, and host
keywords.

■ 15_02/ contains the second parser module, upgraded to support simple expressions in
the form of statements.

■ 15_03/ rounds out expression parsing by further upgrading the parser to support the
entire XtremeScript operator set (except for assignment operators), including logical
and relational operators.

15. PARSING AND SEMANTIC ANALYSIS
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■ 15_04/ is the final and complete parser module, which subsequently completes the com-
piler. It adds the full range of XtremeScript statements: assignments, loops, branching,
and so on.

■ XVM Console/ is a standalone version of the XVM that exposes a simple console output
API, used for testing scripts as XSC compiles them. This is also where you’ll find the
source and executables for the Hello, world! and rectangle demos.

■ Alien Demo/ is the bouncing alien head demo you created to test the scripting system
overall. This folder contains both versions of the script—the high-level XtremeScript ver-
sion and the low-level XVM assembly version. It also contains the compiler-generated
.XASM file. In addition, you’ll find the executable version of the scripts, and the
DirectX/Win32 host application.

Each of the parser modules is accompanied by its own separate compiler framework, making the
modules completely self-contained. You can freely run them without the help or presence of the
others, allowing you to focus on specific phases of the parser’s development.

CHALLENGES
Even in the case of this relatively simplistic implementation, a parser is a complicated piece of
software. As such, there are about a million things that can be done differently along the way.
Because of this, you’ll have plenty of challenges to play with in this chapter, including the handful
of small language features that weren’t included in the parser module.

■ Beginner: Using the logic behind ParseFunc (), the function declaration parser, expand
the host keyword to allow parameters to be defined in between the ( and ), just like a
script-defined function. This can come in handy by allowing the compiler to verify the
parameter list passed in host API calls.

■ Intermediate: Expand the var declaration to allow a comma-delimited list of variables to be
declared at once, like var X, Y, Z;. Again, the logic behind ParseFunc () can be dupli-
cated to implement this.

■ Intermediate: Expand the var declaration to allow variables to be defined as they’re
declared, like var Pi = 3.14159;. This can be added easily, mostly by duplicating the
logic behind ParseAssign () and merging it with ParseVar ().

■ Advanced: Implement the for loop, possibly with the preprocessing method described
earlier.

■ Advanced: Implement the ++ and --, both in the prefix and postfix forms. This isn’t quite
as easy as it sounds; remember, these operators actually affect the variables themselves,
not just their value in a temporary sense. If Y ++ appears in an expression, the value of Y
is permanently incremented.

CHALLENGES
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XtremeScript is now a finished, ready-to-use scripting system. From start to finish, you’ve
seen how every aspect of each of its three major components—the assembler, virtual

machine, and compiler—are assembled. All that’s left is applying your work to an actual game, to
get a feel for how scripting really works. The process of doing so is the focus of this chapter.

In this chapter, you’re going to:

■ Design and plan a simple game.
■ Discuss the details involved in implementing the game’s engine.
■ Apply scripting to key elements of the game’s design.
■ Use the XtremeScript system you’ve developed over the course of this book to imple-

ment these scripted elements.

As you can probably imagine, this chapter is the real payoff. All the technology and theory in the
world doesn’t matter if it can’t be easily and directly applied to a game, which is why this book
just wouldn’t be complete without coverage of how scripting is actually used.

To do this, you’re going to start by designing a simple game, and discussing its development. I’ll
start with the initial layout and planning stages, and then talk about how its code, graphics,
sound, and other assets fit together to create a complete game engine. You’ll then augment the
game engine by embedding the XtremeScript virtual machine in it, and use the assembler and
compiler to write scripts that control the behavior of the game’s enemies.

INTRODUCING LOCKDOWN
I wanted to create a game for this chapter that was simple and easy to both implement and
describe. On the other hand, however, I wanted something that was interesting and actually
somewhat engaging, and more than anything else, needed enough complexity to justify scripting
in the first place. For example, although games like Pong and Breakout are often good ways to
illustrate the complete process of designing a game, the opportunities to apply scripting to their
logic aren’t exactly abundant.

The Premise
What I ended up settling on is a basic but reasonably cool little game called Lockdown. The name
comes from the fact that it takes place in a prison-like fortress where your goal is to collect four
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scattered keys and use them to activate some underlying machinery that allows you to escape.
Your character is a levitating droid-type thing designed somewhat after the probe droids sent by
the Empire to Hoth in The Empire Strikes Back. You float around the fortress, picking up keys, and
battling your way to freedom. Along the way, other, different colored droids use varying methods
of attack to slow you down and ultimately destroy you. I spent about a week developing the game
from start to finish; it took a little under seven days to get from the initial ideas to a finished pro-
duction.

It shouldn’t come as a surprise that storyline and setting weren’t a big priority. Although I’m nor-
mally a huge proponent of immersive, cinematic, story- and character-driven games like Metal
Gear Solid and Halo, the focus here is simply getting something finished and working, so you can
test your scripting system on it.

INTRODUCING LOCKDOWN

Same Old Story
Speaking of game storylines and settings, I was at E3 this year (2002 at the time
of this writing), and I must sadly admit that the game industry overall seems to
be in a huge storytelling rut.The level of technology that the average game
developer can leverage these days is enough to turn even the most “out there”
game world into near-perfect reality, but it’s as if there’s no one with anything
original to say anymore. I swear to God, if I hear about one more game whose
“plot” involves “a once prosperous land that’s been ravaged by the forces of
darkness,” I’m going to throw my computer out the window, shave my head, and
join Green Peace.To any developers that may be listening: the “forces of darkness”
need a day off. Give the dark, demon-ridden medieval setting a rest and try
something new.What about a heavily stylized, Grand Theft Auto-style game that
focuses on the mafia during prohibition? Or perhaps a game based in a futuristic
environment—but one that’s only marginally more advanced than the present
day—like the setting in Minority Report? The point is, there are a million unex-
plored avenues that could be taken when designing a game world and the story
that unfolds within it, so try them.There’s no law stating that every game needs
to drop the player hip-deep into skulls and dungeons.The problem with anything
under the umbrella of pop culture, including mainstream video games, however,
is that people are more interested in following the leader than they are with
doing something unique and original. Instead of breaking new ground and chal-
lenging ourselves, all we’re doing is driving an increasingly tired gimmick into the
ground until it reaches critical mass and becomes a joke.Anyway, I just needed
to get that out of my system. Now, you can enjoy the rest of the chapter.
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Initial Planning and Setup
Lockdown is a simple game, so there wasn’t a whole lot that needed to be sorted out beforehand.
I had an idea in my head and knew what it took to make it happen. However, it doesn’t take
much for an attitude like that to degenerate into full-on cockiness, so I decided to avoid the
unfortunate fate that waits all unprepared game developers and take the time to do some formal
planning.

The planning of a sufficiently simple game can be reduced to the following major steps:

■ Game logic and storyboarding. Sure, there’s a premise, but you’re asking for trouble if
you write even one line of code before fully understanding every detail of your game.
This is done by writing your ideas down in text files, jotting notes on paper, and sketch-
ing out concept art and storyboards.

■ Assessing your asset requirements. A game’s assets are the media and resources that drive
its logic and content. This can range from scripts to sprites to sound samples to CD
audio tracks to full motion video. Asset requirements are very specific—saying something
like “I need a room with cool lighting” is virtually meaningless. Rather, it’s important to
articulate your exact requirements down to a near-pixel level. For example, you might
instead say “I need a room with cool lighting, so that’ll entail a number of full-screen
background images for the room itself, a number of frames of animation for doors, and
perhaps additional sprites that can be superimposed over the background to represent
dynamic wear and effects like bullet holes or track marks.” By the time asset planning is
finished, you should know exactly how many resource files you’ll need and exactly how
they’ll be arranged and organized.

■ Planning the code. Once you understand your game to the fullest extent possible, and
have laid out exactly what assets you’ll need, you’re ready to start thinking about code.
This phase involves designing the structure of a sprite engine, thinking about how
resources will be loaded and stored, and working the role of the scripting system into the
grand scheme of things. The result of this phase should be a framework that you can
immediately convert to a general code “skeleton,” which can then be filled out to create
the final game.

Let’s now quickly run through what happened during these phases.

Phase One—Game Logic and Storyboarding
The premise of Lockdown has already been established, but it’s a complete understanding of the
game’s details that’s truly important. To give you an idea of how vital this distinction is, consider
the following. Here, in a single paragraph, is complete synopsis of the Lockdown game.

16. APPLYING THE SYSTEM TO A FULL GAME
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Lockdown takes place in a prison-like fortress inhabited by floating droids. There are three types of
these droids, each of which attacks the player in a different way. The player is also a droid, and is
equipped with a built-in laser cannon that can be used to ward off the attackers. In addition to
destroying the evil droids, the player’s goal is to collect four colored keys, each of which resides in one of
the fortress’s corners, and use them to activate their corresponding key panels in the fortress’s center
room. When all four panels are activated, the player’s droid can escape lockdown and the game has
been won.

Sounds reasonable, right? I mean, I’ve explained the setting, the player’s goal, and the opposing
forces, all in reasonable detail, haven’t I? Although this would certainly be enough to explain how
the game works to a person, it’s hardly what the average software engineer would call a “complete
specification”. Imagine actually sitting down in front of your compiler and attempting to write a
game with nothing more than this!

For example, this little synopsis makes no mention of a title screen or interface. For all we know,
the game’s action begins as soon as the player invokes the executable, and immediately termi-
nates when the objective is fulfilled. We don’t know what sort of damage is taken on behalf of
both the player and enemy droids when they’re attacked. Do they immediately die after one hit,
or can they take a bit of punishment before going down for the count? And how exactly do they
die? Does the droid’s machinery fall apart, does it just disappear altogether, or does its destruc-
tion result in a violent explosion? We have no idea what these droids are supposed to look like,
how exactly the fortress should be designed, or where anything is. We know the keys are found in
the corners and must be dropped off in the center room, but we don’t know anything about the
architecture in between these points. Are they connected with long tunnels, a chain of singular
rooms, or perhaps a sewage system?

As you can hopefully see by now, you need a lot more information than you have at this point.
Although I won’t belabor you with a complete game specification, I am going to walk you through
enough of the game’s details to understand the rest of the chapter and make sense of the overall
project.

The Fortress
As has been mentioned, the game takes place within a prison-like fortress that houses a number
of keys and the enemy droids that are out to destroy the player. What this fortress actually looks
like, however, is important. Because I didn’t want to spend any more time than was absolutely
necessary, I decided against any form of scrolling and instead took the top-down, 2D, screen-by-
screen approach used in games like The Legend of Zelda. The benefits of this approach are many; I
can focus my graphical efforts on a few full-screen backgrounds, rather than fifty thousand tiles
for a scrolling tile engine, the actual coded logic behind screen-by-screen traversal of a game
world is much easier, and lastly, it makes the game a bit easier to play. Many top-down scrolling
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games suffer from the problem of enemies and other hazards “rushing in” from the side of the
screen, because the player’s view restricts him or her from seeing enough of what’s ahead. By the
time the player is able to react, these obstacles have already done their damage. By limiting the
immediate action to a single screen, the player is always aware of the surroundings and can play
accordingly.

This means that the fortress is really just a two-dimensional array of rooms. Because these rooms
need to be connected somehow, I decided to give each room four doors; one facing in each car-
dinal direction. These doors are automatically opened when you approach them, allowing you to
zip around the environment without stopping or slowing down. The rooms, when seen altogeth-
er, form a modest but reasonable game world that’s just large enough to make it worth playing,
but small enough to make the game easy to produce. I wanted to make sure I didn’t commit to
anything that would push the production of the game past a total of six or seven days.

Naturally, the best way to get the idea for the layout of the fortress out of my head and into some
tangible form was a quick and dirty sketch, as can be seen in Figure 16.1.

As you can see, the fortress is five rooms wide and five rooms tall. In each corner you’ll notice a flat,
circular object. You’ll also notice that each of these four rooms is labeled “Key”. This of course refers
to the fact that the four keys players collect throughout the course of the game are stored in these
rooms. The circular objects would become the pedestals upon which the keys are stored.

The center room, marked “Key Room”, is where the players drop off the keys as they collect them.
There are four panels on the floor of this room, each of which of course corresponds to a specific
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A rough sketch of the

fortress.
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key. Each time a key is used to activate a panel, it lights up with the color of the key. The player wins
when all four panels are illuminated.

I should also mention that as an extra atmospheric effect, I decided to make the light in each
room flicker at random, resulting in a subtle but effective visual cue in the style of games like
Resident Evil.

The Enemy Droids
The last detail to cover on the sketch of the fortress map is the fact that every room is marked
with one of three colors: blue, grey, and red. These correspond to the colors of the three types of
enemy droids that inhabit the fortress. Whenever the player enters a new room, a new random
population of droids is spawned to attack the player, and by giving each room a specific droid
type, you can “guard” sensitive areas of the game; for example, you can place the most advanced
droids in the key rooms, but allow the sophistication of the droids to drop off a bit as the players
move farther away from those rooms.

I designed the droids to be simple but self-contained. They’re based primarily around a spherical
“body”, which houses the unit’s brain and laser cannon. Jutting out of this central component are
three small “grabber claws” that round out the design and make it seem more complete. These
design ideas were reflected in more quick-and-dirty sketches, which ended up being the concept
art for the exact look of the droid. Figure 16.2 depicts a sketch that represents the nearly final
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droid design; I ended up making a number of changes in the final model, but this was a reason-
ably close approximation.

The aesthetic differences from one droid to another are actually quite simple. In another deci-
sion made by deadlines, I decided not to waste the time designing three genuinely unique droid
types, and to instead just vary the color. The blue droid is the weakest, the grey droid is more
powerful, and the red droid is the deadliest of all. Aside from color, however, the real difference
between each droid is its behavior, which is where the scripting system will come in. Each droid
will be associated with a particular script, which is executed when that droid is on-screen. Because
each room in the fortress will contain only one unique droid type, this means you’ll only have
one droid-related script running at any one time.

The Blue Droids

The blue droid is the weakest and least intelligent of all three. Its single method attack is moving
randomly around the room in a vague attempt to collide with the players. This brings up an
important point to remember; the players are damaged by contact with enemy droids. The blue
droid appears in the rooms of lowest security—in other words, those that aren’t particularly close
to more sensitive locations like key rooms.

The Grey Droids

The grey droid is a definite step up from its little blue brother. Although its movement is still
more or less random, the grey droid can fire its laser and will do so in the general direction of
the player on a frequent basis. Therefore, despite its less-than-brilliant maneuvering, a group of
grey droids will bombard the players with lasers and produce a formidable challenge. Grey droids
always appear on the outskirts of importance; rather than directly guarding anything, they appear
just outside of the rooms that house something important.

The Red Droids

Last up is the red droid, sitting at the top of the fortress food chain. The red droid further
improves upon the grey droid by combining its ability to fire its laser with movement that actually
makes sense. The red droids constantly reevaluate their location in the room and use that data to
move themselves closer to the players. This results in a pack of droids that not only shoot at the
players, but follow their movements as well. This makes the red droids the “guardians” of the
fortress, which is why they’re always found in the key rooms.

The Player
The player is a droid as well, which allows you to reuse the droid design. To differentiate the play-
er from the enemies, however, he’s white in color. The player droid is of course controlled by the
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keyboard, allowing the users to move him around and fire his laser at will. This section will cover
the major aspects of controlling the player droid, but the majority of what I’ll discuss here applies
to the enemies as well. I’ll explain this relationship in more detail as the chapter progresses.

Movement and Firing

The two primary actions of the player are moving and firing. The player droid can move in any
of eight directions—north, south, east, and west, along with the four diagonals. To cut down on
the number of sprites I had to draw, however, I decided to limit the player’s firing options—
although you can move in eight directions, you can only shoot in the four cardinal directions. It’s
a lame restriction I know, but it saved some time.

The Laser

Speaking of firing, the lasers themselves are more or less what you’d expect; long strips of color
that move quickly through the room and cause damage to whatever they run into. Because both
the player and enemies have the ability to shoot lasers, I took another cue from Star Wars and
made the player’s laser a yellowish green, and the enemies’ a pinkish red. They also make differ-
ent sounds.

Lasers can move in any of the four cardinal directions, and have a long enough range to always
cross the width or height of the room, regardless of where they were fired from. The only thing
that can stop them is a collision with a droid.

Graphically, the laser is represented with a number of sprites. Right off the bat, there’s the issue
of drawing the laser for each of the four directions (although it could be done with only two). In
addition, however, I threw in an extra effect that causes the beam to quickly transform from a
bulbous, blob-like mass as it’s first fired to a thin, focused beam. To do this, four sprites were
needed for each direction, which I sketched out in Figure 16.3.

INTRODUCING LOCKDOWN

Figure 16.3

A sketch of the four

frames of animation

depicting a focusing

laser.
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Damage and Destruction

Naturally, a big part of the game is taking damage and occasionally being destroyed. 
Because of this, each droid in the game maintains an “energy level” that determines how 
close it is to destruction. The maximum amount of energy allowed is eight points. 
Furthermore, because the game doesn’t feature
power-ups of any kind, I decided to constantly
replenish the player droid’s energy on a slow
but regular basis. Once approximately every
three seconds, the player will recover another
point of energy. As you’ll see, though, this
hardly makes the game easy when the action
gets hot and heavy enough.

Eventually, however, many droids will meet an
untimely demise. This is handled with both the
visual and auditory aspects of an explosion; a
fiery animation replaces the droid’s on-screen
presence, accompanied by the proper sound
effects.

The Keys
The last major in-game components of Lockdown are the keys. There are four keys in all, each of
which is necessary to complete the game. As has been mentioned a number of times already, the
keys are stored in the fortress’s four corner rooms. The keys are differentiated by color—red, yel-
low, green, and blue. These colors correspond to the colored lights on the four key panels locat-
ed in the central key room. The object of the game is to carry each of the four keys, in any arbi-
trary order, into the key room and use them to activate their respective panels.

The visual design of the keys went back and forth a number of times as the game progressed,
starting with the handful of initial ideas in Figure 16.4. I started out with a more traditional
jailor’s key style, but with something of a radial, Aztec spin. I bounced around through some fur-
ther ideas, one of which reminded me of some of the newer keys they’re using for luxury cars
these days. I ended up deciding on a much different design, however, looking more like some
sort of abstract emblem than a key.

Although the final design of the key didn’t show up in any of the sketches, Figure 16.5 presents
one that came pretty close.

Lastly, there were the issues of the key pedestal and the colored panels. Fortunately, these were
much simpler to design and were done immediately, as shown in Figure 16.6.
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NOTE
You’ll also notice as you play that
droids are immediately repopulated if
you leave and reenter the room after
destroying them.Although this doesn’t
make a great deal of logical sense, and
could be considered a minor annoy-
ance in some cases, it adds an extra
challenge when the player has to back-
track. Besides, if it’s good enough for
Castlevania: Symphony of the Night, it’s
good enough for Lockdown.
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The Overall Package
Lastly, it was important to sketch out what the average game screen would look like, especially
with the interface superimposed over it. The end result is what I call “the overall package,” and
attempts to prototype what the game will actually look like when running. Figure 16.7 is a sketch
of the overall package I was going for. Note the minimalist interface; all you need is a readout of
your energy and the keys you’ve collected.

INTRODUCING LOCKDOWN

Figure 16.4

Early concept sketches

for the keys.

Figure 16.5

The last concept

sketch for the key

design, coming close 

to the final version.
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Phase Two—Asset Requirement Assessment
So you know what everything needs to look like, more or less. The reality of graphics, however, is
that even simple objects are often reduced to countless individual bitmaps, all of which must be
stored and managed somehow.

Ultimately, the assets of Lockdown were reduced to three major groups—graphics, sound, and
scripts.
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Graphics
The graphics of the game are stored in the Gfx/ directory, so feel free to check out the individual
.BMP files as you read (as stated in the “On the CD” section at the end of the chapter, you can
find the finished, ready-to-play Lockdown game in Programs/Chapter 16/Lockdown/Executable/).

The Fortress

The first and most important graphical step was creating the fortress. Because the player is never
in more than one room at once, this really just boiled down to the room graphics. Although the
logical choice for generating the room graphics would be rendering them in a 3D modeling
package, I just ended up doing it by hand, entirely in Photoshop. The final room is composed 
of a large grated floor, surrounded by four dark walls and the bluish light emanating from the
sconces mounted on the sides of each door. Overall I wanted something moody and atmospheric,
and when combined with the flickering light effect found in the final game, I think I got it.
Figure 16.8 contains the background used as the basis for all of the rooms.

The Droids

Unlike the fortress, which was mostly a static and unchanging image, the droids are in constant
motion. To make things easy on myself, I modeled and rendered them in 3ds max, allowing me
to easily change their colors, generate sprites from any angle, and alter or animate the lighting.
Having a flexible 3D model of a game’s characters also makes static title screens very easy to
pump out. Figure 16.9 is a rendering of the basic droid model, and Figure 16.10 is the game’s
title screen.

INTRODUCING LOCKDOWN

NOTE
The wrapper API I developed for use with this book was designed to be
as simple as possible.This meant that using bitmap templates, a com-
mon technique wherein multiple individual sprites and bitmaps (often
frames of an animation) are stored in a single file, was foregone in favor
of simply loading individual bitmaps directly from their files and into
memory.The result of this decision is that the Gfx/ directory of
Lockdown has quite a few more files than it would have otherwise.To
make things manageable, however, I’ve enforced a strict and verbose
directory structure that keeps the files organized.
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Figure 16.9

The droid model,

rendered in 3ds max.

Figure 16.8

A typical room 

background.
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The Keys

The keys were also rendered in max, and were composed of very basic geometry. Again, however,
the aid of a 3D modeler allowed me to convert my simple mesh into a complete animation quite
easily. Figure 16.11 is a rendering of a Lockdown key.

The Explosions

Explosions are always tricky when making a game. They usually require too much fluid detail and
animation to draw by hand, and volumetric/combustion plug-ins for 3D packages that look even
remotely realistic are usually orders of magnitude more expensive than the average home user
can afford. I ended up sampling footage of actual explosions from the Pyromania CD, a disc con-
taining stock footage of real explosions for use by filmmakers and game developers produced by
a company called Visual Concept Entertainment.

Sound
Sound is at the same time one of the most important and overlooked aspects of game develop-
ment. True immersion and atmosphere simply isn’t going to happen without the right ambience
and foreground effects, and even though Lockdown is really just a simple vehicle for testing and

INTRODUCING LOCKDOWN
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demonstrating the scripting engine, I figured it’d be worth throwing in a few effects to make
things feel more complete.

Lockdown’s sound effects can be found in the Sound/ directory.

Effects

The sound effects are your typical fair—lasers, explosions, and so on and so forth. They originally
came from the General 6000 sound collection by Sound Ideas (http://www.sound-ideas.com/),
and were further processed using SoundForge and CoolEdit Pro to refine the sounds and make
them a bit more uniform and conducive to the game’s atmosphere.

Music

There’s very little music in the game, but I did throw in a little “theme song” in the beginning.
It’s a sort of an “Inspector Gadget meets the Atari 2600” sounding number, which I also got from
a Sound Ideas stock CD.

For some reason I thought the idea of using the Friends theme song instead would have been hys-
terical. You can thank Andre’ Lamothe himself for making sure that didn’t happen.

16. APPLYING THE SYSTEM TO A FULL GAME
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Scripts
The last of the game’s major assets are the scripts. Deciding what to script was a somewhat tricky
issue, as the final decision can easily lie anywhere on the spectrum between too much and too lit-
tle. For the sake of simplicity, however, I decided to choose a small and focused domain for the
scripts to handle exclusively, rather than pummel the engine (and the reader) with huge
amounts of dull and faceless scripts doing menial tasks.

So, scripts are almost entirely focused on the behavior of the enemy droids, which is the most logi-
cal approach. This is because details like those of the game engine are more or less static; you know
exactly what the engine needs to do, and how it needs to do it. In the case of the droids, however,
it’s important to have the flexibility and capability to make impulsive changes that scripting provides.
This also allows additional droids to be added to the game quite easily at any point in the future.

The Droids

There are three different droid types in the game, so it’s understandable that three separate
.XSEs are needed. These are Blue_Droid.xse, Grey_Droid.xse, and Red_Droid.xse. Each script con-
trols a different droid type, as is obvious from the names. I’ll discuss these scripts in much more
detail in the following sections.

Ambience

Although droid behavior is the focus of the scripting in Lockdown, I also threw in one extra
script, Ambient.xse, to automatically control the ambient effects in the game. As you’ll see later,
this is a simple script whose only real job is to flicker the lights in the fortress’s rooms.

Before getting into the code, check out Figure 16.12, which presents the game’s “How to Play”
screen.

Phase Three—Planning the Code
So far, Lockdown has been planned with a reasonable level of detail, and you have a good under-
standing of what sort of assets the game will need. You’re now in a position to safely begin plan-
ning the game’s code.

Game States
As is often the case with modern games, Lockdown was designed as one big state machine. This
means that at each iteration of the game’s main loop, it can be in any of a number of separate
states; be it the title screen, the game-over screen, or the actual game play. The passing of time as
well as input from the players provide cues for the game engine to transition to another state,
thereby advancing the game. Recall that state machines were also used as the basis for the lexical
analyzer in Chapter 13.

INTRODUCING LOCKDOWN
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Lockdown’s State Machine

One of the benefits of the state machine approach to game design is that it allows the entire lifes-
pan of the game, from beginning to end, to be planned out with a single state diagram. This is a
great way to quickly and easily get a handle on exactly how things relate to each other before writ-
ing any actual code, and was my first step in planning the code layout for Lockdown. My sketch
of the game’s state machine is presented in Figure 16.13.

What this is basically saying is that the game starts off by initializing itself, and immediately transi-
tions to the title screen state. From here, there are two options—starting a new game or exiting.
If the exit option is chosen, the game ends there. Otherwise, the state transitions to the “How to
Play” screen, and remains there until a key is pressed. The next state is the “Loading...: screen,
which lets the players know that the game’s assets are being loaded.

From here, the state transitions to the actual game play, which runs until one of a number of
events occurs. The first is pressing the Enter key, which brings up the Zone Map screen that lets
the players know where in the fortress they are. The next events that can kill the main game loop
are winning or losing the game. In either case, the game transitions to a state that displays a full-
screen image either congratulating the player in the event of a win, or, if the player is destroyed,
mocking his clearly awful hand-eye coordination and insulting his ethnicity (well, not really, it just
says “Game Over”). Both of these states wait for a keypress before transitioning back to the title
screen state, where the process begins again.
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Screen.
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SCRIPTING STRATEGY
Because this isn’t a book about general game programming, the actual development of
Lockdown’s engine isn’t particularly relevant (or even really all that interesting; it’s not exactly a
Halo-killer). Assuming the engine works, which it does, all you really care about now is using
XtremeScript to control the droids.

SCRIPTING STRATEGY
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The scripting strategy is simple; you want to run a single script in the background that controls
the environment’s ambient effects (in other words, makes the room lights flicker), as well as run
any of three droid-controlling behavior scripts. These scripts need to be loaded up front, and,
during the execution of the game, run for as long as they’re needed.

The remainder of this section focuses on specific areas of the code behind Lockdown, which can
be found on the CD in Programs/Chapter 16/Lockdown/Source/.

Integrating XtremeScript
Before you can do anything, the XVM needs to be embedded into the Lockdown engine. All this
means is including xvm.h in the main Lockdown source file and linking xvm.cpp with the project.
Once inside, you can use XS_Init () and XS_ShutDown () to control the lifespan of the virtual
machine, and you’re ready to go.

Inside Lockdown’s Init () function, the following line of code is added:

XS_Init ();

And, of course the game’s ShutDown () function contains this:

XS_ShutDown ();

The Host API
The host API used by the scripts you’re about to write doesn’t need to be particularly extensive,
but it does need to be well equipped enough to provide basic information about the location and
status of the player and enemy droids, along with the ability to manipulate the droids as well.

Rather than go into much detail on why these functions were chosen now, I’m just going to list
them and briefly explain their tasks. It will become clear why they’re necessary when you write
the scripts that use them in the next section. Furthermore, I
won’t even go into their implementation; these functions
are specifically designed to work with the Lockdown game
engine, which means it’d take at least a superficial overview
of how the engine works. Because the engine isn’t meant to
be the focal point of this chapter, I don’t want to shift the
attention from scripting and will leave them unexplained.
Of course, you’re free to check them out yourself in the
Lockdown source code, which shouldn’t be too hard
because none of these functions is more than a handful of
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lines anyway. Besides, they should all be self-explanatory to begin with; anyone with even a basic
understanding of 2D game programming should feel right at home.

Miscellaneous Functions
int GetRandInRange ( int Min, int Max )

This function returns a random integer value between Min and Max, inclusive.

void ToggleRoomLights ()

Calling this function will toggle the lights in the room, from either light to dark or dark to light.
You’ll make use of this function in the ambience script.

Enemy Droid Functions
void MoveEnemyDroid ( int DroidIndex, int Dir, int Dist )

Calling this function will move the specified index in the specified direction with the specified
distance.

int GetEnemyDroidX ( int DroidIndex )
int GetEnemyDroidY ( int DroidIndex )

These functions are used together to get the X, Y location of an enemy droid.

int IsEnemyDroidAlive ( int DroidIndex )

This function returns TRUE if the specified droid is alive, and FALSE otherwise.

void FireEnemyDroidGun ( int DroidIndex )

Calling this function causes the specified droid to fire its laser cannon in whatever direction it
happens to be facing.

Player Droid Functions
int GetPlayerDroidX ()
int GetPlayerDroidY ()

These functions are used to determine the player’s X, Y location on-screen.

Figure 16.14 shows Lockdown as the player wipes out some enemies.

SCRIPTING STRATEGY
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Registering the Functions
The Lockdown host API is registered with the XVM in the game’s Init () function, right after
the call to XS_Init (). As you can see, each of the functions are global, because there’s really no
practical reason to fence certain functions off to certain scripts:

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetRandInRange",
HAPI_GetRandInRange );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "ToggleRoomLights",
HAPI_ToggleRoomLights );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "MoveEnemyDroid",
HAPI_MoveEnemyDroid );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetEnemyDroidX",
HAPI_GetEnemyDroidX );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetEnemyDroidY",
HAPI_GetEnemyDroidY );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "IsEnemyDroidAlive",
HAPI_IsEnemyDroidAlive );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "FireEnemyDroidGun",
HAPI_FireEnemyDroidGun );
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XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetPlayerDroidX",
HAPI_GetPlayerDroidX );

XS_RegisterHostAPIFunc ( XS_GLOBAL_FUNC, "GetPlayerDroidY",
HAPI_GetPlayerDroidY );

Writing the Scripts
Writing the scripts is the fun part, and isn’t particularly difficult. You have three scripts to write in
total—the ambience script which runs constantly, and three droid behavior scripts that run indi-
vidually. Let’s have a look at each.

The Ambience Script
The ambience script, found in Ambient.xasm|xse, is a very small and simple script that randomly
flickers the lights in the room. The game engine constantly runs it, allowing the lights to appear
as if they’re running in the background. The script is so simple that I didn’t even feel the need to
waste the extra instruction cycles on a high-level script, and instead wrote it directly in XVM
assembly.

; ---- Directives -----------------------------------------------------------

SetPriority 20

; ---- Main -----------------------------------------------------------------

Func _Main
{

; Enter the main loop
LoopStart:

; Get a random number between 0 and 50, inclusive
Push        0
Push        50
CallHost    GetRandInRange

; If the number was 1, flicker the lights
JNE         _RetVal, 1, SkipToggleLights
CallHost    ToggleRoomLights

SkipToggleLights:

Jmp    LoopStart
}

SCRIPTING STRATEGY
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All the script needs is a _Main () function that starts a simple loop. This loop runs infinitely, allow-
ing it to continually execute the game’s main loop. At each iteration, the host API function
GetRandInRange () is called to get a random number between 0 and 50. If this number is 1, the
lights toggle. When this is executed at runtime, the frequency of 1’s in this range provides a nice
flicker effect.

You’ll also notice that the SetPriority function is asking for a time slice whose duration is 20. 
For reasons I’ll explain in a later section, this isn’t referring to 20 milliseconds, but rather 20
instruction cycles. Again, expect a full explanation of this in a moment; just make a mental note
of it for now.

The Blue Droid’s Behavior Script
The script that controls the blue droid is much more complicated than the ambience script, so I
wrote it in XtremeScript. The blue droid’s “AI” is really just a random number generator; it uses
the GetRandInRange () function repeatedly to generate new paths, and then incrementally follows
them. Let’s start by taking a look at the code, which you can find in Blue_Droid.xss:

// ---- Host API Imports --------------

host GetRandInRange ();
host MoveEnemyDroid ();
host GetEnemyDroidX ();
host GetEnemyDroidY ();
host IsEnemyDroidAlive ();

// ---- Main -------------------------

func _Main ()
{

// Droid index counter
var CurrDroid;
CurrDroid = 0;

// Enter the main loop
while ( true )
{

// If the droid is alive, move it
if ( IsEnemyDroidAlive ( CurrDroid ) )
{

16. APPLYING THE SYSTEM TO A FULL GAME



1163

// Calculate a new direction, distance and speed
var Dir;
var Dist;
var Speed;

Dir = GetRandInRange ( 0, 7 );
Dist = GetRandInRange ( 3, 20 );
Speed = GetRandInRange ( 5, 12 );

// Move the droid along the path
while ( Dist > 0 )
{

MoveEnemyDroid ( CurrDroid, Dir, Speed );
Dist -= 1;

}
}

// Move to the next droid
CurrDroid += 1;
if ( CurrDroid > 7 )

CurrDroid = 0;
}

}

The script starts by importing the required host API functions using the host keyword. Within the
_Main () function, a loop continually executes that cycles through each droid, picks a random
path, and moves it along that path until it reaches its destination. To save time, the script only
operates on droids that are alive, a check it makes with the IsEnemyDroidAlive () function. To
actually facilitate the physical movement of the droid, the host API function MoveEnemyDroid ()
is used.

The beauty of this time-slicing system is that it allows you to write individual scripts as if they’re
the only thing actually executing, even though they’re sharing time with the ambience script and
the game engine itself.

The Grey Droid’s Behavior Script
The grey droid ups the ante a bit by adding the capability to shoot at the players. Although its
movement is random, the direction it fires its weapon is based on the player’s location. Here’s the
script, which is available on the CD as Grey_Droid.xss:

SCRIPTING STRATEGY
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// ---- Host API Imports -------------

host GetRandInRange ();

host MoveEnemyDroid ();
host GetEnemyDroidX ();
host GetEnemyDroidY ();
host GetEnemyDroidDir ();
host IsEnemyDroidAlive ();
host FireEnemyDroidGun ();

host GetPlayerDroidX ();
host GetPlayerDroidY ();
host GetPlayerDroidDir ();

// ---- Constants ------------

// Directions

var NORTH;
var SOUTH;
var EAST;
var WEST;

// ---- Main -----------------

func _Main ()
{

// Initialize our "constants" to values that correspond
// with Lockdown's internal direction constants
NORTH = 0;
EAST = 2;
SOUTH = 4;
WEST = 6;

// Droid index counter
var CurrDroid;
CurrDroid = 0;
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// Enter the main loop
while ( true )
{

// If the current droid is alive, handle its behavior
if ( IsEnemyDroidAlive ( CurrDroid ) )
{

// The current direction, distance and speed
// of the droid's movement
var Dir;
var Dist;
var Speed;

// The droid's X, Y location
var EnemyDroidX;
var EnemyDroidY;

// The player's X, Y location
var PlayerDroidX;
var PlayerDroidY;

// Generate a random path to follow
Dir = GetRandInRange ( 0, 7 );
Dist = GetRandInRange ( 3, 20 );
Speed = GetRandInRange ( 5, 12 );

//  Move the droid along the path
while ( Dist > 0 )
{

// Shoot occasionally
if ( GetRandInRange ( 0, 8 ) == 1 )
{

// Get the enemy's location
EnemyDroidX = GetEnemyDroidX ( CurrDroid );
EnemyDroidY = GetEnemyDroidY ( CurrDroid );

// Get the player's location
PlayerDroidX = GetPlayerDroidX ();
PlayerDroidY = GetPlayerDroidY ();
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// Use these locations to face the
// droid in the proper direction when shooting
if ( EnemyDroidX < PlayerDroidX )
{

Dir = EAST;
MoveEnemyDroid ( CurrDroid, Dir, 0 );

}
else if ( EnemyDroidY < PlayerDroidY )
{

Dir = SOUTH;
MoveEnemyDroid ( CurrDroid, Dir, 0 );

}
else if ( EnemyDroidX > PlayerDroidX )
{

Dir = WEST;
MoveEnemyDroid ( CurrDroid, Dir, 0 );

}
else if ( EnemyDroidY < PlayerDroidY )
{

Dir = NORTH;
MoveEnemyDroid ( CurrDroid, Dir, 0 );

}

// Fire the laser
FireEnemyDroidGun ( CurrDroid );

}

// Increment the droid's position
MoveEnemyDroid ( CurrDroid, Dir, Speed );
Dist -= 1;

}
}

// Move to the next droid
CurrDroid += 1;
if ( CurrDroid > 7 )

CurrDroid = 0;
}

}
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For the most part, this script mirrors the functionality of blue_droid.xss. The major difference is
that now, as the droid moves, it randomly fires at the player. Once again, you use GetRandInRange
() to give the droid a 1 in N chance to fire at each step. Instead of simply firing the weapon, how-
ever, the enemy’s and player’s location is used to determine which direction it should face before
firing, to make it more likely that the player will be struck. MoveDroid () is used to move the droid
in this direction, but with a distance of 0—this causes the droid to turn to face the player without
actually moving towards her.

Note also that once again, you’re simulating constants with globals. The constants refer to the
cardinal directions, which makes the direction parameter accepted by MoveEnemyDroid () more
readable. These globals are initialized when _Main () starts, and their values correspond to the
values used by the Lockdown engine.

The Red Droid’s Behavior Script
The last droid to cover is the red droid, whose script provides the most advanced behavior and
can be found in Red_Droid.xse. The logic here once again builds on the previous droid. While
retaining the capability to fire at the player, the red droid can also move towards the player’s loca-
tion, rather than just stumble around randomly. When applied to every droid in the room, this
creates a subtle “swarming” effect. Check out the code:

// ---- Host API Import --------------

host GetRandInRange ();

host MoveEnemyDroid ();
host GetEnemyDroidX ();
host GetEnemyDroidY ();
host GetEnemyDroidDir ();
host IsEnemyDroidAlive ();
host FireEnemyDroidGun ();

host GetPlayerDroidX ();
host GetPlayerDroidY ();
host GetPlayerDroidDir ();

// ---- Constants ----------------

// Directions
var NORTH;
var SOUTH;
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var EAST;
var WEST;

// ---- Functions --------------
/*************************************
*
*    GetPlayerFaceDir ()
*
*    Returns the direction in which an enemy droid
*    should face in order to face the player.
*/

func GetPlayerFaceDir ( CurrDroid )
{

// The specified enemy's location, as well as the player's
var EnemyDroidX;
var EnemyDroidY;
var PlayerDroidX;
var PlayerDroidY;

// Get the locations
EnemyDroidX = GetEnemyDroidX ( CurrDroid );
EnemyDroidY = GetEnemyDroidY ( CurrDroid );
PlayerDroidX = GetPlayerDroidX ();
PlayerDroidY = GetPlayerDroidY ();

// Perform some simple checks to determine the optimal direction
if ( EnemyDroidX < PlayerDroidX )

return EAST;
else if ( EnemyDroidY < PlayerDroidY )

return SOUTH;
else if ( EnemyDroidX > PlayerDroidX )

return WEST;
else

return NORTH;

// Return north by default
return NORTH;

}
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// ---- Main ----------------------------------------------------------------

func _Main ()
{

// Initialize our "constants" to values that correspond
// with Lockdown's internal direction constants
NORTH = 0;
EAST = 2;
SOUTH = 4;
WEST = 6;

// Droid index counter
var CurrDroid;
CurrDroid = 0;

// Enter the main loop
while ( true )
{

// If the droid is active, move it
if ( IsEnemyDroidAlive ( CurrDroid ) )
{

// Calculate a new path in the direction of the player
var Dir;
var Dist;
var Speed;

Dir = GetPlayerFaceDir ( CurrDroid );
Dist = GetRandInRange ( 3, 20 );
Speed = GetRandInRange ( 5, 12 );

// Move the droid along the path
while ( Dist > 0 )
{

// Occasionally fire the laser
if ( GetRandInRange ( 0, 8 ) == 1 )
{

// Make sure to face the player when doing so
Dir = GetPlayerFaceDir ( CurrDroid );
FireEnemyDroidGun ( CurrDroid );

}
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// Increment the droid's positions
MoveEnemyDroid ( CurrDroid, Dir, Speed );
Dist -= 1;

}
}

// Move to the next droid
CurrDroid += 1;
if ( CurrDroid > 7 )

CurrDroid = 0;
}

}

This final script runs the gamut of host API functions, importing them all. It also defines a func-
tion of its own, GetPlayerFaceDir (). Because the red droid needs to both move and fire in the
player’s direction, I decided to write a single function that could be called whenever it was neces-
sary to determine which direction the droid should face in order to face the player. The function
works by using host API functions to determine both the enemy’s and player’s location, and uses
simple logic to derive a facing direction from those two coordinates.

Figure 16.15 portrays the player taking out the few remaining red druids in a key pedestal room.
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Within the _Main () function, things look more or less familiar. At each cycle through the loop,
the next droid in the list is assigned a path to follow, except you’re now using GetPlayerFaceDir ()
to determine which direction to use. This is how the red droid manages to track the players as
they move around the room. Within the movement loop, the frequency of shots fired from the
droid’s laser cannon is regulated in the same manner as the grey droid; by giving it a 1 in N
chance.

Compilation
Compiling the scripts is a simple matter of using the XSC compiler, but it’s important to note
that all three of the droid behavior scripts are compiled with a user-defined priority of 60, like so:

XSC Red_Droid.xss -P:60

Again, just as was the case with the ambience script, the 60 doesn’t refer to milliseconds, but rather
to instructions. I’m about to discuss why, but in the meantime, just remember the number 60.

Loading and Running the Scripts
That wraps up the discussion of the scripts, so it’s time to load them into the engine. The follow-
ing code is added to the game’s Init () function, just after the call to XS_Init () and the registra-
tion of the host API:

XS_LoadScript ( "Scripts/Ambient.xse", g_iAmbientThreadIndex,
XS_THREAD_PRIORITY_USER );

XS_LoadScript ( "Scripts/Blue_Droid.xse", g_iBlueDroidThreadIndex,
XS_THREAD_PRIORITY_USER );

XS_LoadScript ( "Scripts/Grey_Droid.xse", g_iGreyDroidThreadIndex,
XS_THREAD_PRIORITY_USER );

XS_LoadScript ( "Scripts/Red_Droid.xse", g_iRedDroidThreadIndex,
XS_THREAD_PRIORITY_USER );

Note that each call to XS_LoadScript () passes the XS_THREAD_PRIORITY_USER flag, telling the loader
to respect the script-defined priority value rather than overwriting it.

Also, the thread index for each script is saved in a global. These four indexes are globally defined
so that any part of the Lockdown engine can refer to the scripts to which they’re associated:

int g_iAmbientThreadIndex;            // Ambient script thread index
int g_iBlueDroidThreadIndex;          // Blue droid script index
int g_iGreyDroidThreadIndex;          // Grey droid script index
int g_iRedDroidThreadIndex;            // Red droid script index
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Within the main loop of the game, XS_RunScripts () is called once per frame. This handles any and
all running scripts, but the real issue is when and how these scripts should be initially activated.

In the case of the ambience script, you want it running at all times—regardless of what room the
player is in. Because of this, the following line appears whenever the game switches into the game
play state:

XS_StartScript ( g_iAmbientThreadIndex );

XS_StopScript () is then called with the same parameter when the game switches back out of the
state. The droids are trickier, however, because they depend entirely on the current room. To
understand how this works, check out the following excerpt from the Lockdown engine. It’s from
a function called InitRoom (), which is called whenever the player enters a new room to set every-
thing up. In addition to the function’s other tasks, it uses a switch block to determine which
room type is being entered, and starts and stops the droid scripts as necessary:

switch ( iType )
{

case ROOM_TYPE_NORMAL:
XS_StartScript ( g_iBlueDroidThreadIndex );
XS_StopScript ( g_iGreyDroidThreadIndex );
XS_StopScript ( g_iRedDroidThreadIndex );
break;

case ROOM_TYPE_GUARD:
XS_StopScript ( g_iBlueDroidThreadIndex );
XS_StartScript ( g_iGreyDroidThreadIndex );
XS_StopScript ( g_iRedDroidThreadIndex );
break;

case ROOM_TYPE_PEDESTAL:
XS_StopScript ( g_iBlueDroidThreadIndex );
XS_StopScript ( g_iGreyDroidThreadIndex );
XS_StartScript ( g_iRedDroidThreadIndex );
break;

}

The ROOM_TYPE_NORMAL flag refers to the lowest security rooms; they don’t contain keys, and don’t
border the key pedestal rooms. Because of this, they contain blue (weak) droids. The next room
type is ROOM_TYPE_GUARD, which also doesn’t contain a key, but directly borders a key pedestal
room, and therefore requires slightly higher security via the grey droids. The last type is the
ROOM_TYPE_PEDESTAL room, which houses a key and requires the defense of the red droids.
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In conjunction with the constant calling of XS_RunScripts () in the main loop, the logic discussed
in this section regulates the activity of the loaded scripts. The ambient script runs at all times dur-
ing the game play state, and three droid scripts are flipped on and off as the player navigates
through the rooms of the fortress.

Figure 16.16 shows the player in the key room, with the red and green panels activated.
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The red and green

panels of the key room

activated in Lockdown.

Speed Issues
The last issue to deal with is the fact that XtremeScript isn’t exactly blazingly fast. The system was
intentionally designed to be educational and readable above all else, and although this hopefully
aided your understanding of what was going on, it certainly takes its toll on performance. The
runtime environment has performance issues of its own, but the real culprit here is the code gen-
erated by the XtremeScript compiler for evaluating expressions. Flow and control constructs like
if, while, and so on are compiled to lean, reasonable code due to their simplicity, but the bloated
expression evaluation code it emits is more than enough to seriously degrade a game’s speed.

Although the long-term solution is to tighten up the VM and perform basic optimization on the
evaluation expression code emitted by XSC, there are a few tricks you can pull to squeeze some
extra speed out of the system as it currently stands.
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Minimizing Expressions
As stated, the inherent simplicity of while loops, if blocks, and other language constructs allow
them to be translated to nearly optimal assembly language by nature. Because XSC converts them
into little more than a few jumps and labels, the emitted code isn’t much different than what you
might code by hand. Even functions and function calls are pretty lean—after all, the expression
parser always leaves its result on the stack, which is where a parameter needs to be anyway. All the
compiler really does is make sure the parameters are pushed on and follow it up with a Call or
CallHost instruction. Again, this is more or less exactly what a human assembly coder would do.

Unfortunately, expression evaluation is where things start to slow down considerably. Although
strict and traditional stack usage is probably the easiest and most intuitive way to demonstrate this
process, it’s hardly the fastest solution. This compiler is great for teaching, but bad for expression
evaluating in performance-critical applications. The simple solution to this is to minimize your
use of expressions in code that needs to run quickly. For example, an RPG that periodically
updates player stats with complex expressions and algorithms can use XtremeScript without a
problem, because such updates don’t need to occur on a frame-by-frame basis. This is why the
scripting system is still great for things like item and weapon definitions.

What it isn’t so good for, however, is performing complex operations at each frame. For this rea-
son, it’ll help to minimize the complexity of specific expressions in the droids’ AI, because their
logic is invoked on a per-frame basis. Try splitting up your logic into a number of smaller expres-
sions over time, rather than a single major one. Try calculating values ahead of time, preferably
before entering the main loop—this can help preserve the functionality of an algorithm or
expression without having to do all of it in the heat of battle.

The XVM’s Internal Timer
Another way to speed up the XVM is to alter the way its timing works. Right now, it uses the
Win32 API function GetTickCount () to synchronize events like time-slicing to intervals of time
based on milliseconds. Although this is certainly a powerful and flexible method for complex
games like long-term strategy simulations, the Windows tick counter isn’t particularly accurate—
only to about 55 milliseconds to be exact.

The problem with this is that a requested time slice of three milliseconds will run for just as long
as one set for 55 milliseconds. This is a serious accuracy issue that will accumulate fast when mul-
tiple scripts are running at each frame.

Although there are a number of solutions for high-resolution timing, such as the Windows high-
performance timers, I decided to go for something simple and straightforward that wouldn’t take
long to implement and would be very clean and fast. What I decided to do was give the XVM its
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own tick-counting system, but one that was based on the execution of instructions, rather than
the passing of time.

This modification was actually very simple. Remember, the XVM function GetCurrTime () was
designed from the beginning as a “black box” that can be implemented with any timing mecha-
nism without disrupting the virtual machine overall. All I had to do was replace the function’s
body with this:

inline int GetCurrTime ()
{

static unsigned int iCurrTick = 0;

++ iCurrTick;
return iCurrTick;

}

Now, every call to GetCurrTime () returns the current tick and increments it. Because you know
this function is called after each instruction is executed in XS_RunScripts (), you know it’ll always
return an accurate and unique tick. This gives you extremely precise control over the time-slicing
of your threads, allowing you to coordinate their execution on an instruction level.

The one issue here is that it does have an effect on the values of a thread’s priority level. For
example, the XS_THREAD_PRIORITY_* constants are no longer meaningful in the same way, and must
be rewritten to compensate for the new timing mechanism. Furthermore, any script with a user-
defined time slice must be recompiled or reassembled, because the requested value is no longer
in milliseconds, but in ticks. This is why I used numbers like 20 and 60 when defining the time
slices of Lockdown’s scripts.

HOW TO PLAY LOCKDOWN
To finish things up, I’d just like to briefly cover how Lockdown is actually played, so you can play
around with the game on your own. Although I’ve covered individual aspects of the game’s con-
trol scheme throughout this chapter, there hasn’t been an explicit discussion of how exactly a
player plays the game.

Controls
Lockdown’s controls are simple. The arrow keys move the player droid around within the room,
and by holding down two keys at once, the player can move diagonally. Pressing Space fires the
droid’s laser cannon, although this only works while facing one of the cardinal directions (in

HOW TO PLAY LOCKDOWN
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other words, the player can’t shoot while facing or moving diagonally). At any time, Escape can
be pressed to exit the game and return to the title screen.

Interacting with Objects
There are three major objects the player interacts with throughout the game, aside from the
enemy droids. These are the keys, the doors, and the key panels. All of these objects can be
manipulated with nothing more than the arrow keys; doors open automatically as the players
approach them, keys can be collected simply by maneuvering the player droid into them, and the
key panels are activated by passing over them.

The Zone Map
At any time during the game, the players can press Enter to invoke the Zone Map, which lets the
players know where within the fortress they currently are. Their position is marked with a blink-
ing green cursor, in the shape of four arrowheads pointing towards their center. Pressing Enter
again will return the player to the game.

Battle
All rooms aside from the key rooms are
inhabited by hostile enemy droids. What the
droids lack in strategic intelligence, they
make up for in numbers and dedication.
Each room starts off with eight droids, all of
which will attack the player until it’s
destroyed. Aside from avoiding them alto-
gether (which isn’t easy), the player’s only
option is to fight back. He needs to aim the
laser cannon at the nearest droid and bar-
rage it with shots until it explodes.

Completing the Objective
Ultimately, the player’s main goal is to collect the keys and deposit them in the key room. My 
personal strategy for doing this is, starting from the first room, to move through the fortress
counter-clockwise (although this order is arbitrary). I move to the southwest corner, grab the 
yellow key, move to the northwest corner, grab the blue key, and then head east and make a stop
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what you need and get out before they
have a chance to do significant damage.
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in the key panel room. This allows me to initially activate the yellow and blue key panels. Also,
because the key room is uninhabited, I use this stop as a chance to let my energy recharge with-
out being disturbed.

I then dive back into the fray, and head to the northeast corner where I pick up the red key.
From there I move south until I hit the southwest corner and grab the green key. This completes
my inventory, so I head back to the key room and drop them off for the win.

SUMMARY
Congratulations! You have escaped Lockdown! Or so says the game. More importantly, however,
you’ve reached the finish line as a scripting master and now understand everything that goes into
both the development of a scripting system, as well as its applications in a complete game.

What you’ve accomplished here is no small task. From the development of your own custom lan-
guage, to its complete implementation, to its application to a game, you’ve (hopefully) worked
your way through hundreds of pages and thousands of lines of code. Sure, the virtual machine
could use some extra performance, and the compiler is in desperate need of at least basic opti-
mization, but the framework is there, and nothing short of complete. You now know everything
you’ll need to know to progress into the highest echelons of scripting, like garbage collected run-
time environments, advanced high-level language features, and optimizing compilers.

Fortunately, the next chapter offers plenty of suggestions to consider when advancing your new-
found mastery of scripting. Now that you understand how an assembler works, you can try devis-
ing a new instruction set or adding new syntactic features to the assembly language. Now that you
can build a virtual machine, you can learn about how high-performance runtime environments
are designed and target the scripting of a truly bleeding-edge game like an advanced FPS or rac-
ing game. And of course, now that you’ve worked your way through the design of a complete
compiler, you’ve got the prerequisite understanding to pursue new parsing methods, more com-
plex source languages, and of course, optimization. Chapter 17 covers all of this in more depth,
so as the final step of your quest, I suggest you check it out.

ON THE CD
This chapter focused on the development of Lockdown, an example game that puts the
XtremeScript system to actual use. The complete Lockdown game can be found in both source
and executable form in Programs/Chapter 16/Lockdown/. You’ll also find the slightly modified ver-
sion of the XVM the game used in this folder, so be sure to check that out as well (remember, I
changed its timing method to accommodate higher-performance requirements).

ON THE CD
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CHALLENGES
■ Intermediate: Change the scripts of one of the droids to include all three behavior types.

For example, modify Red_Droid.xse so each of the on-screen droids behaves with one of
the three existing attack methods, making them seem more random and lifelike.

■ Intermediate: Modify the behavior of the existing droids. For example, give the blue droids
the capability to follow you, to make up for their non-functioning laser cannon. Or make
the red droids even more devious by moving them faster or increasing the frequency by
which they fire their weapon.

■ Game Related: It’s technically not related to scripting or game enhancements, but as a
refreshingly non-technical challenge, try beating Lockdown without using your weapon.
Your only strategy without the laser cannon is to avoid the enemy droids entirely, which
can be tricky—they have a tendency to leap across the room when you least expect it.
Remember, stop in a safe place whenever you can to let your energy recharge. This won’t
be as easy as usual, because you can’t clear a room out without your gun, so your best bet
is the central key room.

16. APPLYING THE SYSTEM TO A FULL GAME
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“Now that you’ve found Robert Porter, 
take good care of him.”
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Well, well, well. Look at you, Mr. Fancypants. You started with nothing, and after 16 chap-
ters of theory, design explanations, implementation details, and more exposure to my

pompous and self-serving sense of humor than anyone should have to endure, you have walked
away with a feature-rich, high-level, custom-designed-and-implemented scripting system that’s
ready to be dropped into your next game project. You now have the ability to describe virtually
any action or behavior to the entities of your games, with total flexibility——no recompiling the
entire engine just to change a few lines of dialogue or tweak the range of your plasma rifle. Now,
with a few lines of C-style code, a single pass through a custom-built compiler, and a snap of your
fingers for dramatic effect, you can make anything happen in your game universe.

This chapter, although certainly not “required reading”, will be a nice and easy way to round out
the scripting education this book aims to provide with some brief reflection and insight on where
to go from here. I’m going to wrap things up by covering

■ How to expand your knowledge of the topics covered throughout the course of the
book.

■ Advanced subjects that apply directly or indirectly to game scripting for your considera-
tion.

■ How to reverse engineer a Furby for the purpose of committing unspeakable atrocities.

SO WHAT NOW?
Throughout this book, you’ve learned the details behind designing high- and low-level languages,
the virtual machines they run on, and the compilers and assemblers they’re translated with.
You’ve learned how and why runtime environments are designed the way they are, and how the
formerly mysterious internals of a high-level compiler actually work. With the knowledge present-
ed here, you should be capable of writing your own compilers, assemblers, and embeddable virtu-
al machines. Of course, what you do with this knowledge is up to you, as there are a number of
paths to choose.

■ Use an existing scripting system like Lua, Python, or Tcl, but with a much more intimate
understanding of how it’s working on the inside than the other kids on your block. This
may be the best option for professionals working with a full team, or those under a tight
schedule. You may be using someone else’s software, but you’ll understand how it was
designed and implemented much more clearly than before.

17. WHERE TO GO FROM HERE
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■ Use the XtremeScript system developed over the course of the book and included on the
CD, with a 100 percent understanding of how it’s all working. You’re of course free, if not
encouraged, to make changes wherever you see fit, or use it as-is, right out of the box.

■ Modify XtremeScript to work with a language of your own design, geared towards your
own purposes.

■ Put your Jedi skills to the ultimate test and use the techniques you’ve learned to build
your own scripting system from the ground up (for fun and profit!).

■ Forget scripting, forget game development, sell your computer on eBay and start a hot
new boy band. They make way more money anyway.

Aside from maybe that last one, all of these paths are worthwhile pursuits. Regardless of how
involved you were in the creation of whatever scripting system you go with, however, you’ll always
be able to capitalize on an in-depth understanding of how these things work. In short, if you’ve
read, understood, and (ideally) implemented
everything in this book, you’ve truly attained
scripting mastery. Congratulations! You could
totally hang out with me now!

Of course, no book under 50,000 pages will be
capable of teaching you everything, and if
you’ve made it this far, you’re probably the
inquisitive type and would like to know where
to go from here to expand your abilities and
understanding. Fortunately for you, there’s
still an entire universe to explore—literally.

EXPANDING YOUR KNOWLEDGE
First and foremost, let’s talk about the general path you can take from here to become more
familiar with the topics covered throughout the book. I think it’s safe to say that compiler theory
took center stage when compared to everything else, but the concepts discussed behind virtual
machines are, at least in certain ways, equally complex.

Compiler Theory
Let’s start with compiler theory. Because compilers are some of the oldest and most complex
pieces of software in existence, they’ve been in constant development for decades, which is really
just another way of saying there’s a lot to learn. With the emergence of highly object-oriented lan-
guages and distributed computing, the load that bears down on compilers, linkers, and loaders is
a considerable one.

EXPANDING YOUR KNOWLEDGE

TIP
Feeling a bit of that “post-book depres-
sion”? Wish there was still more hot,
steamy scripting action on the horizon?
Well don’t feel bad, there’s still an
entire index to explore.We used real
small print and everything!
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To get you started, though, let’s discuss some places to immediately go from here. The following
topics will be, more or less, listed in order of increasing complexity, so try and pursue them in order.

More Advanced Parsing Methods
Like I’ve mentioned numerous times, this book has focused on recursive descent parsing because
it’s among the most natural and intuitive ways to parse code. However, bottom-up parsing, specifi-
cally shift/reduce, is far and away the chosen method of the compiler industry at large. Because
of this, regardless of how you ultimately choose to parse code in your present and future projects,
it’s always a good idea to understand both top-down and bottom-up methods.

Most compiler texts focus heavily on bottom-up methods, so you shouldn’t have trouble finding
information on the topic. However, remember that everything has its ups and downs. Some of
the particular disadvantages of bottom-up parsing include:

■ Added complexity in the overall algorithm tends to make things harder in general to get
working.

■ Parsers sophisticated enough to handle full-scale programming languages are, for the
most part, far too detailed to be written by hand, and therefore must be generated by an
external utility like yacc (for UNIX/Linux users) or Bison (for Windows users).

Of course, because of the second reason mentioned, you won’t have any trouble finding such
parser generators. In fact, this disadvantage can also be seen as a huge up side, because it means
that once you understand the language of a program like yacc (generally BNF or derivative there-
of), you can get a parser up and running in minutes by simply hooking up the source code it
generates to your compiler framework. To be honest, you don’t even have to understand how
shift/reduce works in the first place to get a parser generator’s output to work. Of course, I’d
highly recommend you do——it’s always good, if not invaluable, to understand exactly how
something works before using it.

The good thing about developing a compiler in a modular fashion like you have in this book,
however, is that individual modules can be swapped in and out easily. Reworking your compiler to
parse code with the shift reduce algorithm is confined entirely to replacing the parser module.
No other major aspect of the program should need to change, as shown in Figure 17.1.

Object-Orientation
In addition to simply being another approach to language design, object-orientation often
requires you to rethink the very structure of the compiler as well. Remember, objects aren’t sim-
ply another feature in the language’s bullet-list—they’re an entirely new paradigm that shouldn’t
be taken lightly.

17. WHERE TO GO FROM HERE
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Yes, “OOP” has been quite a hot buzzword lately and will probably remain so for a while. But like
all buzzwords, the subject should be approached with great caution. Do you really need objects to
make your language work the way you want it to? Is it necessary, or are you just doing it to
impress your message board buddies? A strong argument can be made both for and against the
decision to include objects in your language’s implementation.

On the one hand, objects are a highly intuitive and flexible way to represent game entities, so if
your game engine itself is highly object-oriented, you might find it convenient, if not necessary, to
do the same in your scripting language. Of course, objects and their associated design patterns
are also orders of magnitude more complex than straight procedural programming, at least
when used to their fullest extent, which means you’re opening the door to all sorts of perform-
ance overhead and stability issues. Although object-oriented programming does have the poten-
tial to create extremely robust , error-resistant, high-performance programs in the hands of a sea-
soned pro, newbies and intermediate users are ironically capable of wreaking true havoc with
sloppy or haphazard use objects.

My overall advice is to simply go with the facts and avoid hype. Decisions made based on what
seems trendy at the moment almost invariably end badly--just look at Battlefield Earth--so make
sure the design of your language puts efficiency and pragmatics above looking cool.

Optimization
Optimizing code is a complex black art that only the highest echelon of compiler writers can
truly claim mastery of. It’s a math-heavy field that requires a lot of studying and unfortunately
can’t be wrapped up in a nice tidy “silver bullet” algorithm that solves everything.

Of course, regardless of the complexity involved, optimization is one of the cornerstones of mod-
ern compiler construction, and certainly wouldn’t hurt in your case, given the already significant
overhead of virtual machine-based scripting. On the other hand, however, it’s important to
remember that performance overhead is the result of a number of factors, not just one. For

EXPANDING YOUR KNOWLEDGE
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example, while the quality of the compiler’s generated code does indeed play a large role, the
simple fact that scripts run in a virtual environment rather than directly on the native processor
takes a significant toll as well. Here are some facts to keep in mind:

■ Many scripts in full-scale game projects aren’t particularly complex to begin with-- like
ambient background logic, for example-- which means that even a highly optimizing
compiler like Visual C++ wouldn’t have a whole lot to work with in many cases.

■ The only real culprit in our compiler’s generated code is expression evaluation. Loops,
conditional logic, and function calls are pretty lean by their very nature, which means
the brunt of your optimization effort should be focused on expressions.

Artificial Intelligence
Something that may or may not surprise you is AI’s role in optimization. If you think about it, the
ability to perform large-scale optimizations on code is a very human ability; it requires extremely
sophisticated pattern recognition, and a large and somewhat organic knowledge base of previous
situations and general techniques. It almost goes without saying that the future of optimizing
compilers lies in increasingly sophisticated AI that, rather than attempting to replace the human
approach to optimization, will reproduce it instead. Fuzzy logic, genetic algorithms, and code
evolution will be commonly used techniques within the next 5-10 years.

Runtime Environments
The XtremeScript virtual machine is a powerful and flexible runtime environment, with direct
support for priority-based multithreading, a rich set of integration features, and other such
details. It’s still the tip of the iceberg, however, so here are some initial targets to set your sights
on if you choose to further your study of runtime environments.

The Java Virtual Machine
The JVM is an extremely high-end virtual machine that’s been in development for years as the
Java language has evolved. Fortunately for you, there’s also been a wealth of information pub-
lished on it, in the form of white papers and books. Studying the internals of the JVM is a great
way to further your overall understanding of VM architecture, and is a good way to drum up
ideas for your own runtime environments. One aspect of real-world virtual machines I strongly
suggest you explore is garbage collection, a method for automatically freeing dynamically allocated
memory blocks so the programmer doesn’t have to worry about them. Of course, since
XtremeScript doesn’t support dynamic allocation in the first place, the subject had little bearing
up till this point.

17. WHERE TO GO FROM HERE
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One thing to keep in mind, however, is that the JVM is designed to mimic a far lower-level of pro-
cessing than the XVM. In the context of game scripting, speed and relative simplicity are far
more important than low-level control in most circumstances, so there are certain aspects of the
system that you should recognize as inappropriate in the context of game scripting. A good gen-
eral rule of thumb is that the higher-level the feature, the most applicable it is to your goals.
Remember, unless you have a specific reason to do so, it’s generally a good idea to keep your VM
as high-level as possible, without encroaching on flexibility of course. As always, the more you can
implement in C, the faster your results will be (that was an unfortunate rhyme).

Alternative Operating Systems
The PC gaming world currently revolves around Windows to be sure, but there are definitely
other operating systems out there to consider. Namely, the Mac and Linux platforms are slowly
picking up speed and may prove to be forces to be reckoned with in the future. Fortunately, virtu-
al machines and cross-platform interoperability almost go hand in hand (after all, that’s the prin-
cipal Java was founded on).

What this means is that once a game is finished, its entire script-oriented aspect can be ported to
other platforms by simply porting the VM. The scripts themselves, because they run on a purely
virtual platform, never have to know about or interact with the underlying operating system (or
even physical hardware), as shown in Figure 17.2. Understanding more about alternative operat-
ing systems opens up the possibility of porting your VM elsewhere, paving the way for full-on
ports of your game.

EXPANDING YOUR KNOWLEDGE
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Operating System Theory
Aside from familiarizing yourself with the details of alternative operating systems for the purpose
of porting, an understanding of general operating system theory can be invaluable when design-
ing or redesigning your scripting system’s runtime environment. After all, virtual machines are
very closely related to operating systems, both in terms of architecture and overall purpose.
Studying the low-level details of how operating systems are designed and implemented will pro-
vide an insight into how to structure your virtual machine in the ideal manner.

ADVANCED TOPICS AND IDEAS
Now it’s time for some real fun. In addition to the general suggestions listed previously as places
to go from here, I want to take some time and cover some specific topics and ideas that will hope-
fully spark your interest in further study and development.

The Assembler and Runtime
Environment
Our assembler is reasonably sophisticated and more or less demonstrates everything a virtual
bytecode assembler is responsible for, but there are plenty of ways that both XVM assembly lan-
guage and XASM can be enhanced or changed.

A Lower-Level Assembler
Although high-level assemblers that directly support symbolic variables, arrays, functions and
other such constructs are commonplace nowadays, this wasn’t always the case. Furthermore, even
today’s assemblers for hardware platforms like the 80x86 are still considerably less abstracted and
high-level than XASM.

For example, not only does the assembler directly support functions and function calls, but such
a feature would be impossible to implement without XASM’s specific syntax for doing so. Given
the general inability to access the stack outside of the standard push-and-pop interface, a pure
assembly script would have no way to construct and destruct stack frames on its own.
Furthermore, internal values like the instruction pointer and the contents of the function table
are completely hidden from the script, regardless of whether it was written in pure assembly,
which results in additional limitations.

A lower-level compiler would not hide as many (or any) of these things, and instead give its
assembly language less restricted access to more of the runtime environment’s internal data. Of
course, even then it’s important to enforce some sort of security to prevent malicious or badly
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coded scripts from going nuts and blowing everything up. What follows are some ideas to consid-
er if you decide to build an assembler with lower-level access in mind.

Random Access to the Stack
This can be as easy as defining a built-in array, perhaps called _Stack [], wherein each element
maps directly to its corresponding stack index. This would allow any part of the stack to be writ-
ten to and read from by the script itself at any time, allowing for greater flexibility. For one thing,
parameters would be accessible without the Param directive. I actually considered doing this for
the book’s implementation of the XVM, but decided against it at the last minute for the purpose
of just keeping things simple. Check out Figure 17.3.

ADVANCED TOPICS AND IDEAS

Figure 17.3

Accessing the stack

randomly via 

a _Stack [] array.

Stack Registers
Currently, the stack can be accessed relative to the bottom by using positive indexes, and relative
to the top of current stack frame using negative ones. A lower-level assembler might instead only
accept positive indexes, and provide registers to the top of the stack, and perhaps the top of the
current stack frame as well. Scripts could then directly refer to these registers when accessing
local data and parameters.

Of course, there’s a lot to be said for high-level assemblers and runtime environments, as you’ll
see in the next section.

A Lower-Level Virtual Machine
Especially when compared to many existing VMs like the Java Virtual Machine, the XVM is an
extremely high-level runtime environment. Its strongly typeless nature, combined with its highly
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specialized memory architecture, limits some of the lower-level tasks and capabilities often associ-
ated with assembly language programming. Check out some of these ideas for developing a
lower-level VM.

Unified Memory
Currently, the XVM enforces separate regions of memory for a script’s code and stack. Most hard-
ware machines, as well as many virtual ones, take the opposite approach and instead provide a
single, contiguous region of memory for a program’s code and data. In such implementations, a
particular subsection of this memory is reserved for code, called the code segment, whereas the
stack is fenced off in an area called the stack segment. Although these two segments are indeed
kept separate by convention and through some help from the assembler, they’re by no means
inaccessible from each other. For example, the code segment can be written to in order to
change the behavior of a program at runtime, a technique known as self-modifying code. Overall, a
unified memory system allows for greater flexibility when attempting to use esoteric techniques
such as self-modifying code, loading machine code from the disk into the data segment for
dynamic linking, and other such techniques. Check out Figure 17.4.

VM-Based Strings
The current string implementation occupies only one element of the virtual machine’s memory
because all the VM specifically needs to track is the string pointer. The actual string data always
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resides in the host application’s memory, making individual characters inaccessible unless GetChar
and SetChar are used. A lower-level approach would be to give each element in memory the capa-
bility to hold a single character, rather than an entire string, so that contiguous regions of memo-
ry would be used to store strings character-by-character. This approach gives scripts greater flexi-
bility when dealing with string data and allows for more elaborate and intricate string operations
to be performed without specifically writing instructions to handle them.

High-Level or Low-Level VM?
So which is it? A high-level or low-level VM? The way I see it, high-level is almost always the way to
go. I really only mentioned the low-level approaches to help you understand that virtual
machines can be approached in a number of ways. The JVM, for example, must appeal to a huge
range of software applications and provide low-level system access whenever necessary—especially
in the case of higher-end software like Java-based Web servers, database drivers, and other busi-
ness applications.

Scripting, on the other hand, is all about speed and simplicity (for the most part). Because of
this, it’s generally a good idea to keep things as abstracted as possible to ensure that the real
underpinnings and performance critical sections of the system are implemented in C. Regardless,
it’s good to keep the possibilities in mind. Sometimes a hybrid is in order—a mostly abstract VM
with some specific low-level facilities exposed. The rule of thumb is to always make a laundry list
of your must-have features, and design a system that functions on as high a level as possible with-
out compromising the list.

Dynamic Memory Allocation
Dynamic memory allocation can become important when scripts need to manage large amounts
of data that will vary wildly in size from one instance to the next. In these cases, static arrays that
hold the maximum number of elements needed can end up being a waste. Furthermore, the
capability to allocate and free arbitrary chunks of data at runtime opens up the possibility of
implementing high-level data structures like linked lists, trees, and hash tables, just as you would
in C.

To support dynamic memory, the system really just needs to wrap malloc () and free () (or new
and delete if you’re a C++ user) in host API functions or perhaps new XVM instructions. The
only real consideration to keep in mind is the ability to abuse this feature, because memory is
always a crucial commodity that a malicious script could intentionally try to hoard from other
processes. Of course, the real issue with dynamic memory allocation is that it almost requires that
pointers be introduced into the language—something which I’ll talk about later in this chapter.

ADVANCED TOPICS AND IDEAS
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The Compiler and High-Level Language
The XtremeScript compiler is undoubtedly powerful, and definitely well suited for the task of
game scripting. Of course, there are countless ways to improve it and enhance its features, so let’s
talk about a few of them. You may find that attempting to implement some of the following sug-
gestions will help you advance in your understanding of scripting and compiler theory in general
far more than anything else, so take them seriously.

Language Enhancements
Right off the bat, there are probably a number of things you’d like your high-level language (or a
modified version of XtremeScript) to support. Some of these are simple syntax additions, some
are new code and data structures, and some may be entirely new paradigms.

switch
One commonly used feature of C/C++ that’s absent from the implementation of XtremeScript is
the switch block, which allows a single value to be tested against a number of conditions. Here’s
an example:

switch ( X )
{

case 0:
// X equals 0
break;

case 1:
// X equals 1
break;

case 2:
// X equals 2
break;

default:
// X is none of the above
break;

}

The actual implementation of this structure is rather simple. The compiler simply has to generate
a unique label for each case, followed by a label at the very bottom of the structure’s output that
can be unconditionally jumped to in the case of break statements. In between each label and the
jump to the end of the structure lies the code that implements each case. These blocks of code
are invoked using conditional jumps based on the specified variable and each individual case
value. Here’s the possible assembly output for the previous code:
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; Comparisons/jumps
JE         X, 0, Case0
JE         X, 1, Case1
JE         X, 2, Case2
Jmp        _Default:

; Case implementations
_Case0:

; X equals 0
Jmp        _Break

_Case1:
; X equals 1
Jmp        _Break

_Case2:
; X equals 2
Jmp        _Break

; Default case
_Default:

; X is none of the above

; End of structure
_Break:

The code begins by comparing X to each specified case value and jumping to the proper handler.
If none of the comparisons evaluates to true, the code vectors to a default case handler, which
might not be specified by the high-level script. Each case handler starts with a label in the form of
_Case*, where * is the value that X must equal in order to invoke the block. The code then imme-
diately follows (represented in this example with comments), and the break statement is imple-
mented with an unconditional jump to the _Break label. Of course, C’s switch allows each case to
“fall through” to the one below it by omitting the break, which can be implemented by simply
suppressing the output of the Jmp _Break line in any case that doesn’t end with break.

Structures and Other Forms of Aggregate Data

Structures and aggregate data are some of the major cornerstones of programming, and definite-
ly have their applications in scripting. Internally, structures are really quite similar to arrays, which
means you shouldn’t have too much trouble implementing them if you take it slow and keep
your thoughts organized. Imagine, for example, that the struct keyword was added to
XtremeScript, like this:
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struct MyStruct
{

var X;
var Y;
var Z [ 16 ];

}

This structure can really be seen as an 18-element array, wherein X and Y are elements 0 and 1,
and Z [ 0 ] through Z [ 15 ] are elements 3 through 17. Figure 17.5 presents an example of a
structure and its representation on the stack. The only syntactic difference is that instead of using
array index notation, like this:

MyStruct Q;
Q [ 0 ];         // X
Q [ 1 ];         // Y
Q [ 5 ];         // Z [ 2 ]

Elements are referred to by name (as well as an optional array index, in the case of Z []),
like this:

MyStruct Q;
Q.X;
Q.Y;
Q [ 2 ];

17. WHERE TO GO FROM HERE
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Implementing structures up to this point is rather easy, because it really is just a reworked version
of the already existing array feature. The real issues arise when you allow structures to contain ref-
erences to other structures, and arrays of structures to be declared. Imagine the following scenario:

struct StructX
{

var Elmnt0;
var Elmnt1;
var Elmnt2;

}

struct StructY
{

var Elmnt0;
var Elmnt1;
StructX Elmnt2;

}

struct StructZ
{

var Elmnt 0;
StructX Elmnt1;
StructY Elmnt2 [ 8 ];

}

StructX MyX;
StructY MyY [ 16 ];
StructZ MyZ [ 32 ];

As you can imagine, there’s a lot more going on here than there was in the previous example.
Structures are nested within other structures, arrays are defined with structure elements, and so
on. It’s now possible to encounter scripts with code like this:

MyY[MyX.Elmnt1].Elmnt2.Elmnt0 = MyZ[4].Elmnt2[MyZ[4].Elmnt0];

Of course, this all looks a lot harder than it actually is. The most important key to remember
when implementing structures is recursion. When the parser encounters a structure reference, it
needs only call a Parse* () function capable of parsing structure field references, which in turn
may call itself. As long as this function can also parse array elements, any level of structure nesting
can be supported.
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Pointers and References

Currently, the only method of indirection supported by XtremeScript is the use of variables and
arrays to reference literal values. Pointers and references, however, add an additional level of indi-
rection wherein variables can point to other variables.

As an example, consider the following pointer syntax for XtremeScript:

var MyVar;               // Declare a variable
var * pMyVar;            // Declare a pointer

pMyVar = & MyVar;        // Point pMyVar at MyVar
* pMyVar = "Hello!";     // Assign a value to MyVar through the pointer

This example introduces two new operators, the pointer dereference operator * and the address-
returning operator &, both of which behave like their C counterparts. Internally, the addition of
pointers really isn’t that difficult. Currently, the runtime environment’s Value structure allows
operands within the instruction stream to reference values on the stack using the iStackIndex
field. By allowing stack values to use this field as well, they can reference other stack values, and
effectively become pointers. This is expressed visually in Figure 17.6.

The only other real issue is expressing this new functionality using the syntax of the assembler.
Due to the high-level nature of the assembler, there are two ways to approach this problem.

The first is to simply add pointer-specific syntax to the assembler as well. The & operator can be
translated to assembly with the addition of a new instruction, like so:

LEA        X, Y                    ; Put the address of Y into X
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I took the mnemonic from the 80x86’s LEA instruction, an acronym that stands for Load Effective
Address. This instruction is used to determine the address of the specified identifier, and is more
or less analogous to what you’re doing here.

Once an XASM variable has been assigned the stack index of another, you need a way to tell
instructions like Mov and Add that you’re passing a pointer to another variable, not a literal value.
For example, even though X was assigned Y’s stack index, the following instruction would simply
add that address to the variable Z:

Add        Z, X

What you actually want to do is add the value pointed to by X, which is the value of Y. You can bor-
row some more 80x86 syntax to tell an instruction when the value of the specified variable should
be interpreted as a reference to a stack address:

Add        Z, [ X ]

The [] notation tells the instruction that the value of X is the index into the stack where the real
value resides. It’s no coincidence that this syntax looks so much like array notation; because the
stack is a contiguous block of memory accessed with integer indexes, it really is just one big array.
It’s like the _Stack [] array I suggested earlier, just without the _Stack identifier.

Basic Object-Orientation

Lastly, if you’re really feeling brave, you can take the struct idea to another level by adding the
capability to embed functions within them. Here’s an example:

class MyClass         // Define a class
{

var MyProperty;         // Define a property
func MyMethod ();       // Declare a method

}

func MyClass::MyMethod ()   // Define the method
{

MyProperty = 3.14159;   // Set the property
}

MyClass MyObject;             // Create an object of the class
MyObject.MyProperty = 0;     // Set the property
MyObject.MyMethod ();           // Call the method

The function is first declared to be within the scope’s class, and is then defined later in the script
using the :: scope resolution operator from C++. Notice also that MyProperty isn’t defined within
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the scope of the function, but is referenced any-
way. This is because class methods and propri-
eties share the same scope.

Remember, aside from the addition of functions,
a class is implemented just like a struct, so you
can get a basic idea of how they work from the
previous section on structures. Methods are real-
ly quite an easy addition; they can be represent-
ed internally just like any other function, with
the only difference being the syntax by which
they’re called. Remember, even though a class
may have many instances at runtime, its methods have to exist in only one place.

Additional Object-Oriented Functionality

Once you have a basic OO framework up and running, you can add many common OOP fea-
tures rather easily. Access modifiers, such as public, private, and protected, can be resolved entire-
ly at compile-time, because all they really do is limit the way a class’s members are referenced
within the script. Composition, single inheritance, and friend classes aren’t too terribly difficult
either, because all they really do is increase the number of members that a given object can refer-
ence at any given time.

The real issues arise when virtual functions and dynamic casts come into play. They have an effect
on an object’s runtime behavior. Such additions often affect the entire scripting system, from the
compiler all the way down to the runtime environment.

In general, I strongly suggest you attempt to add basic OO to your language with single inheri-
tance. If you can manage structures, you can definitely implement this much without too much
headache, and you’ll have a very intelligent method of organization to work with in your future
scripting projects. Especially for users of object-oriented game engines, a scripting system with
basic support for classes and objects can be quite helpful. Above all else, however, it’s a great
learning experience.

Directly Compiling to Executables
The XtremeScript system begins on one end with the XtremeScript compiler, and ends on the
other with the XVM. In between, XASM facilitates the translation of the assembly language out-
put generated by the compiler to a binary executable ready to run in the virtual machine. This
approach boasts many advantages, such as:
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■ A simplified compiler that can directly leverage the features of the assembler in the code
it outputs.

■ Minimized redundancy; because the assembler is already translating assembly to exe-
cutable files, there’s no need to bend over backwards to make the compiler do the same
thing.

■ The ability to directly hand-tune, optimize, or otherwise modify the output of the com-
piler, because it’s entirely human readable.

■ A clearer translation from high-level code to executable bytecode; by manually adding
an intermediate assembly step, the process is easier to grasp. This is particularly advanta-
geous in the case of a book.

However, most modern compilers don’t work this way, and instead directly output machine code.
This is definitely a more compact approach, and ultimately means faster compile-times because
there are no temporary files to generate or intermediate steps to perform. The only real differ-
ence is that instead of translating I-code to XVM assembly, it’s converted to XVM bytecode.
Because bytecode instructions have a one-to-one mapping with instruction mnemonics, this is a
pretty easy change. The complexity lies in reproducing the assembler’s other features, such as
managing the stack layout of a script’s local and global variables, building a function table that
can be used at runtime, and properly formatting an XVM executable. However, reworking the
compiler to directly output .XSE’s doesn’t require anything you didn’t learn during the develop-
ment of XASM.

In addition, a compiler that can directly generate executable code can be used in a number of
other applications, which I’ll discuss now.

An Embeddable Compiler Module
If you remember back to the discussion of Lua, you’ll remember that compiling source code was
optional. You could either pass it through Lua to get a compiled version that would be loaded and
run more quickly, or the Lua application could directly load source code, which would be com-
piled at runtime in memory. And don’t forget the handy lua interpreter, which directly interpret-
ed and executed source code as it was typed into the console.

All of these capabilities are made possible with a compiler that is embeddable as a self-contained
module, much like the virtual machine. When the compiler is implemented in this way, and
defined with a single input (a source file) and a single output (the in-memory representation of a
compiled script), it can be dropped into any program and immediately put to use.
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The advantages of this approach should be obvious:

■ Eased development process. By making the standalone compiler optional, the constant
tweaking and updating that will invariably be a large part of game scripting can be eased
by eliminating the intermediate compile step. Scripts can be immediately loaded by the
game engine, which tends to be much faster and easier when repetitive modifications
are being made.

■ User development tools. Scripting isn’t just a tool for developers—it’s a great way to give
users (players) more control and input over the game. In addition to mod authors, even
more casual players stand to gain from a simple scripting language that allows them to
exert more complex control. Imagine a real-time strategy game that let players write
entire scripts to control the deployment and behavior of units, allowing self-reliant,
autonomous CPU players to run in parallel with the human player in the pursuit of a
common goal. Users won’t want to deal with a compiler, and may be put off by the addi-
tional complexity they associate with it. Allowing them to directly run human-readable
source is a much more intuitive alternative.

■ Standalone interactive interpreters. Just like the interpreters that came with Lua, Python,
and Tcl, an XtremeScript interactive interpreter could be built that would allow individ-
ual lines of code or small script fragments to be immediately tested without a separate
virtual machine, host application, or extraneous source and executable files.

Remember, the key to a good embeddable compiler is a strongly defined interface, as shown in
Figure 17.7. The host application should be able to load and compile a source file with a single
function, by providing a source filename and a pointer to a Script structure that will be filled
with the fully compiled results. This way, one function call is all it takes to get the job done. Such
a clean and simple interface will allow you to immediately put the system to use.
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SUMMARY
Well, this has been quite a little journey, eh? If you’re anything like I was, you probably thought
the idea of building a high-level compiler and suitable runtime environment was impossible for
mere mortals, and yet here you are—as long as you’ve followed along all this way, you too have
ascended to the rank of scripting master. Sure, you’ve still got a lot to learn—recursive descent
parsing is somewhat elementary approach, and the language you’re dealing with isn’t the most
sophisticated one in the world. But of course, just as there are varying degrees of black belts,
there are many levels of mastery.

The bottom line is that you’ve hopefully learned exactly how game scripting works, from the
design of a high-level language to its final execution in an embeddable, virtual environment. You
now have complete external control over the games you make, and have learned the fundamen-
tals behind all sorts of high-level language processing and translation. In addition to compilers,
you should be able to apply your newfound skills to interpreted, user-end scripting languages, the
processing of player-inputted dialogue for complex RPGs or text adventures, and a multitude of
other tasks.

Furthermore, now that you know the basics, you’re free to go nuts and take everything to the
next level—I encourage you to add some of the additional features discussed in this closing chap-
ter, as well as any other ideas you have. Remember—your creativity is the only real barometer for
what a language should consist of—everything from its syntax to its major constructs and features
are up to you now. Go by the examples set by other languages when you feel you stand to gain
from it, and let your imagination run wild when you don’t.

To put it simply, game scripting is a complex task, but one that’s becoming more and more of a
necessity in the world of game development. As games become more cinematic and complex, it
becomes increasingly important to isolate these artistically driven aspects of a game’s functionali-
ty, just as art, sound, and other data have been for years. But as has always been the case, truly
memorable games are not driven by technology or mile-long feature lists—they’re driven by gen-
uine creative vision that utilizes technology, rather than hides behind it. Scripting isn’t a magic
wand that will make your game better—it simply provides a far greater structure within which an
already good game will thrive.

In closing, my final word of advice is to use scripting for what it is. Choose an existing scripting
system, build your own, or even use the one I’ve provided on the CD. No matter what option you
ultimately go with, though, take advantage of it to its fullest extent. Scripting gives you the free-
dom to bring the interactivity and immersion of your game world to a new level—where charac-
ters live and breathe, where every object has function to match its form, and where the events
that will ultimately carry players to the game’s conclusion are described and presented with the
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utmost of clarity. A game’s greatest asset is its suspension of disbelief—its ability to remove the
players from reality and drop them head-first into a self-contained world—and this is what script-
ing is all about.

So, that’s that. I hope you’ve learned as much from this book as I attempted to explain. When I
first set out to solve the mystery of high-level scripting, my only options were esoteric and rather
dull textbooks intended for college courses. What I wanted was a book that spoke to a person like
me—a game developer who just wanted a powerful way to control his game and the entities there-
in—and that was the motivation for this book’s approach. I certainly hope this has saved you
some headaches by allowing you to bypass this decidedly inconvenient route, and I hope you
enjoyed it!

Good luck!

—Alex Varanese
alex@amvbooks.com
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The included CD-ROM contains a number of supplemental materials to enhance your expe-
rience with the book. They’re organized into the simple directory structure listed here:

■ Articles/ - A small collection of articles that discuss aspects of scripting not directly cov-
ered in the book.

■ Programs/ - Contains the entire set of code and executable demos for the book’s chap-
ters. This folder is broken down into subfolders for each chapter. For example, Chapter
12’s code and executables can be found in Programs/Chapter 12/. Within each chapter
folder you’ll find a Read Me! file that briefly introduces the programs and provides
instructions on how to compile them.

■ Software/ - A number of programs that I think pertain to scripting in some way.
Examples of included programs are Flex and Bison, as well as text and hex editors and
parser generators.

■ Scripting Systems/ - This folder contains scripting systems for you to use in your games
and programs.

■ XtremeScript/ - Over the course of the book, we develop the XtremeScript scripting sys-
tem. Rather than let you hunt through the program demos to find the completed ver-
sion, I’ve collected everything-- the compiler, assembler, virtual machine and stand-alone
VM console, and put them in one place.

Each folder contains a Read Me!.txt file with important information about the folder’s contents,
and any instructions for compiling or installing it. It’s important that you read them, but if you
still find that you are having trouble with something, don’t hesitate to email me about it at

alex@amvbooks.com

I’m always available to help out with book-related issues.

THE CD-ROM INTERFACE
Also included on the CD-ROM is a graphical, HTML-based interface you can use to easily browse
the disc’s contents. Since the interface is web-based, you’ll need a 4.0 browser to view it. I recom-
mend Microsoft Internet Explorer.

A. WHAT’S ON THE CD
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INSTALLATION
Installation is simple; some programs included have their own executable installers or self-
extracting archives, while the rest of the content—namely the program demos and code—are
“installed” by simply dragging them from the CD to your hard drive. The GUI should run auto-
matically on its own, but if if it doesn’t, just use a program like Windows Explorer or the My
Computer icon on your desktop to navigate your way to the contents and manually install 
or drag whatever you need.

DIRECTX SDK
Lastly, you’ll need the DirectX SDK to view the book’s graphical demos. If you don’t already have
it, or don’t have the most recent version (8.1 at the time of this writing), you can install it on your
system directly through the CD-ROM GUI, or run the executable installer found in the CD’s
DirectX/ folder.

DIRECTX SDK

CAUTION
Files copied from a CD-ROM are often tagged with an “Archive” or
“Read-Only” flag.This flag is initially set because a CD-ROM’s con-
tents can’t be rewritten, but once you’ve dragged a copy onto your
hard drive, this limitation no longer applies. However, your file sys-
tem or shell will often leave this flag set, so make sure to change it
manually yourself. Forgetting to do so will make the program
demos’ source code read-only, for example.To do this on a Windows
machine, select all of the folders and/or files you’ve dragged from
the CD, right-click them to bring up their collective Properties dia-
log box, and uncheck both the “Archive” and “Read-Only” check
boxes. Press Apply and you should be good to .



This page intentionally left blank 



A
abstraction layer, 174–179
ActiveStateTcl, 288
AI (artificial intelligence), 57

compilers, 1184
enemies, 57–60

allocating memory directly, 1189
analysis

parsing, 985–987
semantic (compiling), 764

APIs, 20
hosts. See host APIs
SDKs, 24

applications. See host applications
architecture. See also structure

hardware, targeting, 780–781
modular, 31
procedural scripting systems, 156–157
XVM, 569–570, 582–589

arithmetic (XVM Assembly), 400–401
arrays

associative (Lua), 193–197
flags, 33–34, 38
multithreading, 667–677
parsing, 1017–1020
Tcl, 301–303
XtremeScript, 353–354

artificial intelligence. See AI
assemblers. See XASM
assembling, 753

function calls, 423–428
instructions, 414–416
jumps, 423–428

literals, 422–423
lower-level, 1186–1189
operands, 420–422
procedural scripting systems, 167–168
strings, 422–423
variables, 416–420
XSE executable, 558–563

assembly languages, 17
CISC, 386–388
conditional logic, 377–380
defined, 370–371
expressions, 340–344, 373–375
Fibonacci Sequence, 344–346
functions, 344–346, 389–392
instructions, 337–344, 372

orthogonal, 388–389
iterating, 375–383
jump instructions, 375–383
libraries, 344–346
loops, 375–383
macro assemblers, 374
mnemonics, 383–385
OOP, 346–349
opcodes, 383, 384, 385
operands, 337–344, 372–373
operators, 340–344
parameters, 392–395
recursion, 344–346
registers, 389
RISC, 386–388
scope, 344–346, 395–397
stacks, 389–397
values, 392–395
variables, 395–397

INDEX



1206

assembly languages (continued)
XVM Assembly
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bitwise, 401
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conditional logic, 402–403
defined, 397–399
directives, 404–407
escape sequences, 407
functions, 403–406
instructions, 399–404
memory, 399–400
overview, 408
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atomic operations (multithreading), 661–664

B
back end compiling, 768

code emitter module, 863
XASM, 863
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binary format (CBS), 137–146
binary operations (XVM), 638–639
bitwise XVM Assembly, 401
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Boolean constants, 115
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Tcl, 322–329
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advanced, 114
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commands, 68

extracting, 81–87
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compiler overview, 140–142
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preprocessing, 120–124
data types, 115–125
designing, 74
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engines

functionality, 69–71
high-level control, 65–67

events, 69
hierarchy, 135–137

executing, 78–81
floating points, 115–116
game flags, 125–128
game intro, 90

implementing, 93–94
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script, 92–93
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loops, 105–108
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executing, 71–74, 142–143
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looping, 73–74

speed, 137–139
symbolic constants, 116–117
tiles, 69–70
writing, 75
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compiler, 981
lexers, 855–856
Lockdown, 1177
parsing, 1134–1135
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XASM, 564
XVM, 649, 746
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moving, 97–99
scripts, 99–100

CISC (Complete Instruction Set Computing),
386–388

code
blocks

CBS, 128–131
parsing, 1001–1007
XtremeScript, 358

bytecode, 753
compiled, 24–26
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compile time, 6–13
runtime, 10–12

expression parser, 1037–1048
high-level

procedural scripting systems, 157–158
XtremeScript, 162–166

I-code. See I-code
interpreted, 24–26
linking, 779–780
loading, 779–780
Lockdown, 1155–1157
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code (continued) 
low-level

procedural scripting systems, 158–159
XtremeScript, 167–168

machine, 17, 753
opcodes, 17
relocatable, 779–780
source

compilers, 863–864, 919–922
I-code, 940–942
XASM, 470–471

code-emitter module
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directives, 953–955
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command-based scripting. See CBS
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command-line compilers, 874–879
commands

case-sensitivity, 291
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extracting, 81–87
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Tcl, 290–292
C functions, 316–320
calling, 315–316
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Lua, 188
Python, 244
Tcl, 297, 298
XtremeScript, 362
XVM Assembly, 407, 442
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compile time code, 6–13

compiled code, 24–26
compilers. See also compiling
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assembling, 753
back end
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XASM, 863

bytecode, 753
CBS overview, 140–142
CD, 981
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stacks, 888–890

demos, 1099–1134
encapsulation, 866–867
error handling, 928–932
front end, 859

lexer module, 861
loader module, 860
parser module, 862
preprocessor module, 861

functions, 865, 910–915, 922–927
global variables, 890–891
hard-coding, 975–981
hardware architectures, targeting, 780–781
headers, 864
high-level languages, 753, 1190–1198
I-code, 866

instructions, 933–938
interface, 942–949
jump targets, 938–940
source code, 940–942

I-code module, 862
initializing, 891–892
initiating, 972
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interface, 870
command-line options, 874–879
filenames, 871–874
logos, 870–871

interfaces, 866–867
life-span, 867–870
low-level languages, 753
luac, 185–186
machine code, 753
modules

code-emitter, 950–969
code-emitter. See code-emitter module
I-code, 932–949
lexer, 916–928
loader, 895–897
overview, 893–895
parser, 928
parser. See parsing
preprocessor, 897–904

OOP, 1182–1183
optimizing, 771–772, 1183–1184
parsing, 1182
platforms, retargeting, 778–779
preprocessing, 773

files, 773–775
macros, 776–777

printing statistics, 972–975
shutdown, 892–893
source code, 863–864, 919–922
strategy, 858–859
strings, 866, 915
symbols, 864–865, 905–910
theory, 752–753
tokens, 916–919
XSE executables, 969–971
XtremeScript. See XtremeScript

compiling. See also compilers
back end, 768
CBS errors, 139
compilers, 769
front end, 768

I-code, 765
lexers, 757–760
lexing, 755–757
parsing, 760–764
passes, number of, 766–767
platfroms, 768
procedural scripting systems, 162–166
projects

Lua, 206–207
Python, 263–265
Tcl, 312–313

semantic analysis, 764
steps, 753–755
Tcl, 290
tokenizing, 755–757

Complete Instruction Set Computing (CISC),
386–388

concurrent execution, 109–110
multithreading, 659–666

conditional logic
assembly languages, 377–380
CBS, 125–128
Lua, 200–201
parsing, 1092–1099
Python, 256–258
Tcl, 306–308
XtremeScript, 358–360
XVM, 640–641
XVM Assembly, 402–403

conditional statements, parsing, 1092–1099
constants

Boolean, 115
CBS

executing, 124–125
loading, 124–125
preprocessing, 120–124

internal lists, 117–120
Lua, 215
public, 696
symbolic, 116–117

content, 15
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context switches, 655
multithreading,679–682

cooperative multitasking, 654–658
core (Tcl), 290
counting references (Python), 266
critical sections, multithreading, 663–664

D
data structures

compilers
linked lists, 880–888
stacks, 888–890

Lua, 241
XtremeScript, 351–354

data types
CBS, 115–125
Lua, 191–193

coercion, 192
Python, 246

debug libraries (Python), 264–265
declarations, parsing, 1008

arrays, 1017–1020
code-emitter module, 1026–1028
functions, 1008–1017
host API functions, 1020–1026
variables, 1017–1020

define keyword, 361
delimiters, lexers, 822–826
demos

bouncing sprite, 181–184
Lua, 228–241
Python, 277–286
Tcl, 322–329

compiler, 1099–1134
lexers, 849–855

design
CBS, 74
XtremeScript, 349–350

dictionaries, modules, 269–270
directives

code-emitter module, 953–955
Func, 432–434

Param, 436–438
SetStackSize, 431–432
Var, 434–436
XASM parsing, 529–541
XVM Assembly, 404–407, 431–439

directories
Python, 243
Tcl, 288–289

displaying lexer results, 809–811
domains (CBS), 68
dynamically linked module scripting systems,

23–24

E
elseif statements (Lua), 200–201
embeddable scripting systems, 179
embedding (XVM host applications), 741
encapsulation, compilers, 866–867
enemies

FPSs, 57–60
RPGs, 45–50

engines
code

compile time, 6–13
runtime, 10–12

defined, 15
functionality, 69–71
high-level control, 65–67

entry points, 18
XVM, 576

error handling
cascading errors, 930–932
CBS, 139
compilers, 928–932
lexers, 797
Lua, 209
multithreading, 672–673
XASM, 525–527

escape sequences
Lua, 197–198
XtremeScript, 362
XVM Assembly, 407
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events
CBS, 69
FPSs, 52
hierarchy, 135–137

exceptions
Python, 286
Tcl, 330

executables
XASM, 444–455
XSE

assembling, 558–563
compilers, 969–971
functions, 556–558, 601–603
header, 552–553, 594–595
host APIs, 557–558, 602–603
host applications, 731–732
instructions, 553–555, 595–599
strings, 555–556, 599–601

executing
CBS, 78–81
concurrent multithreading, 659–666
concurrently, 109–110
constants, 124–125
scripts

CBS, 71–74, 142–143
Lua, 219–221
XVM, 576–577

XVM, 627–628
binary operations, 638–639
conditional logic, 640–641
functions, 642–645
instruction pointers, 634–636
instructions, 628–647
operands, 636
pauses, 633–634, 646
terminating, 646–648

exporting functions (Python), 271–276
expression parser

coding, 1037–1048
factors, 1048–1051
function calls, 1051–1053

operators, 1053–1058
overview, 1033–1036
values, 1058

expressions
assembly languages, 340–344, 373–375
Lua, 198–200
parsing, 1028–1033
Python, 254–256
Tcl, 303–306
XtremeScript, 354–358

extensions
Lua, 241
Tcl, 290, 330

extracting (CBS), 81–87

F
factors (expression parser), 1048–1051
Fibonacci Sequence, 344–346
files

code-emitter module, 966–969
external functionality, 14–15
lexers, 793–795
compilers

filenames, 871–874
preprocessing, 773–775

first-person shooters. See FPSs
flags

arrays, 33–34, 38
CBS, 125–128

floating points, 115–116
for loops, parsing, 1092
format, code-emitter module, 950–951
FPSs (first-person shooters), 50

enemies, 57–60
events, 52
inter-script communication, 59
objects, 51–57
puzzles, 51–57
switches, 51–57
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framework, XASM, 469, 494–495
functions, 479–482
headers, 473
host API, 487
instructions, 471–473, 487–494
interface, 470
labels, 485–487
linked lists, 474–477
source code, 470–471
strings, 477–479
symbols, 482–485

front end compiling, 768, 859
lexer module, 861
loader module, 860
parser module, 862
preprocessor module, 861

Func directive, 432–434
functionality

engines (CBS), 69–71
external files, 14–15

functions
assembly languages, 344–346, 389–392
BlitFrame, 239
BlitSprite, 239
C

Lua, 215–219
Tcl commands, 316–320

calling
assembling, 423–428
asynchronous script, 719–728
expression parser, 1051–1053
host API, 699–711
host applications, 686–689
parsing, 1073–1079
Python, 268–271
script, 711–728
synchronous script, 713–719
XVM, 578–581

CallLuaFunc, 236
code-emitter module, 958–966

compilers, 865, 910–915, 922–927
GetCommand, 82–84
GetCurrLexeme, 497
GetCurrTime, 634
GetIntParam, 84–85
GetLookAheadChar, 497–498
GetNextToken, 496
GetStringParam, 85–87
global, 223
HandleFrame, 238–240
inline, 361
instructions, 373
inter-language, 180
intra-language, 180
Lua, 203–205

importing, 221–226
MultiplyString, 222–223
parsing, 1008–1017

host APIs, 1020–1026
Print, 192
PrintStringList, 219–221
public, 694–695
Python, 261–263

exporting, 271–276
list, 286

ResetLexer, 498
script control, 697–699
SkipToNextLine, 498
Tcl, 310–312, 316–320
XASM, 479–482

parsing, 531–534
XVM Assembly input, 432–434, 440–442
XVM Assembly output, 453–455

XSE executable, 556–558, 601–603
XtremeScript, 360–361
XVM, 587–588, 601–603

executing, 642–645
structure interfaces, 621–623

XVM Assembly, 403–406
input, 432–434, 440–442
output, 453–455
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G
games

content, 15
engines, 15
flags (CBS), 125–128
intro sequence, 90

implementing, 93–94
language, 91–92
script, 92–93

Lockdown
code, 1155–1157
graphics, 1151–1153
host API, 1158–1161
logic, 1142–1150
playing, 1175–1177
premise, 1140–1141
scripts, 1161–1173
sound, 1153–1154
speed, 1173–1175
state, 1155–1157
storyboards, 1142–1150
XtremeScript, 1158

logic, modular, 31
GetCommand function, 82–84
GetCurrLexeme function, 497
GetCurrTime function, 634
GetIntParam function, 84–85
GetLookAheadChar function, 497–498
GetNextToken function, 496
GetStringParam function, 85–87
global data tables (XVM), 571–572
global functions, 223
global variables, 226–228

compilers, 890–891
Tcl, 320–322
tracking, 689–694

graphics (Lockdown), 1151–1153

H
hacking (CBS), 139–140
HandleFrame function, 238–240
handlers, command, 87–90
hard coding, 6–13

compiler, 975–981
hardware architectures, targeting, 780–781
hash tables (Tcl), 301–303
headers

code-emitter module, 952–953
compilers, 864
XASM, 473

XVM Assembly output, 445–447
XSE executable, 552–553, 594–595
XVM, 583, 594–595

hierarchy, events, 135–137
high-level code

procedural scripting systems, 157–158
XtremeScript, 162–166

high-level engine control, 65–67
high-level languages, 753, 1190–1198
host APIs

function calls, 699–711
Lockdown, 1158–1161
Lua, 229–230
parsing, 1062–1064
parsing functions, 1020–1026
Python, 273–278
Tcl, 323
XASM, 440–441, 454–455, 487
XSE executable, 557–558, 602–603
XVM, 587–588, 602–603

host applications, 742
structure interfaces, 621–624

host applications, 18–20
Lua, 230–234
parsing, 1058–1062
Python, 278–281
Tcl, 323–325
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host applications (continued) 
XVM, 573–574, 682

asynchronous script function calls,
719–728

calling functions, 686–689
control functions, 697–699
embedding, 741
host API function calls, 699–711
host APIs, 742
integration interface, 686–728
multithreading, 728–739
native threads, 684
output, 745–746
priorities, 730–731, 734–735
public interface, 694–696
running scripts, 683–685
script function calls, 711–728
scripts, 739–745
synchronous script function calls,

713–719
time slicing, 684, 730–731
tracking global variables, 689–694
updating, 735–739
XASM, 733
XSE executables, 731–732

I
I-code

compilers, 866
compiling, 765
instructions, 933–938
interface, 942–949
jump targets, 938–940
source code, 940–942

I-code module, 862
compiler, 932–949

identifiers
Lua, 188
XASM, 438–439

if statements
Lua, 200–201
parsing, 1092–1099

implementing
CBS, 74–90
game intro, 93–94
lexers, 757–760
RPG characters, 101–105
scripting systems, 179–181
XASM, 455–456

importing functions (Lua), 221–226
indentifiers (lexers), 811–822
initializing

compilers, 891–892
lexers, 800–802
Lua, 207–208
multithreading, 674
Python, 265
Tcl, 313
XASM parsing, 528–529
XVM, 624–627

initiating compilers, 972
inline functions, 361
input (XASM)

comments, 442
directives, 431–439
functions, 432–434, 440–442
host API, 440–441
identifiers, 438–439
instructions, 439–440
line labels, 440
overview, 430–431
parameters, 436–438
scripts, 442–444
stacks, 431–432
variables, 434–436

instructions
assembling, 414–416
assembly languages, 337–344, 372

jump, 375–383
orthogonal, 388–389

functions, 373
I-code, 933–938
mnemonics, 17
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XASM, 471–473, 487–494
parsing, 543–551
XVM Assembly input, 439–440
XVM Assembly output, 447–451

XSE executable, 553–555, 595–599
XVM, 571, 584–585, 595–599

executing, 628–633, 637–647
pointers, 634–636
structure interfaces, 604–616, 622–623

XVM Assembly, 399–404
input, 439–440
output, 447–451

integration
abstraction layer, 174–179
C

Lua, 205
Python, 263
Tcl, 312

interfaces, 174–179, 686–728
scripting systems, 174–179

interactive interpreters
lua, 186–187
Python, 243–244
Tcl, 289

interfaces
CBS, 75–78
compiler, 870

command-line options, 874–879
filenames, 871–874
logos, 870–871

compilers, 866–867
I-code, 942–949
integration, 174–179, 686–728
scripting systems, 174–179
structure interfaces (XVM), 603–604

functions, 621–623
host APIs, 621–624
instructions, 604–616, 622–623
stacks, 616–623

XASM, 470

XVM
integration interface, 686–728
public interface, 694–696

inter-language functions, 180
Intermediate code. See I-code
internal constant lists, 117–120
interpreted code, 24–26
interpreters

defined, 24
interactive

lua, 186–187
Python, 243–244
Tcl, 289

inter-script communication, 59
intra-language functions, 180
items (RPGs), 41–45
iterating. See also loops

assembly languages, 375–383
logic, 131–133
Lua, 201–203
Python, 258–261
Tcl, 308–310
XtremeScript, 358–360

J–K
Java, 27
jumps

assembling, 423–428
instructions, 375–383
targets (I-code), 938–940

JVM, 1184–1185
keyword, define, 361

L
labels (XASM), 485–487
language

game intro, 91–92
RPG characters, 95–97
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languages
assembly. See assembly languages
high-level, 753
inter-language functions, 180
intra-language functions, 180
low-level, 753
procedural scripting, 336–337
XtremeScript. See XtremeScript

layer, abstraction, 174–179
lexemes, 785–786
lexer module

compiler, 916–928
compilers, 861

lexers. See also lexing
CD, 855–856
delimiters, 822–826
demo, 849–855
error handling, 797
identifiers, 811–822
implementing, 757–760
numeric, 797–798

displaying reults, 809–811
initializing, 800–802
loops, 802–809
state, 800
state diagrams, 799
strategy, 798–799
tokens, 800

operators, 831–849
reserved words, 811–822
results, 795–796
states, 812–813
strings, 827–831
text files, 793–795
tokens, 812–813
upgrading, 814–818
XASM, 495–524
XtremeScript, 811–822

lexing. See also lexers
characters, 785–786
compiling, 755–757
lexemes, 785–786

methods, 787–792
overview, 784
tokenization, 787
utilities, 788
writing, 788

brute force, 789
semi-state machines, 789–790
state machines, 791–792

XASM, 456–462
libraries

assembly languages, 344–346
Lua, 185, 241
Python debug, 264–265

lifecycles (XVM), 574
life-span (compilers), 867–870
line labels (XASM)

parsing, 542–543
XVM Assembly input, 440

linked lists
compilers, 880–888
multithreading, 667–672
XASM, 474–477

linkers, 18
linking code, 779–780
list functions (Python), 286–287
lists

internal constants, 117–120
linked

compilers, 880–888
multithreading, 667–672
XASM, 474–477

Python, 251–254
Tcl, 330

literals, assembling, 422–423
loader module

compiler, 895–897
compilers, 860

loaders, 11, 18
loading

code, 779–780
constants, 124–125
scripts
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CBS, 71–78
Lua, 208–209
Python, 266–268
Tcl, 314–315
XVM, 574–575

local variables (assembly languages), 395–397
Lockdown

CD, 1177
code, 1155–1157
graphics, 1151–1153
host API, 1158–1161
logic, 1142–1150
playing, 1175–1177
premise, 1140–1141
scripts, 1161–1173
sound, 1153–1154
speed, 1173–1175
state, 1155–1157
storyboards, 1142–1150
XtremeScript, 1158

logic
conditional

assembly languages, 377–380
CBS, 125–128
Lua, 200–201
parsing, 1092–1099
Python, 256–258
Tcl, 306–308
XtremeScript, 358–360
XVM, 640–641
XVM Assembly, 402–403

games (modular), 31
iterative, 131–133
Lockdown, 1142–1150

logos (compilers), 870–871
loops. See also iterating

assembly languages, 375–383
CBS, 68, 73–74
for (parsing), 1092
lexers, 802–809
Lua, 201–203
Python, 258–261

RPG characters, 105–108
Tcl, 308–310
while (parsing), 1079–1091
XtremeScript, 358–360

lower-level assembly, 1186–1189
low-level code

procedural scripting systems, 158–159
XtremeScript, 167–168

low-level languages, 753
Lua, 27, 185–187

associative arrays, 193–197
bouncing sprite demo, 228–241
C

functions, 215–219
integrating, 205

comments, 188
conditional logic, 200–201
constants, 215
data types, 191–193

coercion, 192
error codes, 209
escape sequences, 197–198
expressions, 198–200
extending, 241
functions, 203–205

importing, 221–226
host API, 229–230
host applications, 230–234
identifiers, 188
initializing, 207–208
iterating, 201–203
language, 187–205
libraries, 185, 241
loops, 201–203
OOP, 241
operators, 198–200
projects, compiling, 206–207
scripts, 234–241

executing, 219–221
loading, 208–209

semicolons, 189
stacks, 209–215
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Lua (continued)
statements, 189
states, 207–208
strings, 193–198
tables, 193–197
tag methods, 241
variables, 188–191

global, 226–228
Web sites, 242

Lua data structures, 241
lua interactive interpreter, 186–187
luac compiler, 185–186

M
machine code, 17, 753
macro assemblers, 374
macros, preprocessing, 776–777
managing memory (XASM), 429–430
memory

direct allocation, 1189
XASM, managing, 429–430
XVM Assembly, 399–400

methods
lexing, 787–792
Lua, 241

mnemonics, 17
assembly languages, 383–385

mods, 24
modular architecture, 31
modular game logic, 31
modules

compilers
code-emitter. See code-emitter module
I-code, 932–949
lexer, 861, 916–928
loader, 860, 895–897
overview, 893–895
parser. See parsing
preprocessor, 861, 897–904

dictionaries (Python), 269–270
I-code, 862

moving RPG characters, 97–99
multi-pass compiling, 766–767
MultiplyString function, 222–223
multitasking, 658

cooperative, 654–658
preemptive, 654–658

multithreading (XVM), 573
arrays, 667–677
atomic operations, 661–663
concurrent execution, 659–666
context switch, 655
context switches, 679–682
cooperative, 654–658
critical sections, 663–664
error handling, 672–673
host applications, 728–739
initializing, 674
linked lists, 667–672
multitasking, 658
mutexes, 664–665
overview, 653–654
preemptive, 654–658
race conditions, 659–661
scripts, 667–677
semaphores, 665–666
threads, 677–682
tracking, 678–679

mutexes (multithreading), 664–665

N
native threads, 684
nesting (CBS), 133–135
NPCs (non-player characters), 34–41
numeric lexers, 797–798

displaying reults, 809–811
initializing, 800–802
loops, 802–809
state, 800
state diagrams, 799
strategy, 798–799
tokens, 800
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O
object-oriented scripting systems, 21–22
objects. See also OOP

FPSs, 51–57
Python, 265–276
RPGs, 41–45

OOP. See also objects
assembly languages, 346–349
compilers, 1182–1183
Lua, 241
Python, 286

opcodes, 17
assembly languages, 383–385

operands
assembling, 420–422
assembly languages, 337–344, 372–373
parameters, 373
XASM (XVM Assembly output), 449–451
XVM, executing, 636

operations, binary, 638–639
operators

assembly languages, 340–344
expression parser, 1053–1058
lexers, 831–849
Lua, 198–200
precedence, 363–364
Python, 254–256
Tcl, 303–306
XtremeScript, 354–358, 363–364

optimizing compilers, 771–772, 1183–1184
options (compilers), 874–879
orthogonal instructions, 388–389
OSs, 1185–1186
output

XASM
executables, 444–455
functions, 453–455
headers, 445–447
host API, 454–455
instructions, 447–451

operands, 449–451
strings, 451–452

XVM host applications, 745–746

P
packages, Python, 286
Param directive, 436–438
parameters

assembly languages, 392–395
CBS, 144–146

extracting, 81–87
operands, 373
passing (Python), 270
XASM

parsing, 540–541
XVM Assembly input, 436–438

parser module. See parsing
parsing

analysis, 985–987
assignment statements, 1065–1072
branching, 1092–1099
CD, 1134–1135
code blocks, 1001–1007
compilers, 928, 1182
compiling, 760–764, 862
declarations, 1008

arrays, 1017–1020
code-emitter module, 1026–1028
functions, 1008–1017
host API functions, 1020–1026
variables, 1017–1020

expression parser
coding, 1037–1048
factors, 1048–1051
function calls, 1051–1053
operators, 1053–1058
overview, 1033–1036
values, 1058

expressions, 1028–1033
function calls, 1073–1079
host APIs, 1062–1064
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parsing (continued)
host applications, 1058–1062
loops

for, 1092
while, 1079–1091

overview, 984–985
recursive descent, 994–996
scope, 996–997
statements, 1001–1007

conditional, 1092–1099
if, 1092–1099

strategy, 1000–1001
syntax diagrams, 987–988
tokens, 997–1000
trees, 989–993
XASM, 456–462, 527–528

directives, 529–541
functions, 531–534
initializing, 528–529
instructions, 543–551
line labels, 542–543
parameters, 540–541
stacks, 530–531
variables, 535–540

passes, compiling, 766–767
passing parameters (Python), 270
pattern matching (Tcl), 330
pauses (XVM), 633–646
platforms

compiling, 768
retargeting, 778–779

playing Lockdown, 1175–1177
pointers

instructions (XVM), 634–636
XtremeScript, 350

precedence
operators, 363–364
XtremeScript, 357–358, 363–364

preemptive multitasking, 654–658
premise, Lockdown, 1140–1141

preprocessing
CBS, 143–150
compilers, 773

files, 773–775
macros, 776–777

constants, 120–124
XtremeScript, 362–363

preprocessor module
compiler, 897–904
compilers, 861

Print function, 192
printing compiler statistics, 972–975
PrintStringList function, 219–221
priorities (XVM), 730–735
procedural scripting languages, 336–337
procedural scripting systems, 21–22

architecture, 156–157
assembling, 167–168
code

high-level, 157–158
low-level, 158–159

compiling, 162–166
VMs, 159–161, 168–171
XtremeScript, 161, 168–171

high-level code, 162–166
low-level code, 167–168

programming overview, 16–18
projects, compiling

Lua, 206–207
Python, 263–265
Tcl, 312–313

public constants, 696
public functions, 694–695
public interface, 694–696
puzzles (FPSs), 51–57
Python

bouncing sprite demo, 277–286
C, integrating, 263
comments, 244
concepts, 184
conditional logic, 256–258
data types, 246
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debug library, 264–265
directories, 243
exceptions, 286
expressions, 254–256
functions, 261–263

calling, 268–271
exporting, 271–276
list, 286

host APIs, 273–278
host applications, 278–281
initializing, 265
interactive interpreter, 243–244
iterating, 258–261
lists, 251–254
loops, 258–261
module dictionaries, 269–270
objects, 265–276
OOP, 286
operators, 254–256
overview, 242
packages, 286
parameters, 270
projects, compiling, 263–265
reference counting, 266
scripts, 281–286

loading, 266–268
strings, 247–251
variables, 244–246
Web sites, 286–287

R
race conditions (multithreading), 659–661
reading files (lexers), 793–795
recursion

assembly languages, 344–346
Tcl, 292–297

recursive descent parsing, 994–996
Reduced Instruction Set Computing (RISC),

386–388
references, counting, 266

registers, assembly languages, 389
relocatable code, 779–780
reserved words

lexers, 811–822
XtremeScript, 363–364

ResetLexer function, 498
results, lexers, 795–796
retargeting platforms (compilers), 778–779
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